Parallel Modeling of Fish Interaction

Lamia Youseff® Alethea Barbaro®

Peterson Trethewey?”

Bjorn Birnir”>? John R. Gilbert®

“Department of Computer Science,
®Department of Mathematics,
“Center for Complex and Nonlinear Science,
University of California, Santa Barbara. USA.

dUniversity of Iceland,
107 Reykjavik, ICELAND.

Abstract

This paper summarizes our work on a parallel algorithm
for an interacting particle model, derived from the model by
Czirok, Vicsek, et. al. [4, 5, 6, 15, 16]. Our model is partic-
ularly geared toward simulating the behavior of fish in large
shoals. In this paper, the background and motivation for the
problem are given, as well as an introduction to the math-
ematical model. A discussion of implementing this model
in MATLAB and C++ follows. The parallel implementation
is discussed with challenges particular to this mathemati-
cal model and how the authors addressed these challenges.
Load balancing was performed and is discussed. Finally, a
performance analysis follows, using a performance metric
to compare the MATLAB , C++ , and parallelized code.

1. Introduction

The capelin is a species of pelagic fish that lives in the
northern oceans. There are several stocks in the North At-
lantic ocean; we are particularly interested in the stock that
migrates in the seas around and north of Iceland. These fish
form large shoals off the northern coast of Iceland gener-
ally made up of billions of individuals. Each year, the ma-
ture portion of this stock undertakes an extensive migration
to feed on zooplankton whose population swells during the
vernal phytoplankton bloom to the northeast of Jan Mayen
[17, 18]. In the fall, the fish return to the northern coast
of Iceland and the portion of the stock which undertook
the feeding migration swims around Iceland to the southern
coast. The fish then spawn and the adults die. The young
drift with the tidal current to mature off the northern coast.

The goal of our work is to model the life cycle and mi-
gration route of this particular stock of capelin with schools

of up to a million individuals. The Icelandic fishing indus-
try needs an accurate model of the migration of this stock
because the capelin are important both economically and
ecologically. The fishing industry fishes the stock for ex-
port, but this stock is also one of the main food sources for
many of the larger, more economically valuable fish in the
vicinity. Hence, it is important that the stock not be over-
fished. Because the migration route of the capelin seems
to be highly dependent on ocean temperature and currents,
it is difficult to find the stock at a given time and therefore
difficult to gauge the number of capelin during a given year
[2]. Stocks of fish in other oceans have been catastrophi-
cally depleted due to overestimation of the population. It is
therefore extremely important to keep careful track of the
location of the various parts of the stock of the capelin to
avoid similar catastrophes in this region.

Other groups have also worked on numerical simulations
to reproduce this migration, see [10, 11, 12]. These groups
have obtained reasonable spawning migrations using a com-
paratively small number of interacting particles represent-
ing super-individuals. Their models include currents, tem-
perature gradients, and a forcing term that simulates a hom-
ing instinct to draw the fish to the feeding and spawning
grounds at the correct times. We are interested in simulat-
ing the migration with a quantitatively accurate number of
fish and without these forcing terms. This paper addresses
necessary architecture for such a simulation.

One obstacle common to particle systems is the com-
putational expense of simulating a suitably large number
of particles. Simulating many particles is important, how-
ever, because local information can become global infor-
mation via local interaction if there are sufficiently many
particles. In this paper, we address one possible solution
to this problem. Our model is based on the model de-

scribed in [1], which in turn is derived from the model in
[10]. In this paper, we discuss transitioning the code from
the MATLAB implementation discussed in [1] to C++ using
MPI for parallel processing. We discuss the various chal-
lenges in parallelizing the code and the strategies we used
to address these challenges, including geographic division
of our space, ghost fish, shadow oceans, and load balanc-
ing.

This paper is organized as follows. In Section 2, we
present the necessary background on the fish interaction
schemes and describe the mathematical model for the prob-
lem. In Section 3, we describe our implementation of the
mathematical model, including the serial code in MATLAB
and C++, as well as the parallel code in MPI. Section 4
describes our approach to the load balancing problem. We
quantify the performance of our model in Section 5 and con-
clude the paper in the following section.

2. Background
2.1. Fish Interaction

In our model, fish interact with each other locally. All
fish are identical, and no fish are designated as “leaders,”
i.e. having more information or behaving differently from
the other fish. Each fish interacts only with fish within a cer-
tain finite region and ignores information from all other fish.
In general, each fish heads away from fish that are too close,
aligns with fish that are reasonably close, and head toward
fish that are too far away. Avoiding fish which are too close
averts collisions, aligning with neighbors allows the fish to
form cohesive schools to help avoid predation and offer hy-
drodynamic advantages, and getting closer to fish which are
far away helps fish avoid being alone and encourages the
formation of schools [13]. This type of behavior was ob-
served in schooling fish by biologists and has been shown
to be motivated by vision and the lateral line, a sense organ
which detects pressure changes and runs down the side of
many fish species including the capelin [14].

2.2. Zones of Interaction

We simulate these effects using the zones of interaction
shown in Figure 1. Three zones are defined by three con-
centric circles around every fish: the zone of repulsion, the
zone of orientation, and the zone of attraction. The smallest
circle is the zone of repulsion of the fish, at the center of the
diagram. The annulus between the zone of repulsion and
the larger circle is the zone of orientation, and the annulus
outside the zone of repulsion and inside the largest circle is
the zone of attraction. Fish try to head toward fish in their
zone of attraction, try to align in speed and direction with
fish in their zone of orientation, and try to head away from
fish in their zone of repulsion. They do this by taking an
average of all these (often conflicting) desires; for details,
see Section 2.3. Many interacting particle models employ

Zone of Attraction

Zone of Orientation

Figure 1. The zones of interaction of a fish in
our simulation.

similar zones of interaction, see for example [3, 7]. In our
implementation, each zone is given equal weighting and the
radii of the different zones are parameters which can be ad-
justed to create individual variation among the fish.

2.3. Mathematical Model

Our model is derived from the interacting particle model
first presented by Czirdk, Vicsek, et al., see [4, 5, 6, 15, 16],
and later adapted by [10] and then [1]. Fish change their
directional heading and speed at each time step by reacting
to nearby fish through the zones of interaction described in
Section 2.2, The algorithm for updating the kth fish’s speed
is

vkt + At) = % Yum

where there are N fish inside the zone of orientation of fish
k. Letting ¢, be the directional heading of the kth fish, we
update its directional heading at each time step according to
the rules specified by equations (2) and (3).

Here, R, N, and A are the number of fish in the kth fish’s
zone of repulsion, orientation, and attraction, respectively.
The indices r, n, and a run through all the fish in each re-
spective zone. The algorithm uses the speed and directional
heading from these calculations to move each fish according
to its velocity as follows:

[][t] oot]

cos(or(t + At)) =

A
xa(t) — 2k (t)
! ; (z(t) — za(t))® + (yr(t) — ya(t))2>)
Yk (t) — yr(t) N
T O T @ —p @ T 2 o)

' 1
sin(¢r(t + At)) = R+N+ A (Z (zx()

Ya (t) — Yk (t)) (3)

A
i ; (@r(t) = za(t))? + (ya(t) — ya(t))?

3. Interaction Simulation Model

3.1. MATLAB and C++ Models

In [1], the authors implement the model described in
Section 2.3 in MATLAB. For completeness, we began our
analysis with this implementation. In this code, there is no
sorting of the fish, and every fish computes its distance to
every other fish at every time step to see if it needs to react
to the other fish. This slows the code significantly as the
number of fish increases, making it prohibitively expensive
to model the number of individuals necessary for realistic
simulations of shoals of the capelin. It is therefore neces-
sary to move the code to another platform such as C++ and
to improve the algorithm itself.

3.1.1. Class Architecture

Our model consists of three main classes: Fish, Ocean
and World. The Fish class stores coordinate and velocity
data for a fish, the Ocean class is meant to represent a sin-
gle body of water, whereas a World class is a bigger body
of water composed of several connected oceans. Each fish
stores an x and y coordinate for its location in the world. A
fish stores its velocity as the cosine and sine of its direction
angle together with a non-negative speed. The Ocean class
has a member variable “fish” which is an array of Fish liv-
ing in that ocean. For a performance improvement, we sort
the list of fish in an ocean by x coordinate, and when fish
in an ocean interact, they need only compare their positions
with fish nearby in the sorted list. This saves us from an
“all-to-all” comparison for proximity detection. The Ocean
class has member functions which iterate through the fish,
updates their velocities and moves them. The Ocean class
does not handle any MPI communication. The World class
contains a 2-dimensional array of oceans. Member func-
tions of the World class iterate through the oceans and in-
struct each ocean to interact or move its fish. The World
class handles communication of the fish between oceans
both locally and over a network with MPI. In our imple-
mentation a flag in the World class determines whether the

oceans in a world are either connected in a torus or not. If
the torus flag is set to false, fish which traverse the boundary
of the world disappear from the simulation. When the torus
flag is set to true, the top edge of the world is identified with
the bottom edge of the world and likewise left and right, so
fish which traverse a boundary of the world teleport to its
other side.

3.1.2. Local Communication

Even if a world is instantiated on a sequential machine,
the oceans in that world do a network-style communication
of fish. The motion and interaction of fish in a time step
are computed one ocean at a time. Between time steps, the
oceans inform each other of pertinent fish.

There are two phases of communication per time step:

1. Before the fish can interact, each ocean needs to be
informed of sufficiently nearby fish in neighboring
oceans. We do this by adding a copy of each fish in
the neighboring ocean (provided it is within the largest
radius of attraction of the boundary) with a flag set to
indicate that the fish is a “ghost”. These fish need to be
present to affect other fish, but in the interaction phase
of computation, ghost fish need not have their veloci-
ties updated.

2. When fish migrate to an ocean from a neighbor-
ing ocean, they need to be removed from the source
ocean’s list and added to the receiving ocean’s list.

In communication phase (1) where ghost fish are sent
from ocean to ocean, we employ a trick that uses sorting
to save computational effort. Each ocean needs to com-
municate ghost fish to its eight neighboring oceans in the
2-dimensional model, as shown in Figure 2. Due to the ge-
ometry, the sets of ghost fish destined for the various neigh-
bors tend to intersect non-trivially. For instance, the ghost
fish which need to be sent to the neighbor in the upper-right
corner of an ocean also need to be sent to the ocean directly
to the right. To avoid redundant computation, we first di-
vide the ocean up into regions. We assign to each fish the

1 2 3

Figure 2. In the phase of communication in
which migrant fish are transported to neigh-
boring oceans, ocean 0 assigns a number
to each neighboring ocean shown. Fish are
then sorted by the number of their destination
ocean.

number of the region in which that fish is currently located.
We then sort the entire array of fish by region number. Be-
cause of the ordering of the region numbers, the fish that
must be sent to any neighboring ocean will be contiguous
in the sorted list. In communication phase (2) when mi-
grating fish are transported to their target oceans, we use a
similar scheme by assigning a number to the fish according
to its destination ocean.

3.2. Parallelization

When running in parallel each MPI-process instantiates
one world the structure of which mimics the worlds on
all other MPI-processes. To divide the work among MPI-
processes, each MPI-process is assigned a connected set
of oceans in this world to compute. On each process, the
oceans in the world which are not assigned to that MPI-
process still exist, but they begin each time step empty of
fish. We call such an ocean a shadow ocean. Before the
fish interact with each other to update their velocities, the
oceans need to be informed of ghost fish. So, on each MPI-
process, the world iterates through all oceans, and performs
a local communication of ghost fish amongst oceans in its
local world. Ghost fish spill into shadow oceans, so a net-
work communication pass follows which sends the ghost
fish in each shadow ocean into the identical ocean on the
proper MPI-process.

Once all ghost fish are in place, the real fish can up-
date their velocities. So at this point, we allow the fish
in the world to interact, and then we move the fish ac-
cording to the rules described in Section 2.3. Ghost fish
are removed once the velocities have been updated. When

moving fish, the process simply iterates through all its as-
signed oceans, and for each ocean advances every fish in
that ocean by its velocity. This might move fish into the
processor’s shadow oceans, so a second network commu-
nication pass follows which moves the fish in each of a
processor’s shadow oceans into the identical ocean on the
proper MPI-process.

By organizing the procedure in this way, we made a
healthy barrier between the computation of fish motion and
the MPI inter-process communication of fish. The move-
ment and interaction code can run blind to the fact that
network communication need be performed, and shadow
oceans automatically do the job of accumulating ghost fish
or migrant fish (depending on the phase of computation)
into a list. All the communication code does is transmit the
entire contents of each shadow ocean to the MPI-process to
which that ocean belongs. In fact, transmission of the entire
contents of an ocean from one MPI-process to another is
exactly what our dynamic load balancing scheme requires,
so the same code can be used for that as well, see Section 4.

4. Load Balancing

Distributing work among MPI-processes is a challenge
in any parallel interacting particle simulation. Fish are
attracted to each other and therefore distribute unevenly.
To contend with this, we adopt a dynamic load balancing
scheme. In some particle systems, it might be necessary to
use a dynamic space partitioning data structure, like a BSP-
tree. Our scheme does not use such a structure, making it
simpler and easier to implement, yet it still yields a signifi-
cant performance benefit.

Each MPI-process owns a number of oceans, and its
workload is determined by the number of fish interacting in-
side those oceans and their total communication character-
istics. For our initial configuration, we distribute the work-
load among MPI-processes by distributing the oceans be-
tween them equally. Oceans are distributed in groups to the
processors in a snake-like pattern. This way each group of
oceans is connected, and because fish are initially placed
randomly, all MPI-processes have comparable portions of
the total workload. In general, choosing an initial distribu-
tion reduces to a graph partitioning problem. The interested
reader is directed to [8, 9].

Because of the interactions between the fish described
in Section 2.2, the fish often gather into schools and then
move through the world as schools. This means that in or-
der to avoid overloading some processors while other pro-
cessors remain idle, it is necessary to employ dynamic load
balancing. Our goal for dynamic load balancing is for each
processor to do a comparable amount of work during each
iteration.

Our method for estimating the computational load of
a process is based on the assumption that performance is

dominated by the number of fish interactions. We keep
a variable in the Ocean class, interactionCounter, which
keeps track of the number of interactions that occur dur-
ing a given time step. At the beginning of every time step,
interactionCounter is set to zero on each ocean and we in-
crement it whenever a fish finds another fish within its zone
of attraction. We use the value of interactionCounter as a
heuristic measurement of the amount of work required to
process the fish in an ocean. This measurement of work is
more informative than keeping track of the number of fish
in a given ocean, since fish which are far enough apart will
not interact and thus will not affect the amount of time the
processor is spending on computations as much as the same
number of fish placed close together.

Once work is defined, there are several options for how
to dynamically load balance the simulation. We could di-
vide the world into differently-sized oceans depending on
the density of fish within each region. However, the data
structure which would need to be communicated between
the MPI-processes would then be extremely complex, as
it would necessitate capturing an arbitrary division of the
world into oceans. This could also require quite a bit of
communication since a densely populated region would be
divided among several processors, and fish on each proces-
sor would interact with fish on several other processors.

Instead, we start with a preset array of oceans and ini-
tially distribute them as described above. We keep this array
throughout the simulation, but we reassign oceans to pro-
cessors as time goes on. We choose a positive integer IV,
and allow one MPI-process to give away one ocean every
N time steps. Our dynamic load balancing algorithm is run
by a master process which iterates through all processes and
computes how much work is done by each processor. The
work done by a processor is computed by summing the in-
teractionCounter of all oceans belonging to that processor.
The head node finds which processor is doing the most work
and calls that processor processorHigh. The processor with
oceans neighboring processorHigh which is doing the least
amount of work is labeled processorLow. Of the oceans
adjacent to processorLow, an ocean is chosen from proces-
sorHigh’s array to give to processorLow which brings the
two processors’ work loads as close together as possible.

By choosing a bordering processor, we encourage main-
tenance of connectivity, and thus keep communication low.
Giving away only one ocean at a time ensures that the com-
munication required for the load balancing step itself re-
mains low. A large choice for NV will mean that oceans are
communicated less frequently, which will reduce this over-
head further, however, it is important to balance the cost of
this communication with the benefit of having each proces-
sor work at equal capacity.

5. Performance Analysis

Real shoals contain billions of fish. The more fish we
can simulate and the more iterations we can run, the more
realistic and useful our model will be. Therefore, we mea-
sure total execution time of the simulation as a function of
the total number of fish in the world and the number of iter-
ations. Hence, we define a performance metric to reflect the
time needed in seconds to simulate one fish per iteration.
In this section, we show the impact of porting our imple-
mentation on execution time per fish per iteration between
the MATLAB code, the C++ code and the MPI code with
load balancing. Our sequential C++ code outperforms our
sequential MATLAB code not only in raw running time, but
also in observed asymptotic running time. The MPI code
outperforms the sequential C++ code for a large enough
number of fish whose interaction cost dominates commu-
nication cost. Our parallelization scheme is most effective
when oceans sufficiently outnumber processors.

Sequential performance experiments were run on a dual-
core Intel Pentium 4 (2.60 GHz per core, 512KB L2 cache,
1GB main memory). We also ran our C++ sequential code
on DataStar, an IBM terascale machine at San Diego Super-
computing Center (SDSC). The machine has Power4 pro-
cessors with pipelined 64-bit RISC chips with two floating-
point units. Each Power4 runs at 1.5 GHz, has 16 GB of
main memory, and a two-way L1 (32 KB) cache, and a four-
way set associative L2 (0.75 MB). There is also an 8-way
L3 cache on each node (16 MB per processor). Note that
DataStar has a very different memory hierarchy from the
Pentium 4 machine.

Our C++ code consistently outperforms our MATLAB
code despite the compact size of the MATLAB code. Ta-
ble 1 show the performance distinction. The figure consists
of six sub-figures, each depicts time in seconds (on y-axis)
as a function of the total number of fish (on z-axis). The
three sub-figures in the top row show total execution time
where as the three sub-figures in the bottom row show the
execution time per fish per iteration. Furthermore, the three
settings of our experiments were (a) MATLAB performance
on Pentium 4 machine, (b) C++ sequential code on Pentium
4 machine, and (c) the C++ sequential code on the SDSC
Datastar machine, and they are shown as the three different
columns of the table. In addition, the red, blue and green
curves in each sub-figure are for 10, 100 and 1000 itera-
tions, as each sub-figure’s legend reflects.

From Table 1, we observe that the MATLAB code ran
about ten times slower than C++ code performance on both
Pentium and DataStar machines. The eventual slopes of
the curves suggest that the running time of our C++ code
is O(n'®) while that of the MATLAB code is O(n?). We
further observe that the performance difference is consis-
tent among different curves of iterations and number of fish.
This reflects the fact that for this specific problem instance,

(2)
MATLAB code on P4

(b) (©)

C++ sequential code on P4

C++ sequential code on Datastar

100000

100000

MATLAB Niter=10 —— " T o Niter-10 ——
MATLAB Niter-100 - Niter-100

10000 | MATLAB Niter=1000 --- o 1oo00 [Ner-1000

e 10)

1000 -

1000 | * -
100 | ’ /

100

Total Execution Time

Total Execution Time in seconds (logscale base 10)

¥
\
Total Exccution Time in seconds (logscale base

100000

Niter = 10 ——
Niter = 100

too00 [Niter =100 ---x

1000 -

100

Total execution time in seconds (logscale base 10)
°
¥

1024 4096 16384 65536 64

64 256
“Total Number of Fish in world (logscale base 2)

256
Total Number of Fish in World (logscale base 2)

64 256, 1024, 4096 16384
total number of fish in world (logscale base 2)

4098 16384 65536

65536

Niter10 ——
Niter=10

MATLAB Niter=10 —— " " T
/ 100
Niter-1000 -

MATLAB Niter=100
MATLAB Niter-1000 -

ooor [\ o ooon |
\

Z 00001 [

E ooor | |\ -

1e-05 1e:05 |

Niter = 10 ——
Niter = 100
Niter - 1000 -

0001 |

00001 | L
R

16-05 | - * A

Xecution time in seconds per fish per iteration(logscale base 10)

Time per Fish per Iteration
Exccution Time in scconds per fish per iteration (logsale base 10)
Exccution Time in seconds per fish per iteration (logscale base 10)

16 64 16384 65536 | &

256 1024 4096
Total Number of Fish in World (logscale base 2)

256 1024 4096
Total Number of Fish in World (logscale base 2)

1024 40 16384

16384 65536 | 16 64 256 2 96
total number of fish in world (logscale base 2)

65536

Table 1. The performance comparison between MATLAB and C++ implementation. The first column
shows MATLAB performance on P4 machine, while the second and third columns show the C++
performance. The upper row shows the total time of execution of the codes as a function of number
of fish in the world. The lower row illustrates the time in seconds per fish per iteration needed by
different codes, as a function of the number of fish in the world.

fish do not clump together, which in turn keeps the number
of interaction between the fish constant even upon increase
in the total number of iterations. Analysis of our C++ code
using a profiler revealed that more than 80% of execution
time is spent updating fish’s velocities. This happens be-
cause in order to update a fish’s velocity, it has to compare
to all its neighbors.

Table 2 shows the performance of the MPI code with
different number of MPI-processes and iterations. The sub-
figures in the first row show the total execution time of the
simulation (on the y-axis) as a function of the total num-
ber of fish in the world, while the second row shows the
time per fish per iteration as a function of the total number
of fish in the world. The first, second and third columns
of sub-figures are the performance characteristics for 10,
100 and 1000 iterations respectively. For each of the sub-
figures, we show the performance using a different num-
ber of MPI-processes. In addition, the red, blue, green and
purple curves demonstrate the performance of 2, 4, 8 and
16 MPI-processes. All parallel performance measurements
were executed and collected on DataStar.

From Figure 2, we notice that the 16-processes perfor-
mance lags behind the other curves, especially that the prob-
lem instance has 16 oceans (i.e., every MPI-process is ex-
ecuting one ocean). As the small number of fish and small
number of oceans in the world are divided among the 16-
processors, the computation time is very short relative to
the time taken to communicate between the oceans. This
imbalance results in the performance retardation, which is
seen in the purple curve of the 16 processes. However, as
the number of fish in the world increases, the computational
load of every ocean on each processor increases, and slowly
attains the balance between the communications and com-
putational loads.

We also observe that the performance of the 2,4 and 8
MPI-processes are similar, while performance for 16 MPI-
processes has a longer execution time. This is explained
by the architecture of Datastar, whose nodes have 8-cores
each. To minimize the network traffic, DataStar middle-
ware assigns up to 8 MPI-processes to the same physical
node. In the case of 2,4 and 8 MPI-processes simulation of
our results, the code uses only one physical node and hence

(a)

Performance for 10 Iterations

(b)

Performance for 100 Iterations

(©)

Performance for 1000 Iterations

MPI Total Time execution for Niter=10 on Datastar dspoe

MPI Total Time execution for Niter=100 on Datastar dspoe

MPI Total Time execution for Niter=1000 on Datastar dspoe

‘Total Number of Fish in World (logscale base 2)

Total Number of Fish in World (logscale base 2)

) 10000 : 10000 - T
10000 2 MP| threads —+— 2 MPI threads —+—

= 2 MPlthreads —— s 4 MP| threads s 4 WPl threads

s 4 Pl threads B 8 MPI threads ---*- B & MP| threads --- L
=2 MPI threads P 16 MP! threads & P 16 P threads & x
=13 e 2 ol 5 ool :

2 tooof E 2 N

Z o 2 ¥
j={ 101 E] * E] o

] g 5 g
Qi LR . E ;
S| E tof E * 2
=S| 3 E g E

2 El z El
Ol 2 g a o K g

g g soe B g E]
gz e 2w e 2

E| oo o =} x 5}
— 1 = ! g g
S| 2 * El L g
= Z g ES e E
Ol i 2 B i
B2 op % v 2 o CE

z [T g g

001 001 . . . oot
I] Y 1634 e%36 | 262144 1048586408 16 o 1024 4096 = eosas 1 o 2% 1024 105 =

Total Number of Fish in World (logscale base 2)

65536

dspoe

Total Number of Fish in World (logscale base 2)

‘Total Number of Fish in World (logscale base 2)

~ A y - . 5 ion, ti r iterati iter= atas! s P execution. i i citeration for Niter—
9 s MPI exccution, time per fish per iteration for Niter=10 on Datastar dspoe | = S/‘IPI execution, time per fish per iteration for Niter=100 on Datastar dspoe [5 MPI execution, time per fish per iteration for Niter=1000 on Datastar
= s o1 . : : T T T T 2 2MPItieads ——))) 2 o Tads —— T T
Ik R a— z 4 WPl treads - 1Pl reads
=% 4 MPlthreads 2 8 MPI threads - 2 8 MP| threads -
8 g 001 £ 16MPIthreads & 2 001 | 16MPlthreads o i 001§ 16 MPIthreads &
)
H 8 B =} El
SlE oml . “ o 2 omp £ oom| .
- e : e P 5) P “
| & oooor | Sy Beg ~ e] 2 oo - 5 0.0001 | o 8 —
(21§ R . 2 - a - s S i
o | iz = G © i£ S - -
3 [T, . 5 eos) ° o2 5 oreos| e e
2 teos g P . 2 8 2 1e0s — e e -
Z g 3 g o }/(z S
5|2 H < P E]
32 3 L . A 3 06
[aY) 2 1606 | ; 1e 06 g T S 3 * f 1e-06
| B s
EE wop E reort £ teort
o= 2 8 g
= 2 teos L L L L L L L 2 teos L L L L 3 teon L L L L L
E 16 6 25 101 409 16334 G506 262144 1040586406 | 2 1 el 1024 4096 = aesas | e o 2% 1024 05 16384
] 4 i

Total Number of Fish in World (logscale base 2)

65536

Table 2. MPI performance curves using 2, 4, 8 and 16 MPI-processes for parallel simulation of the fish
interaction. The sub-figures in the first column are the performance characteristics for 10 iterations
of the simulation, while sub-figures in second and third columns show the performance for 100 and

1000 iterations respectively.

does not encounter much communication overhead. With
16 MPI-processes, however, communication costs more.
As the number of fish and interactions increases, the com-
munication overhead for the 16 MPI-processes simulations
becomes dominated by the computational load of the pro-
cesses. This also explains the brief decrease for very small
numbers of fish. In addition, we have extended the total
number of fish in simulation in the first column to see where
the 16 MPI-processes simulation curve meet the other three
curves. Although it is not apparent from the figure because
of it is log scale, the 16 MPI-processes simulation is faster
than the other simulations for larger numbers of fish. For
example, to simulate half a million fish for 10 iterations, the
16 MPI-processes simulations took 25 minutes while the 2
MPI-processes took 64 minutes. As the number of fish in-
crease, the 16 MPI-processes becomes more efficient, and
less impacted by the network overhead.

The lower row of sub-figures in Table 2 shows the time
of execution per fish per iteration as a function of the to-
tal number of fish in the world. These curves show that
the MPI code has a better scalability than the MATLAB and
C++ codes. In addition, the curves have a “knee” before and

after which the time of simulation per fish per iteration is
higher. This happens for 2048, 1024 and 512 fish at 10, 100
and 100 iterations respectively. At these points, the simu-
lation achieves the most balanced state between the com-
putational load and communication load for this number of
iterations. In addition, as the number of iterations increase,
the balance point is achieved at a lower number of fish. This
is also explained by the fact that the communication over-
head increases as the number of iterations increases, and not
at the same rate as the increase of the computational load.
These characteristics are, however, architecture-specific as
they depend on the latency of the network infrastructure of
the machine.

6. Conclusions

We have implemented a parallel version of the model
of fish schooling described in [1]. Some of the challenges
addressed in this implementation were ways to divide the
problem domain among processors for parallelization, how
to communicate between processors effectively and at min-
imal cost, and how to distribute work dynamically with-
out excessive communication overhead. Our load balanc-

ing scheme is an compromise between fixed spatial alloca-
tion and completely variable-sized spatial allocation. Load
balancing in the way described in Section 4 allows us to
keep messages between processors simple, but also moves
toward equalizing the work done by the processors. A series
of tests gave us empirical results indicating that is our C++
implementation a pleasing improvement over the previous
MATLAB implementation.

Our method has potential for further optimization. Dif-
ferent proportions of oceans, processors and fish could be
explored for an optimum. A space searching algorithm
could be used within an ocean to avoid unnecessary compar-
isons between distant fish and might improve performance.
Although our tests suggest our method is scalable, we have
yet to test on fish populations of size comparable to the real
capelin population. We are currently working on applying
our scheme in a more detailed and realistic setting taking
into account environmental variables such as temperature,
currents and land masses.

References

[1] A. B. T. Barbaro, K. Taylor, P. Trethewey, L. Youseff, and
B. Birnir. Discrete and continuous models of the behavior
of pelagic fish: applications to the capelin. Submitted De-
cember 2007.

[2] J. Carscadden, B. S. Nakashima, and K. T. Frank. Effects
of fish length and temperature on the timing of peak spawn-
ing in capelin (Mallotus villosus). Can. J. Fish. Aquat. Sci.,
54:781-787, 1997.

[3] L. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R.
Franks. Collective memory and spatial sorting in animal
groups. J. Theor. Biol., 218:1-11, 2002.

[4] A.Czirdk, H. Stanley, and T. Vicsek. Spontaneously ordered
motion of self-propelled particles. J. Phys. A: Math. Gen.,
30:1375-1385, 1997.

[5] A. Czirdk, M. Vicsek, and T. Vicsek. Collective motion of
organisms in three dimensions. Physica A, 264:299-304,
1999.

[6] A. Czirdk and T. Vicsek. Collective behavior of interacting
self-propelled particles. Physica A, 281:17-29, 2000.

[71 M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S.
Chayes. Self-propelled particles with soft-core interactions:
pattern, stability, and collapse. Physical Review Letters,
96:104302, 2006.

[8] U. Elsner. Graph partitioning - a survey. Technische Univer-
sitat Chemnitz, 1997.

[9] P. Fjallstrom. Algorithms for graph partitioning: A survey.
Linkoping Electronic Atricles in Computer and Information
Science, 1998.

[10] S. Hubbard, P. Babak, S. Sigurdsson, and K. Magnisson.
A model of the formation of fish schools and migrations of
fish. Ecological Modelling, 174:359-374, 2004.

[11] K. G. Magnusson, S. Sigurdsson, and B. Einarsson. A dis-
crete and stochastic simulation model for migration of fish
with application to capelin in the seas around iceland. Tech-
nical Report RH-20-04, Science Institute, University of Ice-
land, 2004.

[12] K. G. Magnisson, S. T. Sigurdsson, and E. H. Dereksdottir.
A simulation model for capelin migrations in the north at-
lantic. Nonlinear Analysis: Real World Applications, 6:747—
771, 2005.

[13] B. L. Partridge. The structure and function of fish schools.
Scientific American, 246(2):114-123, 1982.

[14] B. L. Partridge and T. J. Pitcher. The sensory basis of fish
schools: Relative roles of lateral line and vision. Journal of
Comparitive Physiology, 135:315-325, 1980.

[15] T. Vicsek, A. Czirék, E. Ben-Jacob, I. Cohen, and
O. Shochet. Novel type of phase transition in a system of
self-driven particles. Physical Review Letters, 75(6):1226—
1229, 1995.

[16] T. Vicsek, A. Czirdk, 1. Farkas, and D. Helbing. Applica-
tion of statistical mechanics to collective motion in biology.
Physica A, 274:182-189, 1999.

[17] H. Vilhjalmsson. The Icelandic capelin stock: capelin, Mal-
lotus villosus (Miiller) in the Iceland-Greenland-Jan Mayen
area. Hafrannsoknastofnunin, Reykjavik, 1994.

[18] H. Vilhjalmsson. Capelin (Mallotus villosus) in the iceland-
east greenland-jan mayen ecosystem. ICES Journal of Ma-
rine Science, 59:870-883, 2002.

