Here's another way to compute the computational intensity for blocked matrix-
matrix multiplication, which I talked about in CS 240A on January 16, 2014.

First recall the definition: The computational intensity of an algorithm is q = t/v,
where t is # of basic operations (e.g. floating-point adds and multiplies) and v is # of
words moved between fast and slow memory. Because moving a word of data is
much slower than doing an operation on it, we want to use algorithms with high
computational intensity.

Now consider the naive 3-loop algorithm for multiplying two n-by-n matrices A and
B, adding the result to matrix C:

>fori=1:n
> forj=1:n
> fork=1:n

> C(ij) += A(i,k) * B(k,j);

What's the computational intensity? We need to count words moved between main
memory (slow memory) and cache (fast memory), which means that we need to
figure out what data in cache can be reused while it's still there. We will assume
that there's enough room in cache for a few matrix rows of n elements each, but
there's not enough room in cache for all n*2 elements of a matrix. Here's the reuse
analysis:

> C(i,j) is reused at least n times, once for each iteration of the "k" loop
> A(i,k) is reused at least n times, once for each iteration of the "j" loop
(because row i of A can stay in cache throughout the whole "k" and "j" loops)
> B(k,j) is read n times (once per iteration of the "i" loop), but all the rest of B must
enter cache in between two reads of B(k,j), so we can't keep B(k,j) in cache for more

than one use.

Thus, the statement in the inner loop always moves one word, B(k,j), from slow to
fast memory. It does two operations, so the computational intensityisq=2/1 = 2.

Now consider the blocked algorithm described on the slides and in class. We divide
each n-by-n matrix into blocks of size b-by-b. Each matrix has n*2 elements, and
has N2 blocks where N = n/b. The blocked algorithm uses three loops over the
blocks. The statement in the inner loop multiplies and adds blocks using the naive
method above -- thus, if we wrote it out in detail, the blocked algorithm would
actually have six nested loops. Here it is:

>fori=1:N
> forj=1:N
> fork=1:N

> (block C(i,j)) += (block A(i,k)) * (block B(k,j));



The key is to choose the block size b so that a few blocks of b*2 elements each can
fit into cache at the same time. Then the inner "block" * and += operations can run
within cache -- the blocks come into cache at the beginning of the *+=, and go out at
the end of it, but there's no memory traffic during the *+=.

Here are the details of the analysis of the computational intensity of the blocked
algorithm.

Ignore the cost of moving C for the moment, and focus just on A and B. The
statement in the inner loop above moves 2*b”2 words of data (reading a block of A
and a block of B), and does 2*b”3 arithmetic operations (multiplying and adding
blocks). Thus the computational intensity for every single execution of the inner
loop is exactly 2*b”*3 / 2*b”2 = b. Therefore the computational intensity for the
whole algorithm is exactly b as well, still ignoring the cost of moving C.

To justify ignoring C, note that each block of C moves twice (once into fast memory
and once out), while each block of A and of B moves N times. Thus, if N is
reasonably large, C's contribution to m is relatively small, and the intensity will still
be q = b to first order.

The blocked algorithm is a big deal: we have increased the computational intensity
from a fixed 2 to a quantity b that can be (roughly) as large as half the square root of
the cache size. On a modern processor with multiple levels of cache, the matrix
multiplication routine in the BLAS library plays the blocking game once per level of
cache, so there may be as many as 12 or 15 nested loops in it!



