Enabling Rapid Development and
Execution of Advanced Graph-Analysis
Algorithms on Very Large Graphs

Aydin Buluc, LBL (abuluc@Ibl.gov)
John Gilbert and Adam Lugowski, UCSB ({gilbert,alugowski}@cs.ucsb.edu)
Steve Reinhardt, Microsoft (steve.reinhardt@microsoft.com)

Knowledge Discovery Toolbox (KDT) embodies
two key innovations:

EEED» - Technically, non-graph-expert subject-matter
experts analyze terascale graphs with multiple
advanced algorithms with leading performance

B - Architecturally, graph algorithm users, graph
algorithm developers, and graph infrastructure

developers each use complementary interfaces to
advance the field

Agenda

* APIs for different audiences
 Semantic and hyper-graphs

* Implementation / performance

|

JOLICDCDCE

- gy
S

LOCOCDCDELLLL]LOC

- Gene

- Email

- Twitter

- Facebook
- Video

- Sensor

- Web

KNOWLEDGE DISCOVERY WORKFLOW

Agenda

mmm). APIs for different audiences
 Semantic and hyper-graphs

* Implementation / performance

KDT APIs enable disparate groups’ work to
reinforce each other

Technically

ehitecturaly > Fosters earlier use and learning about how algorithms work at scale

4)
Graph-algorithm users
develop applications based on a
set of complex graph algorithm

implemented by experts
4)

Graph-algorithm developers
develop algorithms for a growing
set of users through an evolving

set of interfaces, based on

\ _ Powerfulinfrastructure DiGraph HyGraph SpParMat || (Sp)ParVec

-

Graph-infrastructure developers

develop new implementations of
the KDT interfaces for different
hardware or software platforms

\\ J

CombBLAS

KDT APIs enable disparate groups’ work to

reinforce each other

Technically

(
Graph500.py

deg3verts = (G.degree ()

deg3verts.randPerm/()

starts =

G.toBool ()

[origl, ign, 1gn2] =

for start in starts:
parents =
nedges =

Graph-algorithm users

-

Graph-algorithm developers

G.bfsTree (start,
len ((parents[origl]
if not k2vValidate (G,

verifyResult = "FAILED"

> 2) .findInds ()

deg3verts[kdt.ParVec.range (nstarts)]

G.toParVec ()

sym=True)
'= =-1).find())
start, parents):

Graph-infrastructure developers

KDT APIs enable disparate groups’ work to

reinforce each other

Technically

Graph-algorithm users

f : N L=
Graph-algorithm developers el a -
L, =
N ;.ie

G D%
\\\ pos
for

feed
G.toSpParMat ()
L.sum(kdt.SpParMat.Column)
-L
tDiag (d)
kdt.SpParMat.eye (G.nvert ()) — mu*L
= kdt.ParVec.rand (G.nvert ())
i in range (nsteps):
pos = M.SpMV (pos)

Graph-infrastructure developers

KDT APIs enable disparate groups’ work to
reinforce each other

Technically

Architecturally

U

Graph-algorithm users

Graph-algorithm developers

(Graph-infrastructure developers\

community detection due to Botherel and Bouklit
import kdtxmt
[...]
0 kdt.ParVec.zeros (G.nedge ())
for 1 in range (G.nedge()):
bc kdtxmt.centrality (G, ‘approxBC’, "edge’)
G.delete edge(bc.maxndx () [1])
P G.cluster ()
O[1] G.modularity (p)
best = Q.max ()

// SWIG headers for kdtxmt.py

[...]
INCLUDE “pyCentrality.h”

——

MTGL/XMT

_

KDT’s Graph API (v0.1)

ecnicaly » *Targeted at non-graph-expert domain experts
Architecturally > ® EXpOSEd Via PythOn

Real applications :
PP Community Network
Detection Vulnerability Analysis
Applets
Building .
blocks DiGraph (Sp)ParVec
bfsTree, isBfsTree (e.g., +,%,[,&>=51],
plus utility (e.g., DiGraph,nvert, abs,max,sum,range,
toParVec,degree,load,UFget,+,*, norm, randPerm,
sum,subgraph,reverseEdges) scale, topK)

CombBLAS |SPMV_SemiRing,
SpMM_SemiRing

KDT’s Graph API (v0.2)

Technically >

Architecturally >

Real applications .
PP Community Network
Detection Vulnerability Analysis
Applets
Building .
blocks DiGraph HyGraph SpParMat (Sp)ParVec
bfsTree, isBfsTree bfsTree, isBfsTree (e.g., +,*, SPMM, | | (e.g., +,*,1,&,>,==,[],
plus utility (e.g., DiGraph,nvert, | |plus utility (e.g., HyGraph,nvert, SpMV, abs,max,sum,range,
toParVec,degree,load,UFget,+,*| | toParVec,degree,load,UFget) SpMM_SemiRing, norm, randPerm,
sum,subgraph,reverseEdges) scale, topK)

CombBLAS |SPMV_SemiRing,
SpMM_SemiRing

Agenda

* APIs for different audiences
m). Semantic and hyper-graphs

* Implementation / performance

Semantic-graph API: Multiple Criteria

Technically >

Architecturally

Level of Customi
abstraction W /

Performance
CombBLAS PBGL KDT v0.2 goal
- Atypical abstractions - Abstractions low-level
+ Sustainably scalable for domain experts

performance + Scalable performance

Semantic Graph Use Case

Technically >

Architecturally

* Vertex types: Person, SmartPhone, Camera
 Edge types: PhoneCall, TextMessage, PhysicalPresence
 Edge StartTime, EndTime:

e (Calculate betweenness centrality just for PhoneCalls and
TextMessages between People occurring between times
sTime and eTime

Approach 1: Known Good Performance

Technically >

Architecturally

def vfilter (self, wantedVTypes) :
return kdt.in(wantedVTypes, self.type)

def efilter(self, wantedETypes, sTime, eTime) :

return kdt.and(kdt.in (wantedETypes, self.type),
kdt.and (kdt.gt (sTime, self.sTime),

kdt.lt (eTime, self.eTime)))

wantedVTypes = (People)
wantedETypes = (PhoneCall, TextMessage)
bc = Gtmp.centrality (‘approxBC’,filter=(vfilter,efilter))

Approach 2: Highly Flexible, Currently Bad
Tecmialy > Performance

Architecturally

def vfilter (self, wantedVTypes) :
any Python constructs permitted
return self.type in wantedVTypes

def efilter(self, wantedETypes, sTime, eTime) :

return (self.type in wantedETypes)
and (sTime > self.sTime)
and (eTime < self.eTime)

wantedVTypes = (People)
wantedETypes = (PhoneCall, TextMessage)
bc = G.centrality(‘approxBC’,filter=(vfilter,efilter))

Approach 3: Likely Good Performance, but
E— Potentially Memory-Expensive

Architecturally

def vfilter (self, wantedVTypes) :
return self.type in wantedVTypes

def efilter(self, wantedETypes, sTime, eTime) :

return (self.type in wantedETypes)
and (sTime > self.sTime)
and (eTime < self.eTime)

wantedVTypes = (People)

wantedETypes = (PhoneCall, TextMessage)
Gtmp = G.subgraph(filter=(vfilter,efilter))
bc = Gtmp.centrality (‘approxBC’)

Technically >

Hypergraph Support

Architecturally

The underlying sparse matrix is interpreted as an incidence
matrix; vertices are in columns, edges in rows

(Subset of) same methods implemented
Graph500 Kernel 2 looks identical except validation

Performance not yet measured for big cases, but expected to
take twice as long as same DiGraph method

— Two SpMVs in the core loop instead of one
— TEPS rating the same

bfsTree
T DiGraph HyGraph

Architecturally

def bfsTree(self, root, sym=False): def bfsTree(self, root):

if not sym:
self. T()

parents = pcb.pyDenseParVec(self.nvert(), -1) parents = pcb.pyDenseParVec(self.nvert(), -1)

fringe = pcb.pySpParVec(self.nvert()) fringeV = pcb.pySpParVec(self.nvert())

parents[root] = root parents[root] = root

fringe[root] = root fringeV[root] = root

while fringe.getnee() > O: while fringeV.getnee() > 0:
fringe.setNumTolnd() fringeV.setNumTolnd()
self._spm.SpMV_SelMax_inplace(fringe) fringeE = self._spm.SpMV_SelMax(fringeV)

fringeV = self._spmT.SpMV_SelMax(fringeE)
pcb.EWiseMult_inplacefirst(fringe, parents, True, -1 pcb.EWiseMult_inplacefirst(fringeV, parents, True, -1)

parents[fringe] =0 parents[fringeV] =0

parents += fringe parents += fringeV
if not sym:

self. T()

return ParVec.toParVec(parents) return ParVec.toParVec(parents)

Questions about Hypergraph Support

We have defined a BFS tree of a
hypergraph as a set of simple edges,
each contained in a hyperedge (which
permits cycles of hyperedges). Is this
the most useful definition?

Are hypergraphs in the KDT style
useful? What use cases should we
target? What methods should we

provide?

Agenda

* APIs for different audiences
 Semantic and hyper-graphs

—) Implementation / performance

Technically >

Architecturally >

Key DiGraph Methods in KDT v0.1/v0.2

def
def

def

def
def
def
def

def
def

def
def

def
def
def
def
def
def
def
def

pageRank (self, epsilon=0.1, dampingFactor=0.85):

centrality(self, alg, **kwargs):

‘exactBC’ ,normalize=True

‘approxBC’, sample=0.05, normalize=True
cluster (self, alg, **kwargs):

‘Markov’

‘spectral’

bfsTree(self, root, sym=False):

isBfsTree(self, root, parents, sym=False):

neighbors (self, source, nhop=1l, sym=False):

pathsHop (self, source, sym=False):

degree(self, dir=gr.Out):
genGraph500Edges (self, scale):
load (fname) :

UFget (fname) :

max (self, dir):

reverseEdges (self) :

scale(self, other, dir=gr.Out):
sum(self, dir):

DiGraph (sourceV, destV, weight, nvert):
toParVec (self) :

toBool (self) :

normalizeEdgeWeights (self) :

class Graph: #base classonly
class DiGraph:

class ParVec:

class SpParVec:

class SpParMat:

def sendFeedback() :
may want to disable this

Key HyGraph Methods in KDT v0.2

def pageRank(self, epsilon=0.1, dampingFactor=0.85):

Technicall
y> def centrality(self, alg, **kwargs):

Architecturally > ‘exactBC’,normalize=True

‘approxBC’, sample=0.05, normalize=True

def cluster(self, alg, **kwargs):
def bfsTree(self, root, sym=False):
def isBfsTree(self, root, parents):
def neighbors (self, source, nhop=1):

def pathsHop(self, source):

def degree(self, dir=gr.Out):
def genGraph500Edges (self, scale):

def load (fname) :
def UFget (fname) :

def max(self, dir):

def invertEdgesVertices (self):

def scale(self, other, dir=gr.Out):

def sum(self, dir):

def HyGraph (edgeNumV, incidentVertexV, weightV, nvert):
def toParVec (self):

def toBool (self):

def toDiGraph (self):

def normalizeEdgeWeights (self) :

Technically >

Architecturally

Graph500 Performance [Aydin Buluc]

Excellent scaling up to 2500 cores, good to 5K cores
— LBL/NERSC’s Hopper Cray XE6

Scale 29 (“mini”) has 8B directed edges
Performance measured from Python

1

/" —o—scale 28
7t ~#-scale 29

scale 30

—><perfect

GTEPS

1225 cores 2500 cores 5041 cores

Number of cores

On-node thread parallelism starts to show benefit at 10K
cores and above

KDT development and licensing

KDT is a collaboration among UCSB (John Gilbert et al), LBL
(Aydin Buluc), and Microsoft Technical Computing

The resulting software is released under the New BSD license
v0.1 was released on March 17
e Tested on Linux x86 and Cray XT configurations
V0.2 release targeted for early June
The project homepage is kdt.sourceforge.net
 Downloads, User Guide, FAQ and bug reporting

Planned KDT v0.2 Content

Windows HPC Server version
Semantic graphs

Hypergraphs

Clustering - Markov and spectral

Out-of-core (Dryad-based) version (likely v0.3)
Cray XMT version
— Discussing with Cray et al.

Version based on other graph infrastructures
— E.g., Parallel Boost Graph Library, SNAP, MultiThreaded Graph Library

Knowledge Discovery Toolbox (KDT) embodies
two key innovations:

EEED» - Technically, non-graph-expert subject-matter
experts analyze terascale graphs with multiple
advanced algorithms with leading performance

B - Architecturally, graph algorithm users, graph
algorithm developers, and graph infrastructure

developers each use complementary interfaces to
advance the field

Backup

Graphs-on-Disk Use Case

rechnically Does graph analysis make sense on data that won'’t all
Architecturally ﬁt |n memory?

Nm—

memory |

Graphs-on-Disk Use Case

Technically > Does graph analysis make sense on data that won'’t all
Architecturally ﬁt |n memory?

* The sparse-matrix-linear-algebra approach
structures communication, so raw pointer-
chasing performance not so important

People are building sparse-matrix packages
on top of MapReduce/Hadoop

We will shortly map the KDT APIs onto a
sparse-matrix package based on Dryad*

* Interface perhaps
import kdtooc
[...]
G = kdtooc.load(‘mydata’)
G.bfsTree (...)

*http://research.microsoft.com/en-us/projects/Dryad/

Questions about KDT-on-disk Support

Technically >

Architecturally

* Assuming that in-memory processing is much
faster than on-disk (10X?), what type of graph ops
would be practical for on-disk data? Just simple
ops? Would something as compute-intensive as
BC ever make sense out-of-core?

* |ssemantic graph’s filtering capability essential for
on-disk processing?

KDT Implementation on Combinatorial BLAS

Ecologically >

Real applications

Applets

e Combinatorial BLAS

* Built for combinatorial (sparse-matrix) problems
* Not limited to simple directed graphs

* Powers the functionality and performance of KDT

e Scales well to 2K-4K cores

Community
Detection

Network
Vulnerability Analysis

centrality(‘exactBC’)
centrality(‘approxBC’)

Graph500

pageRank

Building
blocks

bfsTree, isBfsTree,
neighbors, pathsHop

DiGraph utility
(e.g., DiGraph (from edges),
nverts, degrees, +, *, toParVec,
subgraph, reverseEdges, load)

ParVec/SpParVec utility
(e.g., +-,%1,&>,=5=,[],abs, range,
max, sum, norm, randPerm, topK)

SpMV_SemiRing,
SpMM_SemiRing

Sparse-matrix classes/ops/types
(e.g., Apply, EWiseApply, Reduce)

Technically >

Ecologically 2

Example Implementation:
bfsTree

ATX

Ecologically

(Kernel 2 of Graph500)

def bfsTree(self, root, sym=False):

if not sym:

self.T() # synonym for reverseEdges
parents = dg.ParVec(self.nvert(), -1)
fringe = dg.SpParVec (self.nvert())

parents[root] = root
fringe[root] = root
while fringe.nnn () > 0:

fringe.spRange ()
self. spm.SpMV _inplace (fringe. spv)
pcb.EWiseMult inplacefirst (fringe. spv,
parents. dpv, True, -1)
parents[fringe] = fringe
if not sym:
self.T()

return parents

bfsTree Implementation in KDT, for DiGraphs
[recmicaty >

SpMV and EWiseMult
are CombBLAS ops that
do not yet have good

graph abstractions

— pathsHop is an attempt for
one flavor of SpMV

Ecologically

pageRank Implementation in KDT (p. 1 of 2)

def pageRank(self, epsilon = 0.1, dampingFactor = 0.85):

We don't want to modify the user's graph.

G = self.copy()

nvert = G.nvert ()

* This portion

G. spm.removeSelfLoops () |OOkS more |Ike
Handle sink nodes (nodes with no outgoing edges) by graph Operahons
connecting them to all other nodes.
degout = G.degree(gr.Out)
nonSinkNodes = degout.findInds ()

nSinkNodes = nvert - len (nonSinkNodes)
iInd = ParVec (nSinkNodes* (nvert))
7Ind = ParVec (nSinkNodes* (nvert))

wInd = ParVec (nSinkNodes* (nvert), 1)
sinkSuppInd = 0

for ind in range (nvert) :
if degout[ind] ==
Connect to all nodes.
for sInd in range (nvert) :
iInd[sinkSuppInd] = sInd
JInd[sinkSuppInd] = ind
sinkSuppInd = sinkSuppInd + 1
sinkMat = pcb.pySpParMat (nvert, nvert,
iInd. dpv, jInd. dpv, wlnd. dpv)
sinkG = DiGraph ()
sinkG. spm = sinkMat

Ecologically

(main loop)

G.normalizeEdgeWeights ()
sinkG.normalizeEdgeWeights ()

PageRank loop

delta =1

dvl = ParVec (nvert, 1./nvert)

vl = dvl.toSpParVec ()

prevV = SpParVec (nvert)

dampingVec = SpParVec.ones (nvert) *

((1 - dampingFactor) /nvert)

while delta > epsilon:
prevV = vl.copy ()
v2 = G. spm.SpMV PlusTimes (vl. spv) + \

sinkG. spm.SpMV PlusTimes (vl. spv)

vl. spv = v2

vl = vl*dampingFactor + dampingVec
delta = (vl - prevV). spv.Reduce (pcb.plus(),
pcb.abs())

return vl

pageRank Implementation in KDT (p. 2 of 2)

This portion looks
much more like
matrix algebra

Ecologically

[rechncay >
Eclogclly

Graph500 Implementation in KDT (p. 1 of 2)

scale = 15
nstarts = 640

GRAPH500 = 1
if GRAPH500 ==
G = dg.DiGraph()
Klelapsed = G.genGraph500Edges (scale)

if nstarts > G.nvert () :

nstarts = G.nvert ()
deg3verts = (G.degree() > 2).findInds/()
deg3verts.randPerm ()
starts = deg3verts[dg.ParVec.range (nstarts)]

G.toBool ()

K2elapsed = le-12
K2edges = 0
for start in starts:

start = int(start)

if start==0: #HACK: avoid root==0 bugs for now
continue

before = time.time ()

parents = G.bfsTree(start, sym=True)

K2elapsed += time.time () - before

if not k2Validate (G, start, parents):
print "Invalid BFS tree generated by bfsTree"
print G, parents
break

[origI, origJd, ign] = G.toParVec()

K2edges += len((parents[origI] !'= -1).find())

def k2Validate (G,

Ecologically >

Graph500 Implementation in KDT (p. 2 of 2)

ret = True

start, parents):

bfsRet = G.isBfsTree(start, parents)

if type (ret

) !'= tuple:

if dg.master():

print "isBfsTree detected failure of Graph500 test %d"

return False
(valid, levels) = bfsRet

Spec test #3:

[origI, ori

gdJ,

ign]

1i = levels[origI]

13 = levels[origd]
if not ((abs(li-17)
if dg.master():

= G.toParVec ()

<=1) | ((li==-1) & (lj==-1))).all():

&

o

abs (ret)

print "At least one graph edge has endpoints whose levels differ by

more than one and is in the BFS tree"

print 1i, 13
ret = False
Spec test #4:
neither in = (1li == -1) & (1j == -1)
both in = (11 > -1) & (1j > -1)
out2root = (li == -1) & (origJd == start)

if not (neither in

| both in | out2root).all():

if dg.master():
print "The tree does not span the connected component exactly, root=%d"

ret

False

Spec test #5:
abs (1i-13) <=1
if not (neither in | respects).all():

respects =

start

if dg.master():

ret

return ret

print "At least one vertex and its parent are not Jjoined by an

False

original edge"

o
°

- #1 and #2: implemented
in isBfsTree

- #3: every input edge has
vertices whose levels
differ by no more than 1.
Note: don't actually have
input edges, will use the
edges in the resulting
graph as a proxy

- #4: the BFS tree spans
a connected component's
vertices (== all edges
either have both
endpoints in the tree or
not in the tree, or source
is not in tree and
destination is the root)

- #5: avertex and its
parent are joined by an
edge of the original graph

isBfsTree implementation KDT (p. 1 of 2)

ret =1 # assume valid
Ecologically nvertG = self.nvert ()

- def isBfsTree(self, root, parents, sym=False):

calculate level in the tree for each vertex; root is at level 0
if not sym:
self.reversekdges ()
parents?2 = ParVec.zeros (nvertG) - 1
parents2[root] = root
fringe = SpParVec (nvertG)
fringe[root] = root
levels = ParVec.zeros (nvertG) - 1
levels[root] = 0

level =1
while fringe.nnn() > O0:
fringe.spRange ()
#ToDo: create PCB graph-level op
self. spm.SpMV SelMax inplace (fringe. spv)
#ToDo: create PCB graph-level op
pcb.EWiseMult inplacefirst (fringe. spv, parents2. dpv, True, -1)
parents2[fringe] = fringe
levels[fringe] = level
level += 1
if not sym:
self.reversekdges ()

Ecologically

isBfsTree implementation KDT (p. 2 of 2)

build a new graph from just tree edges
tmp2 = parents != ParVec.range (nvertG)
treekEdges = (parents != -1) & tmp2
treel = parents|[treeEdges.findInds()]
treed = ParVec.range (nvertG) [treekdges.findInds ()]
if (treed == root).any():
return -1
note treed/Treel reversed, so builtGT is transpose, as needed by SpMV
builtGT = DiGraph(treed, treel, 1, nvertG)
visited = ParVec.zeros (nvertG)

visited[root] = 1

fringe = SpParVec (nvertG)
fringe[root] = root

cycle = False; multiparents = False

while fringe.nnn() > 0 and not cycle and not multiparents:
fringe.spOnes ()
newfringe = SpParVec.toSpParVec(builtGT. spm.SpMV_PlusTimes (fringe. spv))

if visited[newfringe.toParVec () .findInds ()] .any() :
cycle = True
break

if (newfringe > 1).any():
multiparents = True

fringe = newfringe

visited[fringe] =1

if cycle or multiparents:
return -1

spec test #2
if (levels[treel]-levels[treed]
return -2

= -1).any () :

return (ret, levels)

- #1: validate that
the tree is a tree
and has no cycles:
- a) no edge has
the root as a

destination

- b) no cycle exists

- ¢) no vertex has
more than 1
parent

- #2: tree edges
should be between
vertices whose
levels differ by 1

