
CS 240A Assignment 3:
Cilkified Inner Products

Assigned October 18, 2016

Due by 11:59 pm Monday, October 24; reviews due Friday, October 28

The purpose of this assignment is to gain familiarity with Cilk constructs and tools, and
to think about different ways of parallelizing an algorithm using Cilk. You will write a
parallel routine that computes the inner product (dot product) of two vectors in three
different ways. Your goal is to compare, understand, and optimize the performance of
this simple computation.

As usual, you’ll do this in a group of two from different departments, and after it’s due
you’ll swap submissions with another team to write a review.

1. Background

The inner product of two vectors is the sum of their elementwise multiplications. In pure
C, the inner product of two real n-vectors can be implemented as follows:

double	innerprod	=	0;	
for(int	i=0;	i<	n;	++i)	
{	
	 innerprod	+=	a[i]	*	b[i];	
}	

In C++, the standard library has a dedicated function for computing the inner product. It
is made available by including the <numeric> header.
	
int	innerprod	=	std::inner_product(a,	a+n,	b,	0);		

We’ll be using the sequential inner_product function to check the correctness of your
parallel inner product implementations.

2. What to implement

You will write three different functions to evaluate the inner product in parallel.

1. rec_cilkified(double	*	a,	double	*	b,	int	n)	
	

This will evaluate the inner product recursively, by splitting each array into two at
each stage of the recursion and adding the partial sums at the end. You should

switch to a sequential execution when the subarray sizes become smaller than a
threshold called coarseness. Here is a picture of the calculation:

a
b

innprod(a,b,n/2) innprod(a+n/2,b+n/2,n-n/2)

innprod(a,b,n)

+

......

2. loop_cilkified(double	*	a,	double	*	b,	int	n)	
	

This function contains two nested loops: the outer loop executes n / coarseness
times, and the inner loop executes coarseness times. You should parallelize the
outer loop with cilk_for, and let each inner loop execution proceed sequentially.
Finally, you’ll combine the results of the inner loop executions by adding them all
together sequentially.
	

3. hyperobject_cilkified(double	*	a,	double	*	b,	int	n)	
	

For this function, you’ll use a hyperobject. Specifically, you’ll use a reducer, and
let the Cilk reducer take care of data races and combining the results. Here is a link to
a short tutorial on Cilk Reducers.

There is a link to the driver / harness code called “innerproduct.cpp” on Gauchospace. You
can use this file as a template and implement the required functions, which are left blank for
you to fill in. The same directory contains a sample Makefile and a header with the timing
function.

Your program will be executed as:

>> . / innerproduct [sizeofarray]

where the parameter is optional and default is 1 million.

If the harness reports “incorrect” on your results, use cilkscreen to identify any data races
that might exist in your code.

You can use any multicore shared-memory machine you want for this homework. The
course web page has a pointer to download the Cilk system for any Intel-architecture
machine. I suggest that you debug on your own machine or on CSIL (which has Cilk
installed, and dual-core machines), and then do performance runs on Comet.

3. What to report

For all your experiments, you should just time the actual inner-product computation, not
the input parsing, data setup, and output.

1. Run your code with different input sizes (sizeofarray = 104, 105, 106, 107, 108) on
a fixed number of cores (set the CILK_NWORKERS environment variable). Plot a
graph that has input size on its x-axis (in log scale) and parallel efficiency on the
y-axis. Put all three lines (one for each routine you wrote) on the same graph.

2. Run your code on different numbers of cores with a fixed input size. Plot a graph
that has the number of cores on its x-axis (in normal scale) and parallel efficiency
on the y-axis. Plot all three lines on the same graph.

3. Experiment with different coarseness values and report on the sensitivity of the

performance to different values.

4. Using what you’ve learned so far, make the best-performing dot-product code you

can. It is likely that your code won’t enjoy linear speedup. What might be the
reason? Do you think that the algorithm does not have sufficient parallelism, or do
you think there is another bottleneck other than parallelism?

Using cilkview, you can empirically find out the parallelism of your code. However, you
should remember that the tool estimates parallelism for the entire program, meaning that
your possibly sequential input parsing will make your program look less parallel than it
actually is. Here is a link to the Intel SDK with cilkview and cilkscreend.

