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Sources of Massive Graphs

(WWW snapshot, courtesy Y. Hyun) (Yeast protein interaction network, courtesy H. Jeong)

Graphs naturally arise 
from the internet and 
social interactions

Many scientific (biological, chemical,
cosmological, ecological, etc) 
datasets are modeled as graphs.



Examples:

- Centrality

- Shortest paths

- Network flows

- Strongly Connected   
Components

Examples:

- Loop and multi 
edge removal

- Triangle/Rectangle 
enumeration

3

Types of Graph Computations 

Fuzzy intersection

Examples: Clustering,

Algebraic Multigrid

Tool: Graph

Traversal Tool: Map/Reduce
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Tightly 

coupled

Filtering 

based

map map map

reduce reduce



Tightly Coupled Computations

& Many graph mining algorithms are computationally intensive. 
(e.g. graph clustering, centrality)

& Some computations are inherently latency-bound. 
(e.g. finding shortest paths)

& Interesting graphs are sparse, typically |edges| = O(|vertices|)
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Huge Graphs Expensive Kernels+ !
High Performance and 
Massive Parallelism  

Sparse Graphs/Data
Sparse Data 

Structures (Matrices)
!

Tightly Coupled Computations
on Sparse Graphs
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Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on 
the TeX project is that software 
is hard. It's harder than anything 
4/14*6784*4845*9+#*3.*#.:
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Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on 
the TeX project is that software 
is hard. It's harder than anything 
4/14*6784*4845*9+#*3.*#.:

Dealing with 
software is hard !
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Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on 
the TeX project is that software 
is hard. It's harder than anything 
4/14*6784*4845*9+#*3.*#.:

Dealing with 
software is hard !

High performance 
computing (HPC) 

software is harder !
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Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on 
the TeX project is that software 
is hard. It's harder than anything 
4/14*6784*4845*9+#*3.*#.:

Dealing with 
software is hard !

High performance 
computing (HPC) 

software is harder !

Deal with parallel 
HPC software? 
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& Input: ;,54-34#*<5+=9*>,39*'-.131:*.%*4#<41

& Find least-cost paths between all reachable vertex pairs

& Classical algorithm: Floyd-Warshall

& Case study of implementation on multicore architecture:

? graphics processing unit (GPU)

All-Pairs Shortest Paths

for k=1:n // the induction sequence
for i = 1:n

for j = 1:n
if(w(i!k)+w(k!") < w(i!"))

w(i!"):= w(i!k) + w(k!")

1 52 3 4
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GPU characteristics 

Powerful:  two Nvidia 8800s > 1 TFLOPS

Inexpensive:  $500 each
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Recursive  All-Pairs Shortest Paths

A B

C D
A

B

D

C

A = A*;     % recursive call

B = AB;  C = CA;  

D = D + CB;

D = D*;     % recursive call

B = BD;  C = DC;

A = A + BC;

+ ,1*'),%:@ ! ,1*'+##:

Based on R-Kleene algorithm

Well suited for GPU architecture:

& Fast matrix-multiply kernel

& In-place computation  => 
low memory bandwidth

& Few, large MatMul calls  => 

low GPU dispatch overhead

& Recursion stack on host CPU, 
not on multicore GPU

& Careful tuning of GPU code



The Case for Primitives
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480x

Lifting Floyd-Warshall
to GPU

The right primitive !

Conclusions:

High performance is achievable but not simple

Carefully chosen and optimized primitives will be key

Unorthodox 
R-Kleene algorithm

APSP: Experiments and 
observations
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Sparse Adjacency Matrix and Graph

& Every graph is a sparse matrix and vice-versa

& Adjacency matrix:  sparse array w/ nonzeros for graph edges

& Storage-efficient implementation from sparse data structures
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The Case for Sparse Matrices

& Many irregular applications contain su!cient coarse-
grained parallelism that can ONLY be exploited using 
abstractions at proper level.
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Traditional graph 
computations

Graphs in the language of 
linear algebra

Data driven. 
Unpredictable communication.

Fixed communication patterns. 

Irregular and unstructured. 
Poor locality of reference

Operations on matrix blocks. 
Exploits memory hierarchy

Fine grained data accesses. 
Dominated by latency

Coarse grained parallelism. 
Bandwidth limited

The Case for Sparse Matrices



Identification of Primitives

Sparse matrix-matrix 
Multiplication (SpGEMM)

Element-wise operations
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Linear Algebraic Primitives

x

!"#$%&'()*+)(',%$%+-(.)'/-/)0!.)12.)0"+3.)*$2.)01.),%+2

Sparse matrix-vector 
multiplication

Sparse Matrix Indexing

x

.*



Why focus on SpGEMM?

& Graph clustering (Markov, peer pressure)

& Subgraph / submatrix indexing

& Shortest path calculations 

& Betweenness centrality

& Graph contraction

& Cycle detection

& Multigrid interpolation & restriction

& Colored intersection searching

& Applying constraints in 

finite element computations

& Context-free parsing ...
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Applications of Sparse GEMM

1
1

1
1

1
x x
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Two Versions of Sparse GEMM

A1 A2 A3 A4 A7A6A5 A8 B1 B2 B3 B4 B7B6B5 B8 C1 C2 C3 C4 C7C6C5 C8

j

x =
i

k

k

Cij

Cij += Aik Bkj

Ci = Ci + A Bi

x =
1D  block-column 
distribution

Checkerboard 
(2D block) 
distribution 



Comparative Speedup of 
Sparse 1D & 2D
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Projected performances of 
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& Stores entries in column-major order

& Dense collection of  #$%&'$()*+,-./$0

& Uses storage.
22

Compressed Sparse Columns (CSC):

A Standard Layout
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Submatrices are 'hypersparse0 (i.e. nnz << n)

blocks

blocks

Total Storage: 

Average of c nonzeros per column

& A data structure or algorithm that depends on 
the matrix dimension n (e.g. CSR or CSC) 
is asymptotically too wasteful for submatrices

Node Level Considerations



Sequential Kernel 

& Strictly O(nnz) data structure 

& Outer-product formulation 

& Work-efficient
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X
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Standard +/<.5,39)A1*-.)=/4B,3"C

Sequential Hypersparse Kernel

))()(lg( BnzrAnzcnif lops ""!#

))(( mnBnnzf lops """#

New hypersparse kernel:
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Scaling Results for SpGEMM

" RMat X RMat product (graphs 
with high variance on degrees) 

" Random permutations useful for 
the overall computation. 

" Bulk synchronous algorithms 
may still suffer due to imbalance 
within the stages.

" Asynchronous algorithm to avoid 
the curse of synchronicity

" One sided communication via 
RDMA (using MPI-2)

" Results obtained on 
TACC/Lonestar for graphs with 
average degree 8 
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Software design of the
Combinatorial BLAS

Generality, of the numeric type of matrix elements, algebraic 
operation performed, and the library interface.

Without the language abstraction penalty: C++ Templates

& Achieve mixed precision arithmetic: Type traits

& Enforcing interface and strong type checking: CRTP

& General semiring operation: Function Objects

template <class IT, class NT, class DER>

class SpMat;

& Abstraction penalty is not just a programming language issue.

& In particular, view matrices as indexed data structures and stay away 
from single element access (Interface should discourage)
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Extendability, of the library while maintaining compatibility and 
seamless upgrades.

! Decouple parallel logic from the sequential part. 

TuplesCSC DCSC

SpSeq

Commonalities:
- Support the sequential API
- Composed of a number of arrays

SpSeq

SpPar<Comm, SpSeq>

Any parallel logic: 
asynchronous, bulk synchronous, etc

Software design of the
Combinatorial BLAS
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Applications and Algorithms
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Betweenness Centrality (BC)

CB(v): Among all the shortest 
paths, what fraction of them pass 
through the node of interest?

BrandesA*+/<.5,39)

A typical software stack for an application 
enabled with the Combinatorial BLAS

Social Network Analysis
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6

XAT (ATX).*¬X

!

1 2

3

4 7 5

Betweenness Centrality using 
Sparse GEMM

& Parallel breadth-first search is implemented with 
sparse matrix-matrix multiplication

& Work efficient algorithm for BC
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BC Performance on
Distributed-memory 

& TEPS: Traversed Edges Per Second

& Batch of 512 vertices at each iteration

& Code only a few lines longer than Matlab version
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Input: RMAT scale N
2N  vertices
Average degree 8

Pure MPI-1 version. 
No reliance on any 
particular hardware.
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SpMV on Multicore

Our parallel algorithms for y Ax and "A ATxA*using the

new compressed sparse blocks (CSB) layout have

& span, and work, 

& yielding parallelism.)lg/( nnnnz#

)(nnz#)lg( nn#
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Our CSB 
algorithms

Star-P           
(CSR+blockrow 
distribution)

Serial  
(Naïve CSR)



Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

35



3636

Future Directions

"Novel scalable algorithms 

"Static graphs are just the beginning.

Dynamic graphs, Hypergraphs, Tensors

" Architectures (mainly nodes) are evolving

Heterogeneous multicores

Homogenous multicores with more cores per node

TACC Lonestar (2006)

4 cores / node

TACC Ranger (2008)

16 cores / node

SDSC Triton (2009)

32 cores / node

! ! !

XYZ Resource (2020)

Hierarchical 
parallelism
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New Architectural Trends

LANL / IBM Roadrunner

NVIDIA Tesla

Intel 

80-core chip

Cray 
XMT

A unified 

architecture ? 
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Remarks

& Graph computations are pervasive in sciences and will 
become more so.

& High performance software libraries improve 
productivity.

& Carefully chosen and implemented primitive operations 
are key to performance.

& Linear algebraic primitives:

! General enough to be widely useful

! Compact enough to be implemented in a reasonable time.
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