How to Survive the
Multicore Software
Revolution

[or at Least Survive
the Hype])

Charles E. Leiserson
llya B. Mirman

CILK
ARTS

www.cilk.com

Contents

PO ACE et b e b s sane e iv

1. The Emergence of Multicore SOftWare.......cceeeeciiieieciiee e e 1
The free TUNCH IS OV ... 1
The multicore software triad.........oceeeiie i 2

2. What Is Parallelism, ANYNOW?ccccuiiiiiiiiieiciee et erveeeeee e s e e e svree e e sbee e e 3
AMAANES LAW ettt 3
A model for multithreaded eXeCULIONccocuiriiiiieiieeeeeee e 4
WWOTK ettt et h e h e st st ettt et et e bt e b e e b e b e naeas 5
] oI 1 4 TS PP UPPU T OPRTPPPPPTPTNE 6
ParalleliSm ...ttt e r e e nane s 6
AMAAhI’S LAW REAUX ..ottt 7

3. Race Conditions: A New Type of Bug (for Most People)cccceeeeviveeencieeecciiee e, 8
The lure of nonlocal variables...........ooeeiiiiiiiiiieee e 8
RACE CONAITIONS...eiiiiiiiiieiee et e s e e nees 9
A SIMPIE EXAMPIE.ceiii i s e st e e s ebae e e e naraeas 10
USiNg the dag MOElooiiiiiiiiiiee e e e seae e e enee 10
JA\ do] o 41 ol 1 4V PP PPPP PP 11
Validating determMinNaCy.....cccueee it 12
CopiNg WIth raCe DUESvveieeeie et e e e aree e 13

4. The Folly of Do-lt-Yourself Multithreading..........ccccocoveieeiiiiieeciiee e, 14
Three desirable ProPerties ... sbee e e 14
A TINY EXAMPIE oot e e et e e e s e e e e bae e e e nte e e e abaeeeenraeas 15

Page ii

www.cilk.com

A version using NAtive threads ... e 15
The impact on developmeNnt tiMEuvevii i 16
The BOTEOM [IN@ e s e 17
5. Concurrency Platformso e 18
B =T Lo I oYY -3 PRSP 19
MIESSAEE PASSING ceeviriiiiiiiiiiiiiiiiiieieteieteteteteeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeesesaeassesesesesesesesasasssssanas 20
Data-parallel aNGUAEESccuveee et 22
Intel’s Threading Building BIOCKSuueiiiiiiiieiee e 24
OPENIMIP ..t e e e e et e e e e e et e e e e e e e e taa s 25
L0111 2 PP POPPPPNE 26
6. Twenty Questions to Ask When Going MUILICOIecccvveiivciieeeiiiiee e csieee s 29
Application PErfOrMANCEcii it e e e e e aaee e e aeeas 30
SOftWare reliability....c..ceiiecieee e e e 30
D LEIVZ=] [T o g V=Y o N ol T o= SRS 31
ADOUL the AULNOIS ... 31
ADOUL CILK AIES ettt ettt e s e e st e s bt e e sate e sabe e sabeeemeeesabeesaneeeanee 32
T o 13 PP 33

© 2008 Cilk Arts, Inc. All rights reserved.

Rev. R21.3

Page iii

www.cilk.com

Preface

An irreversible shift towards multicore x86 processors is underway. Building multicore
processors delivers on the promise of Moore's Law, but it creates an enormous problem
for developers. Multicore processors are parallel computers, and parallel computers are
notoriously difficult to program.

To deliver competitive application performance on these new processors, many
applications must be written (or rewritten) as parallel, multithreaded applications.
Multithreaded development can be difficult, expensive, time-consuming, and error-
prone — and it requires new programming skill sets. Organizations need a solution to
meet the multicore software challenge.

To help you survive and prosper during the multicore revolution, we have in this e-Book
tried to provide some background and context around the emergence of mainstream
multicore processors, identify the key challenges facing software developers, provide an
introduction to multithreading concepts, and overview several concurrency platforms
available today.

We have tried hard to put together an informative, objective, and vendor-neutral
resource. Occasionally, however, we mention the features and benefits of our Cilk++
product. To make those “commercial breaks” clear, we identify them using the icon on
the left.

We welcome your feedback on the content! If you have suggestions on ways to
improve this e-Book, as well as additional topics to include, we look forward to hearing
from you at info [at] cilk.com or on our blog (www.cilk.com/multicore-blog/).

Good Luck in Going Multicore!
The Cilk Artisans

Cilk, Cilk++, and Cilkscreen are trademarks of Cilk Arts, Inc.

Page iv

www.cilk.com

1000000 -
: ransistor) ‘1, The Emergence of Multicore Software
100000 T Tntel CPU = count is still
Introductions e /15IN0,

10000 i B D In a 1965 paper, Intel cofounder Gordon Moore observed that transistor density
1000 e é% increases exponentially, roughly doubling every 18 months or so. For the last 40 years,
| e _,/{ but cﬁ/oc'/(Moore’s Law has continued unabated: semiconductor density continues to increase.

100 speed is . . o . .
213 /,f:”f(boIZna’ed at Moreover, since the mid-1980’s, a similar trend has resulted in clock speed increases of
101 e = ~5GHz. about 30% per year. Around 2003, however, clock speed hit a wall due to fundamental
11 PRPEr—p—— physics. Although computing power increases linearly with clock speed, power density
- e — rises with the square or cube, depending on the electrical model, and clock frequencies
1971 75 79 83 8791 95 ‘99 ‘03 2007 beyond about 5GHz melt chips. The clock-speed wall has forced microprocessor

Source: Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn i i i i 4 i

e T s ol 2005 vendors, in their efforts to continue leveraging Moore’s Law, to increase performance
and reduce power through multiprocessing, producing chip multiprocessors with
multiple processing cores per chip. Instead of increasing clock rate, vendors are
doubling the number of processing cores with each new generation of microprocessor

chips, a trend which will continue for the foreseeable future.

Power Density Lo ' The free lunch is over
(Wicm2)

In the words of Microsoft C++ guru Herb Sutter, for software developers, the “free
lunch” of performance — in the form of ever faster clock speeds — is over. Because
multicore programming differs so greatly from the serial software technology that has
carried the software industry through five decades of Moore’s Law, software developers
face an unprecedented challenge to their substantial investment in legacy serial
codebases. Moreover, every generation of multicore processors widens the “software
gap” between hardware potential and the performance that can be delivered by today’s
applications. This multicore discontinuity has placed three new demands on the
software development industry:

1. If software developers wish to continue to deliver competitive levels of application
performance, they must identify and adopt multicore software platforms that allow

them to exploit the full capabilities of multicore architectures.
Herb Sutter

Page 1

Application Performance

The Multicore Software Triad

www.cilk.com

2. Since multicore enablement requires multithreading expertise, which is in short
supply, software vendors must engage in a massive training effort to develop the
skills needed to cope with multicore programming.

3. The entire software tool chain, from debugging to software release, must be
engineered to allow reliable multicore software to be developed.

The multicore software triad

Developing multicore software poses three key challenges: achieving high application
performance, ensuring software reliability, and minimizing development time. We call
these three requirements the multicore software triad.

Application performance

Software developers need best-in-class performance, but not only on today’s 2- or 4-
core machines. They would like to avoid rewriting their code each time the number of
cores increases, and they would like to use a single binary with all of their customers —
including those who still run on 1- or 2-core machines. That is, they need linear scaling
up and down, including low overheads on a single core.

Software reliability
When parallelism is introduced into an application, that application becomes vulnerable

”

to “race conditions.” A race condition occurs when concurrent software tasks access a
shared-memory location and at least one of the tasks stores a value into the location.
Depending on the scheduling of the tasks, the software may behave differently. Coping
with race conditions is particularly challenging, as these bugs are nondeterministic,
making them difficult to avoid, hard to find during testing, and in some cases, expensive

to resolve.

Development time

Developing multithreaded software can be dramatically more complex than developing
serial code. To multithread their software, developers are faced with a potentially
cataclysmic restructuring of their code bases. The complexity may require organizations
to acquire new programming skill sets, forcing retraining or retooling of development

Page 2

Gene M. Amdahl

www.cilk.com

teams. These factors can put enormous pressure on development schedules and
introduce risk.

The remainder of this e-book is organized as follows. The next three chapters address
salient issues and concepts regarding each of legs of the multicore-software triad in
turn. Chapter 5 then overviews several popular concurrency platforms, and Chapter 6
provides 20 questions to ask when going multicore.

2. What Is Parallelism, Anyhow?

Before multicore-enabling a legacy codebase, it's prudent to understand something
about the application performance that one can expect to achieve through
parallelization. Many will be familiar with Amdahl’s Law", originally proffered by Gene
Amdahl in 1967, which offers a somewhat gloomy assessment of how much speedup
can be obtained through parallelism. This chapter introduces a simple theoretical
model for parallel computing which provides a more general and precise quantification
of parallelism that subsumes Amdahl’s Law. With this little theory in hand, we can
evaluate Amdahl’s Law and its implications on multicore application performance.

Amdahl’s Law

Let’s begin by looking at Amdahl’s Law to see what it says and what it doesn’t say.
Amdahl made what amounts to the following observation. Suppose that 50% of a
computation can be parallelized and 50% can’t. Then, even if the 50% that is parallel
were run on an infinite number of processors, the total time is cut at most in half,
leaving a speedup of less than 2. In general, if a fraction p of a computation can be run

1. Amdahl, Gene. “The validity of the single processor approach to achieving large-scale
computing capabilities,” Proceedings of the AFIPS Spring Joint Computer Conference,
April 1967, pp. 483-485.

Page 3

www.cilk.com

in parallel and the rest must run serially, Amdahl’s Law upper-bounds the speedup by
1/(1-p).

This argument was used in the 1970’s and 1980’s to argue that parallel computing,
which was in its infancy back then, was a bad idea — the implication being that most
applications have long, inherently serial subcomputations that limit speedup. We now
know from numerous examples that there are plenty of applications that can be sped up
on parallel computers effectively, but Amdahl’s Law doesn’t really help in understanding
how much speedup you can expect from your application. After all, few applications can
be decomposed so simply into just a serial part and a parallel part.

A model for multithreaded execution

As with much of theoretical computer science, we need a model which abstracts away
inessential properties and let’s focus on what we care about more precisely. The
appropriate model for studying parallelism is the dag model of multithreading, which
models the series-parallel relationships in terms of a dag, or directed acyclic graph.
This simple model views the execution of a multithreaded program as a set of
instructions (the vertices of the dag) with graph edges indicating dependences between
instructions.

We say that an instruction x precedes an instruction y, sometimes denoted x < v, if x
must complete before y can begin. In a diagram for the dag, x < y means that there is a
positive-length path from x to y. If neither x < y nor y < x, we say the instructions are in
parallel, denoted x || y. The figure to the left illustrates a multithreaded dag. In the
figure, we have, for example, 1 < 2,6 < 12,and 4 || 9.

Two measures of the dag allow us to define parallelism precisely, as well as to provide
some key bounds on performance and speedup.

Page 4

www.cilk.com

Work

The first important measure is work, which is the total amount of time spent in all the
instructions. Assuming for simplicity that it takes unit time to execute an instruction,
the work for the example dag is 18. (This simple theoretical model has been extended
in the literature to handle effects such as nonunit instruction times, caching, etc., but for
now, they simply complicate our understanding.)

Let’s adopt a simple notation. Let T, be the fastest possible execution time of the
application on P processors. Since the work corresponds to the execution time on 1
processor, we denote it by T;. Among the reasons that work is an important measure is
because it provides a bound on P-processor execution time:

Work Law: Tp>T4/P

This Work Law holds, because in our model, each processor executes at most 1
instruction per unit time, and hence P processors can execute at most P instructions per
unit time. Thus, to do all the work on P processors, it must take at least T1/P time.

We can interpret the Work Law in terms of speedup. Using our notation, the speedup
on P processors is just T:/Tp, which is how much faster the application runs on P
processors than on 1 processor. Rewriting the Work Law, we obtain T,/T, < P, which is
to say that the speedup on P processors can be at most P. If the application obtains
speedup proportional to P, we say that the application exhibits linear speedup. If it
obtains speedup exactly P (which is the best we can do in our model), we say that the
application exhibits perfect linear speedup. If the application obtains speedup greater
than P (which can’t happen in our model due to the work bound, but can happen in
models that incorporate caching and other processor effects), we say that the
application exhibits superlinear speedup.

Page 5

www.cilk.com

Span
The second important measure is span, which is the longest path of dependences in the
dag. The span of the dag in the figure is 9, which corresponds to the path1->2 > 3> 6
- 7 - 8 - 11- 12 - 18. This path is sometimes called the critical path of the dag,
and span is sometimes referred to in the literature as critical-path length. Since the
span is the theoretically fastest time the dag could be executed on a computer with an
infinite number of processors (assuming no overheads for communication, scheduling,
etc.), we denote it by T,. Like work, span also provides a bound on P-processor
execution time:

Span Law: Tp 2T,

This Span Law arises for the simple reason that a finite number of processors cannot
outperform an infinite number of processors, because the infinite-processor machine
could just ignore all but P of its processors and mimic a P-processor machine exactly.

Parallelism
Parallelism is defined as the ratio of work to span, or T,/T... Why does this definition
make sense? There are several ways to understand it:

1. The parallelism T,/T,, is the average amount of work along each step of the
critical path.

2. The parallelism T,/T,, is the maximum possible speedup that can be obtained by
any number of processors.

3. Perfect linear speedup cannot be obtained for any number of processors
greater than the parallelism T,/T.. To see this third point, suppose that P >
T1/T,, in which case the Span Law T, > T, implies that the speedup T./Tp
satisfies T1/Tp < T1/T.,, < P. Since the speedup is strictly less than P, it cannot be
perfect linear speedup. Note also that if P > T,/T,, then T,/T, << P — the more
processors you have beyond the parallelism, the less “perfect” the speedup.

Page 6

Work: T, =50
Span: T, =8
Parallelism: T,/T, = 6.25

John Gustafson

www.cilk.com

Amdahl’s Law Redux

Amdahl’s Law for the situation where a fraction p of the application is parallel and a
fraction 1—p is serial simply amounts to the special case where T, > (1-p) T.. In this
case, the maximum possible speedup is T1/T., < 1/(1—p). Amdahl’s Law is simple, but the
Work and Span Laws are far more powerful.

Twenty years ago, John Gustafson® addressed the gloominess of Amdahl’s law making
the observation that as time marches forward, problem sizes tend to get bigger, and
hence parallelism increases. In algebraic terms, if a problem of size n has work T;(n) and
span T.(n), the parallelism is T1(n)/T..(n), which increases with n, and hence with time, if
this ratio is not constant. For example, quicksorting n numbers has parallelism
proportional to log n, since the work is O(n log n) and the span is order n (mainly due to
the partitioning). That's not much parallelism, compared to n x n matrix multiplication,
which has parallelism of almost n’>. Nevertheless, since we're dealing with larger and
larger data sets as time goes on due to Moore's Law, the parallelism grows with time,
once again, assuming the parallelism isn't a constant.

Another reason Amdahl's Law is gloomier than reality is that people tend to be more
interested in response time than throughput. If one has an interactive application for
which most operations can be done serially, but one operation takes a long time but is
parallelizable, it may be well worth the effort to parallelize the one operation, even
though it contributes to only a small part of the total workflow. Moreover, making an
operation cheap can change the user's behavior, encouraging a workflow in which this
operation occurs more frequently — a positive feedback loop which results in a larger
fraction of the workflow that is parallelizable. Amdahl analyzed a static case, ignoring
the dynamics of human-centered computing.

2. Gustafson, John L. “Reevaluating Amdahl’s Law,” Communications of the ACM, May
1988, pp. 532-533.

Page 7

William A. Wulf

Mary Shaw

www.cilk.com

In closing, we should mention that the theory of work and span has led to an excellent
understanding of multithreaded scheduling, at least for those who know the theory. As
it turns out, scheduling a multithreaded computation to achieve optimal performance is
NP-complete, which in lay terms means that it is computationally intractable.
Nevertheless, practical scheduling algorithms exist based on work and span that can
schedule any multithreaded computation near optimally. The Cilk++ runtime platform
contains such a near-optimal scheduler.

3. Race Conditions: A New Type of Bug (for
Most People)

In a widely applauded article published in 1973 and entitled, “Global variable considered
harmful,” Bill Wulf and Mary Shaw argued, “We claim that the non-local variable is a
major contributing factor in programs which are difficult to understand.” Thirty-five
years later, however, nonlocal variables are still very much in vogue in production code.
Moreover, as software developers look toward multicore-enabling their legacy
codebases, nonlocal variables pose a significant obstacle to software reliability, because
they can cause race bugs.

The lure of nonlocal variables

To begin with, what were Wulf and Shaw concerned about, and why are nonlocal
variables nevertheless so prevalent? To be clear, by nonlocal variable, | mean one
nonlocal that is declared outside of the scope in which it is used. A global variable is a
nonlocal variable declared in the outermost program scope.

Wulf and Shaw were concerned that when a variable is used far away from its definition,
a local inspection of the code cannot easily determine its meaning. They identified
several reasons for eschewing nonlocal variables. Among them, they observed that if a
function modifies the nonlocal variable, this side-effect can be difficult to reason about.

Page 8

/?

rocedure 1
nt X;

/,7Procedure 2

Procedure 3
X++;

>

Procedure N

North American Blackout of 2003

www.cilk.com

In their words, “Untold confusion can result when the consequences of executing a

III

procedure cannot be determined at the site of the procedure cal

The clear alternative to referencing nonlocal variables is to reference local ones, which
one can do by passing the variable as an argument to function calls. The problem with
this approach is that it leads to parameter proliferation — long argument lists to
functions for passing numerous, frequently used variables. For every global variable
referenced in a function, an extra parameter would have to be declared to the function
to pass that variable. Not only would that lead to functions with dozens of extra
arguments, there also the cost of passing the arguments to consider.

As a practical matter, nonlocal variables are just darn convenient. If | have a code
operating on a large data structure, why should | have to pass the data structure to each
and every function that operates on the data structure? It’s much more convenient to
keep the function interfaces clean with fewer parameters and simply refer to the data
structure as a global variable or, commonly in object-oriented programming, as a
nonlocal member variable. Unfortunately, global and other nonlocal variables can
inhibit parallelism by inducing race bugs.

Race conditions

Race conditions are the bane of concurrency. Famous race bugs include the Therac-25
radiation therapy machine, which killed three people and injured several others, and the
North American Blackout of 2003, which left over 50 million people without power.

These pernicious bugs are notoriously hard to find. You can run regression tests in the
lab for days without a failure only to discover that your software crashes in the field
with regularity. If you're going to multicore-enable your application, you need a reliable
way to find and eliminate race conditions.

Different types of race conditions exist depending on the synchronization methodology
(e.g., locking, condition variables, etc.) used to coordinate parallelism in the application.
Perhaps the most basic of race conditions, and the easiest to understand, is the

Page 9

void incr (int “*counter)
*counter++;

by

void main() {
int x(0);
cilk _spawn incr (&x);
incr (&x);
cilk sync;
assert (x == 2);

by

{

Join the
Early Visibility
Program

Multicore-enable
your C++ App!

www.cilk.com/EVP

www.cilk.com

“determinacy race,” because this kind of race doesn’t involve a synchronization
methodology at all. A program is deterministic if it always does the same thing on the
same input, no matter how the instructions are scheduled on the multicore computer,
and it’s nondeterministic if its behavior might vary from run to run. Often, a parallel
program that is intended to be deterministic isn’t, because it contains a determinacy
race.

In the following examples, we'll assume that the underlying hardware supports the
sequential consistency memory model, where the parallel program execution can be

viewed as an interleaving of the steps of the processes, threads, strands, or whatever
the abstraction for independent locus of control in the parallel-programming model.

A simple example

Let’s look at an example of a determinacy-race bug, and then we’ll define determinacy
races more precisely. The Cilk++ code on the left illustrates a determinacy race on a
shared variable x.

The cilk_spawn keyword calls incr() but allows control to continue to the
following statement. The cilk_sync keyword says control shouldn’t go past this
point until the spawned subroutine has completed. In an ordinary serial execution
(equivalent to executing the code with the cilk _spawn and cilk _sync
keywords nulled out), the result is that the value of X is increased to 2. This parallel
code has a bug, however, and in a parallel execution, it might sometimes produce 1 for
the value of X. To understand why, it’s helpful to have a clearer understanding of the
parallel-program execution.

Using the dag model

We can view the program execution in terms of the dag model of multithreading
described in Chapter 2. On the left is a graphical view of the four strands in our simple
example using the dag model of multithreading. For convenience, we’ve collapsed
sequences of instructions that don’t contain any parallel control, such as ci Ik_spawn

Page 10

X++;

© O

X++3

¥

assert(x ==

2)

1 B - 0;
ri=x; | @r2=x;
Fle+; s A
x=r1; | @)fx=r2
O assert(: == 2);

www.cilk.com

or ci lk_sync, into strands. Strand A begins with the start of the program and ends at
the ci lk_spawn statement. Two subsequent strands, B and C, are created at the
cilk_spawn statement: B executes the spawned subroutine incr (), and C executes
the called subroutine Incr() on the next line. These two strands join at the
cilk_sync statement, where Strand D begins. Strand D consists of the instructions
from the ci Ik _sync to the end of the program. As the diagram shows, we have A <

B,A<C,B<D,C<D,andbyinference, A< D. We also have B || C.
We can now define a determinacy race formally.

Definition. A determinacy race occurs when two logically parallel instructions
access the same location of memory and one of the instructions performs a
write.

If S performs the write and S’ performs a read, we call the determinacy race a read race.
The behavior of the program depends on whether S’ sees the value before or after S’s
write. If S" performs a write, the determinacy race is a write race. In this case, one of
the two writes is “lost,” and the behavior of the program may depend on which thread
wrote last.

Atomicity

The key reason that the example code exhibits a determinacy race is that the
counter++ statement in the definition of Incr() is not atomic, meaning that it is
made up of smaller operations. In the figure on the left, we’ve broken the increment of
the variable X into a load from memory into a register, an increment of the register, and
then a store of the result back into memory.

(We've also eliminated a bunch of instructions that don’t involve computation on x.)
Strand A executes the instruction with label 1; Strand B executes the code with labels 2,
3, and 4; Strand C executes the code with labels 5, 6, and 7; and Strand D executes the
instruction with label 8.

Page 11

I N Quicklemo - Microsott Visual Studio

Selution Explorer - QuickDemo

Y=
:} Solution 'QuickDemo’ (1 project)
= = QuickDemo
w1 [Header Files
%~ [J Resource Files
= L= Source Files
€] AbouiBiox coo

-1

= | -
= o -

Run under CilkScreen Race Detector

bile Edit Veew Refactor Project Build Uebug) | lools | Window Community Help
G-E-EHd %@ ;

“ QSunl] :‘t

==
(Global 5|
.

=
=)

Attach to Process...

Connect to Deyice...

% Connect to Database...

Connect to Server...
Code Snippets Manager...

Choose Toolbox Items...

Ctrls Alt=P

Ctri+K, Cirl=R

u

www.cilk.com

When the multicore computer executes two strands in parallel, it is as if the various
operations making up the strand were interleaved. Now, we can see why the code
might operate in a faulty manner. If the instructions are executed in the order (1, 2, 3,
5, 6, 7, 4, 8), Strands B and C both read O for the value of X and subsequently both
store 1. Thus, X is incremented only once, not twice as we would like. Ouch!

Of course, there are many executions that don’t elicit the bug. For example, if the
execution order were (1, 2,3,4,5,6,7,8)or (1, 4,5, 6, 2, 3, 4, 8), we’d be okay. That’s
the problem with determinacy races: generally, most orderings are okay (in this case,
any for which B executes before C or vice versa); just some generate improper results (B
and C interleave). Consequently, races are notoriously hard to test for. You can run
tests for days in the lab and never see a bug, only to release your software and have a
customer repeatedly experience the bug (often a catastrophic crash) because of some
timing situation in their environment.

Validating determinacy

How can you make sure that your parallel program has no determinacy races? You can
try to do it by manual inspection, but that’s tedious and error-prone. You have to make
sure that every possible ordering of instructions in a parallel execution produces the
same behavior. There is an easier way, however. Cilk Arts provides a race-detection
tool, called Cilkscreen, which can tell you if your Cilk++ program is free of determinacy
races. Moreover, if there is a race, it will locate the offending accesses in the source
code, including stack traces. You can check correctness of your code by testing it on
serial executions and then use Cilkscreen to verify that there are no determinacy races.

Of course, there are other sources of nondeterminism besides determinacy races. A
program that queries time of day, for instance, may behave differently from run to run.
Generally, however, we can view these sources of nondeterminism as part of the
program input. If you're testing such a program in an ordinary serial-programming
environment, you usually dummy up the call to always return a fixed time so that you

Page 12

www.cilk.com

can check whether the output produced by the program corresponds to the value
expected by your regression suite. You can do the same for a parallel code.

Some programs are correct even with determinacy races. For example, even the
example code above might be considered correct if all a programmer cares about is
whether X is zero or nonzero. Programs that use locks also typically contain
determinacy races that can cause nondeterministic behavior, but the behavior may
nevertheless be acceptable. When it isn’t acceptable, it’s usually because of a special
kind of determinacy race, called a data race, which is a topic for another discussion.

Coping with race bugs

There are several ways to deal with race bugs. One way to avoid the data race is to use
mutual-exclusion locks, or mutexes, to ensure that only one thread accesses a non-local
variable at any point in time. Although locking can “solve” race bugs, lock contention
can destroy all parallelism.

Another strategy to eliminate a race bug is to restructure the code to eliminate nonlocal
references. Making local copies of the nonlocal variables can remove contention, but at
the cost of restructuring program logic. Although the restructured solution incurs some
overhead due to parameter passing, it generally produces code with predictably good
performance. Unfortunately, however, code restructuring can mean revising the logic
of substantial sections of code, and the prospect of refactoring a large codebase is
daunting. Should you think you’re safe because you don’t use recursion or lots of
nested function calls, think again! The same problem can arise when the body of a
parallel loop accesses variables declared outside the loop.

There’s a third way: Cilk++ provides hyperobjects to mitigate data races on nonlocal
variables without the need for locks or code restructuring. Hyperobjects mitigate data
races on nonlocal variables without the performance problems endemic to locking or
the need for code restructuring — the best of both worlds. The basic idea is that
different parallel branches of the computation may see different views of the
hyperobject, but combined they provide a single, consistent view.

Page 13

e m: ‘ Open M P

Microsoft

Clik++

www.cilk.com

4. The Folly of Do-lt-Yourself Multithreading

Windows and Linux (and other Unixes) provide API’s for creating and manipulating
operating system threads using WinAPl threads and POSIX threads (Pthreads),

respectively. These threading approaches may be convenient when there's a natural
way to functionally decompose an application — for example, into a user-interface
thread, a compute thread, a render thread, and so on. (The approach can even create a
feeling of "parallelism" on single-processor systems through time-division multiplexing,
but this task switching should not be confused with real parallelism on real processing
cores.) To many technical “experts” within the company, do-it-yourself (DIY)
multithreading directly using the WIinAPI or Pthread primitives sounds technically
challenging and fun — or at least when the project kicks off. Besides, in the words of
Longfellow, won’t doing it yourself ensure that it is well done?

The alternative is to program atop a concurrency platform — an abstraction layer of
software that coordinates, schedules, and manages the multicore resources.
Concurrency platforms include any of various thread-pool libraries, such as .NET’s
ThreadPool class; message-passing libraries, such as MPI; data-parallel programming

languages, such as NESL, RapidMind, or variants of Fortran since Fortran 90; task-

parallel libraries, such as Intel’s Threading Building Blocks (TBB) or Microsoft’s Task

Parallel Library (TPL); or parallel linguistic extensions, such as OpenMP, Cilk, or Cilk++.

As can be seen from this sample, some concurrency platforms provide a new language,
some extend an existing one, while others are simply implemented as library functions.

Three desirable properties

Although a concurrency platform may provide benefits over DIY multithreading with
respect to application performance and software reliability, a strong case against DIY
can be made purely on the basis of development time. Indeed, as a rule, one can
generally develop robust multithreaded software faster using a concurrency platform
than doing it yourself with native threads. The reason is that the DIY strategy makes it
hard to obtain three desirable properties of multicore software:

Page 14

N =

PO WOWoWNO VTS W

e

#include <stdio.h>
#include <stdlib.h>

int fib(int n)
{
if (n < 2) return n;
else {
int x fib(n-1);
int y fib(n-2);
return x + y;

3
3

int main(int argc, char *argv[])

{
int n = atoi(argv[1l]);
int result = fib(n);
printf("Fibonacci of %d is %d.\n", n,
return 0;

result);

www.cilk.com

e Scalability
e Code simplicity
e Modularity

A tiny example

To illustrate the folly of DIY multithreading and its adverse impact on development time,
let’s look at the simple example of parallelizing a recursive Fibonacci calculation. The ith
Fibonacci number is the ith number (indexed from 0) in the sequence (0, 1,1, 2,3, 5, 8,
13, 21, ...), where each number is the sum of the previous two. Although this example is
tiny and artificial, it illustrates the key issues. On the left is the original code in C/C++.

Incidentally, this algorithm is a terrible way to calculate Fibonacci numbers, since it
continually recalculates already computed values and runs in exponential time.
Didactically, however, it’s short and good enough for our purposes. Just remember that
our goal is to parallelize this particular algorithm, not to replace it with a more efficient
algorithm for computing Fibonacci numbers.

A version using native threads

On the next page is a Pthreaded version designed to run on 2 processor cores. A
WinAPI-threaded implementation would follow similar logic, only differing in the names
of library functions. This code is not the most optimized threaded code, but it is fairly
typical of what one must do to parallelize the application for 2 processor cores.

The program computes Tib(n) by handing off the calculation of Tib(n-1) to a
subsidiary thread. As it turns out, on a typical x86 dual-core laptop, the cost of starting
up a subsidiary thread is sufficiently great that it’s actually slower to use two threads if n
isn’t big enough. A little experimentation led to hardcoding in a threshold of 30 in line
33 for when it’s worth creating the subsidiary thread, which leads to about a 1.5 times
speedup for computing T1b(40).

Although it may seem a little tedious, let’s look at the implementation in some detail to
examine the logic of this code, because it reveals what DIY programming with native

Page 15

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int fib(int n)
{
if (n < 2) return n;
else {
int x = fib(n-1);
int y = fib(n-2);
return X + y;

3

typedef struct {
int input;
int output;

} thread_args;

void *thread_func (void *ptr)

{
int i = ((thread_args *) ptr)->input;
((thread_args *) ptr)->output = fib(i);
return NULL;

}

int main(int argc, char *argv[])

pthread_t thread;
thread_args args;
int status;
int result;
int thread_result;
if (argc < 2) return 1;
int n = atoi(argv[1]);
if (n < 30) result = fib(n);
else {
args.input = n-1;
status = pthread_create(&thread,
NULL,
thread_func,
(void*) &args);
// main can continue executing while the thread executes.
result = fib(n-2);
// Wait for the thread to terminate.
pthread_join(thread, NULL);
result += args.output;

printf("Fibonacci of %d is %d.\n", n, result);
return 0;

www.cilk.com

threads is all about. Assuming it is worthwhile to use two threads, we can create the
subsidiary thread using the Pthread library function pthread create(). This
function takes as arguments a pointer to the function the thread will run after it’s
created and a pointer to the function’s single argument — in this case to
thread func() and the struct args, respectively. Thus, line 35 marshals the
argument Nn-1 by storing it into the Input field of args, and line 36 creates the
subsidiary thread which calls the wrapper function thread func() on argument
args. While the subsidiary thread is executing, the main thread goes on to compute
Tib(n-2) in parallel line 37. The subsidiary thread unpacks its argument in line 19,
and line 20 stores the result of computing Tib(n-1) into the output field of args.
When the subsidiary thread completes, as tested for by pthread join() in line 38,
the main thread adds the two results together in line 39.

The impact on development time
We're now in a position to evaluate how development time might be impacted by
coding in a DIY multithreading style.

Scalability

The first thing to note is the lack of scalability. The native-threaded code offers speedup
only on a dual-core processor, and it doesn’t even attain a factor of 2, because the load
isn’t balanced between the two threads. Additional coding will be needed to scale to
qguad-core, and as each generation of silicon doubles the number of cores, even more
coding will be required. You might think that you could write the code to use 1000
threads, but unfortunately, the overhead of creating 1000 threads would dominate the
running time. Moreover, the system would require memory resources proportional to
1000, even when running on a few cores or just a single core. What’s needed is a load-
balancing scheduler that manages memory intelligently, and — as luck would have it —
that turns out to be one of the services that most concurrency platforms provide.

Page 16

John W. Backus

www.cilk.com

Code simplicity

Without a concurrency platform, the effort of thread management can complicate even
a simple problem like Fibonacci, harkening back to the days when programmers had to
write their own linkage protocols to communicate arguments to called subroutines.
That was John Backus’s great innovation embodied in the first FORTRAN compiler in
1957. You could call a subroutine without elaborate marshaling of arguments and
return values, just by naming them in a functional syntactic form. By contrast, in the
native-threaded Fibonacci code, the argument N-1 must be marshaled into the args
struct in order to pass it to the subsidiary thread, and then it must be unpacked by the
wrapper function thread Tunc() on arrival, much as in pre-FORTRAN caller-callee
linkage. DIY multithreading takes a veritable 50-year leap backward! Encapsulating
parallel linkage so that it can be expressed in a functional syntactic form is another
service that many concurrency platforms provide.

Modularity

Unlike in the serial version, the Fibonacci logic in the native-threaded version is no
longer nicely encapsulated in the Tib() routine. In particular, the identity Tib(n) =
Tib(n-1) + Tib(n-2) has now infiltrated the main thread. For large applications,
a mandated change to the basic serial logic often requires the parallel logic to be
modified as well to ensure consistency. You might think that updating both the serial
and parallel logic might as much as double developer time, but it’s actually much worse
in practice. As can be seen from this little example, parallel code can be far more
complicated than serial code, and maintaining a DIY multithreaded codebase can cost a
factor of 10 or more in developer time over a functionally equivalent serial code. A
concurrency platform may provide linguistic support so that the program logic doesn’t
weasel its way into complex thread-management code.

The bottom line

One can criticize DIY multithreading from the points of view of application performance
and software reliability, as well as development time, but the case in terms of
development time alone is strong. For example, to obtain good performance and

Page 17

Join the
Early Visibility
Program

Multicore-enable
your C++ App!

www.cilk.com/EVP

#include <stdio.h>
#include <stdlib.h>
#include <cilk.h>

int fib(int n)

{
if (n < 2) return n;
else {
int X = cilk_spawn fib(n-1);
int y = fib(n-2);
cilk_sync;
return x + y;
h
}

int cilk_main(Cint argc, char *argv[])

{
int n = atoiCargv[1l]);
int result = fib(n);
printf("Fibonacci of %d is %d.\n", n,
return 0O;

result);

www.cilk.com

ensure reliable software may require extra attention to coding that could also adversely
impact development time.

You may now be convinced of the folly of DIY multithreading, but if you're a top-flight
developer, you may still harbor thoughts of building your own concurrency platform
rather than acquiring one. Before going too far down that path, however, you would be
wise to consider the large development efforts that have gone into existing concurrency
platforms. Building a concurrency platform from scratch is a mountain to climb.
Although many of today’s concurrency platforms fall short of offering complete
solutions to multicore programming, most do represent a better place to start than does
DIY multithreading, and they’re improving rapidly.

In summary, parallel programming has earned a reputation for being difficult, and a
good deal of that credit owes itself to applications written with native threads. So, if
you don’t mind that your multicore software is a mess, if you don’t mind giving corner
offices to the few engineers who have at least some clue as to what’s going on, if you
don’t mind the occasional segment fault when your software is in the field, then DIY
multithreading may fit the bill perfectly. © But, if that prospect sounds at least mildly
unpleasant, check out one of the concurrency platforms mentioned at the beginning of
this chapter and discussed in greater detail in Chapter 5.

To get you started, on the left is a parallelization of the Tib() code using the Cilk++
concurrency platform. Compare this code to the original, and you judge the impact on
development time.

9. Concurrency Platforms

There are a variety of concurrency platforms available today, each with their strengths
and weaknesses. (For a broader list, the Wikipedia entry for “parallel programming

model” has a nice summary.) Below, we summarize some of the more popular ones.

Page 18

www.cilk.com

Thread pools

One of the problems with programming Pthreads or WinAPI threads directly is the
overhead associated with creating and destroying them. A thread pool is a strategy for
minimizing that overhead and is possibly the simplest concurrency platform. The basic
idea of a thread pool is to create a set of threads once and for all at the beginning of the
program. When a task is created, it executes on a thread in the pool, returning the
thread to the pool when the task is done.

As a practical matter, however, few thread pools are organized in this fashion. The
problem is, what happens when a task arrives to find that there are no threads left in
the pool? Consequently, most thread pools are implemented so that the newly created
tasks are placed into a work queue, and when a thread finishes a task, it fetches a new
task to execute from the work queue. If the work queue is empty, it suspends and is
woken up when a new task is placed on the work queue. Synchronization using, for
example, a mutual-exclusion lock, is necessary to ensure that tasks are removed
atomically so that threads cooperate safely when removing tasks from the work queue.

Thread pools are commonly used for Internet servers, where the tasks represent
independent client transactions executing on the server. In this context, the main issue
is scalability, since the work queue represents a bottleneck in the system. Suppose that
the average time to execute a task is x and that the time to remove a task from the
queue is y. Then, the number of threads that can productively use the thread pool is at
most x/y, assuming each thread has a processing core to run on. More than that, and
some threads will be starved waiting on the work queue. For small-scale systems, this
limitation is unlikely to matter much, but most thread-pool implementations are not
really “future-proof” for this reason.

For application programming, as opposed to server implementation, thread pools pose
some concurrency risks. The reason is that the tasks making up an application tend to
be dependent on each other. In particular, deadlock is a significant concern. A
deadlock occurs when a set of threads creates a cycle of waiting. For example, suppose
that thread 1 holds mutex lock A and is waiting to acquire mutex B, thread 2 is holding

Page 19

www.cilk.com

mutex B and is waiting to acquire mutex C, and thread 3 holds lock C and is waiting to
acquire mutex A. In this situation, none of the three threads can proceed. Although
deadlock is a concern in any asynchronous concurrency platform, thread pools escalate
the concern. In particular, a deadlock can occur if all threads are executing tasks that
are waiting for another task on the work queue in order to produce a result, but the
other task cannot run because all threads are occupied with tasks that are waiting.

Message passing

The high-performance computing (HPC) community has been programming parallel
computers for over 20 years, and their de facto standard concurrency platform is MPI, a
message-passing library. Why not use this tried-and-true technology to multicore
enable a commercial codebase? After all, MPI is used to program the world’s largest
supercomputing clusters. These supercomputing clusters differ from the chip-
multiprocessor architecture of x86 multicore chips in a fundamental way: the memory in
the system is distributed, not shared. That is, each processor has its own private
memory, and if you want to communicate something from one processor to another,
you must marshal the data in a buffer and invoke one of the MPI library functions to
move the contents. You can’t just pass a pointer.

Scientific codes written with MPI have been ported to multicore systems and run quite
well. Intuitively, if a code runs well on distributed memory, shared memory won’t hurt
it. But, MPI is not the solution for multicore-enabling most commercial codebases,
because it suffers from many of the same problems as Pthreads and WinAPI threads.
Indeed, MPI represents to distributed-memory multiprocessors what Pthreads and
WinAPI threads represent to shared-memory multicore systems: an assembly language
for programming concurrent programs. (Thus, some might argue whether message-
passing actually merits the designation “concurrency platform.”) Moreover, absent
shared memory, programming using message passing is even more difficult than using
native threads.

The abstraction provided by MPI is that processors send and receive messages. The
MP1_Send() function is the primitive to send data from one place to another:

Page 20

www.cilk.com

int MPI_Send(void *buffer, int count, int datatype, int
dest, int tag, int comm)

buffer — address of the data to send
count — number of data items in the buffer
datatype — type of datain the buffer

dest — id of the destination processor
tag — message type
comm — communicator group

The function returns an error code. The corresponding MP1_Recv() function receives
the data:

int MPI_Recv(void *buffer, int count, int datatype, int
source, int tag, int comm, MPI_Status *status)

buffer — the buffer where the received data should be placed
count — number of data items in the buffer

datatype — type of data in the buffer

source — id of the sending processor

tag — message type

comm — communicator group

status — message status

The MP1_Send()function blocks (does not return) until after the message has been
received. The MPI_Recv() function blocks until a message arrives. Thus, it is
important for every MP1_Send() to be matched with a corresponding MP1_Recv()on
the destination processor. Otherwise, the system can deadlock. MPI also provides
nonblocking operations, where the programmer assumes the responsibility of explicitly
checking to see whether an operation is complete.

It is tedious to use only these simple send/receive primitives to program a large
application. To understand why, consider a program in which each processor i simply
wishes to send a message to processor i+1 modulo P, the number of processors. That is,
the communication pattern is a ring, as shown on the left. One cannot simply write a
program in which each processor i executes an MP1_Send() to send its message to

Page 21

www.cilk.com

processor i+1 (mod P) followed by an MP1_Recv() to receive a message from processor
i—1 (mod P). The reason is that this program can deadlock, since the MP1_Send()'s are
not properly matched up with the MP1_Recv()’s. Instead, the program must direct the
even-numbered processors to execute an MP1_Send() followed by an MP1_Recv(),
while the odd-numbered processors execute an MPI_Recv() followed by an
MP1_Send(), assuming that P is even. If P is odd, additional code is required to handle
the boundary case of processor P-1 communicating with processor 0, since they’re both
even.

The 12-argument library function MP1_Sendrecv() allows the programmer to both
send a message and receive a message as a single operation, thereby side-stepping the
convoluted program logic needed to avoid deadlock. Many other common patterns of
communication are special-cased in the library for similar reasons, which explains in
some measure why MPI has grown to over 300 functions.

Many scientific-computing applications can be programmed using regular grids in two or
more dimensions, as shown on the left. These communication patterns are well
supported by MPI, and hence its popularity in the HPC community. If your application
exhibits a regular structure, a message-passing concurrency platform may be worth
considering, especially if you also want your application to run on distributed-memory
clusters. If you have irregular data structures, however, you may find that the
development time required to deploy correct message-passing code is prohibitive.
Moreover, message passing tends to be heavyweight, and the messages must contain at
least kilobytes of data to be efficient, and thus fine-grained applications can suffer
greatly from communication overheads.

Data-parallel languages

For scientists working on vectors and matrices, data-parallel languages offer a natural
way to express element-wise parallelism on aggregate data. Data-parallel languages
were originally developed for the HPC industry, where they continue to be in
widespread use, predominantly on shared-memory supercomputers. For example, the
Fortran family of languages has, since Fortran 90, allowed parallelizable loops to be

Page 22

%\NE_ RICq g
| DENGEROUS |

r’
I‘II RAPIDMIND

www.cilk.com

replaced by single array statements. For example, if A, B, and C are N x N matrices,
Fortran 90 allows the simple statement

to replace the following Fortran 77 loop:

DO 1 =1, N
DO J =1, N
c(1,3 = A(1,d) + B(,J)
END DO
END DO

Rather than having to decode the Fortran 77-style loop to determine whether it is
parallelizable, the compiler can directly parallelize the array statement on the available
processor cores. Recent Fortrans also provide a variety of array-sectioning expressions
that allow subarrays to be manipulated as a unit.

A big advantage of the data-parallel approach is that the control logic is serial:
conceptually there is only one program counter. Thus, a race condition happens within
a single array statement, making it easier to localize within the code, and many array
operations, such as the elementwise addition above, can be easily inspected to be race
free. Potential disadvantages of data-parallel languages include that legacy code must
be rewritten, that lack of data locality makes it hard to exploit modern cache
hierarchies, and that it is difficult to express irregular parallelism. This latter
disadvantage is mitigated somewhat in “nested” data-parallel languages, such as the
NESL language developed by Carnegie Mellon University’s Scandal Project. Nested data-
parallel languages allow arrays to be nested and different functions to be applied
elementwise in parallel. In addition, for application areas where data is regular, such as
low-level video and image processing, the data-parallel approach seems to have a niche.
RapidMind, which provides a C++-based data-parallel environment, also seems to have
had some success targeting graphical processing units (GPU’s), which are notoriously
difficult to program.

Page 23

el
Threadi
Building Blocks

Arch Robison

Th
Building

O'REILLY"

Blo

ding

cks

www.cilk.com

Intel’s Threading Building Blocks

Intel’s Threading Building Blocks (TBB) is an open-source C++ template library developed
by Intel for writing task-based multithreaded applications. The library includes data
structures and algorithms that allow a programmer to avoid tedious low-level
implementation details. TBB provides an abstraction layer for the programmer, allowing
logical sequences of operations to be treated as tasks that are allocated to individual
cores dynamically by the library's runtime engine.

TBB is strictly a library and provides no linguistic support by design. As Arch Robison,
lead developer of TBB argues, “Though new languages and extensions are attractive,
they raise a high barrier to adoption in the near term” Consequently, they argue that
TBB can be integrated into legacy C++ environments comparatively easily. The
programmer breaks an application into multiple tasks, which are scheduled using a
“work-stealing” scheduler such as was pioneered by the MIT Cilk project. TBB provides
templates for common parallel programming patterns, such as loops, software
pipelining, and nested parallelism.

The following example shows how one might square every element of an array using
TBB’s paral lel Tor template function:

#include "tbb/blocked_range.h"
class SqChunk {
float *const local a;
public:
void operator()(const blocked range<size t>& x) const {
float *a = local_a;
for(size_t i=x.begin(); i!=x.end(); ++i)

ali] *= a[i];

}

SqChunk(float a[])
local_a(a)

{3

};
void Square(float a[], size t n) {
parallel_for(blocked_range<size_t>(0,n,1000), SqChunk(a));

}

Page 24

OpenMP

www.cilk.com

This code operates by breaking the input array into chunks and then running each chunk
in parallel. The SgChunk class provides an object that processes a chunk by serially
squaring every element in a given range. The blocked range template class is
provided by TBB, which specifies an iteration space of O to n-1 broken into chunks of
size 1000. The parallel fTor takes this chunking specification and runs the
SgChunk on each chunk in parallel.

OpenMP

OpenMP (Open Multi-Processing) is an open-source concurrency platform that supports
multithreaded programming through Fortran and C/C++ language pragmas (compiler
directives). OpenMP compilers are provided by several companies, including Intel,
Microsoft, Sun Microsystems, IBM, Hewlett-Packard, Portland Group, and Absoft, and it
is also supported the Gnu gcc compiler. By inserting pragmas into the code, the
programmer identifies the sections of code that are intended to run in parallel.

One of OpenMP’s strengths is parallelizing loops such as are found in many numerical
applications. For example, consider the following C++ OpenMP code snippet which
sums the corresponding elements of two arrays:

#pragma omp parallel for
for (i=0; i<n; ++i) {

c[i] = a[i] + b[i];
by

The pragma indicates to the compiler that the iterations of the loop that follows can run
in parallel. The loop specification must obey a certain set of patterns in order to be
parallelized, and OpenMP does not attempt to determine whether there are
dependencies between loop iterations. If there are, the code has a race. An advantage
in principle to the pragma strategy is that the code can run as ordinary serial code if the
pragmas are ignored. Unfortunately, some of the OpenMP directives for managing

Page 25

www.cilk.com

memory consistency and local copies of variables affect the semantics of the serial code,
compromising this desirable property unless the code avoids these pragmas.

OpenMP schedules the loop iterations using a strategy called work sharing. In this
model, parallel work is broken into a collection of chunks which are automatically
farmed out to the various processors when the work is generated. OpenMP allows the
programmer to specify a variety of strategies for how the work should be distributed.
Since work-sharing induces communication and synchronization overhead whenever a
parallel loop is encountered, the loop must contain many iterations in order to be worth
parallelizing.

Although OpenMP was designed primarily to support a single level of loop
parallelization, alternating between serial sections and parallel sections, as illustrated on
the left, some implementations of OpenMP support nested parallelism. The work-
sharing scheduling strategy is often not up to the task, however, because it is sometimes
difficult to determine at the start of a nested loop how to allocate thread resources. In
particular, when nested parallelism is turned on, it is common for OpenMP applications
to “blow out” memory at runtime because of the inordinate space demands. The latest
generation OpenMP compilers have started to address this problem, however.

Cilk++

Cilk++, from Cilk Arts, extends C++ into the multicore realm without sacrificing serial
semantics. Cilk++ was inspired by the award-winning MIT Cilk project, which pioneered
key ideas in multithreading, including the “work-stealing” strategy for scheduling. The
Cilk++ concurrency platform provides the following:

1. Three Cilk++ keywords: The programmer inserts Cilk++ keywords into a serial
C++ application to expose parallelism. The resulting Cilk++ source retains the
serial semantics of the original C++ code. Consequently, programmers can still
develop their software in the familiar serial domain using their existing tools.
Serial debugging and regression testing remain unchanged.

Page 26

Speed-up

Multicore Performance
Improvement Realized on a
Collision Detection Algorithm

1 2 3 -

Number of Cores
HMC++ U Cilk++

C.A.R. Hoare

www.cilk.com

2. The Cilk++ compiler: The Cilk++ compiler recognizes the three Cilk++ keywords
and generates a multicore-enabled application. Because the Cilk++ compiler is
an extension of an industry standard compiler, it supports the native features
and optimizations provided by the base compiler.

3. Cilk++ hyperobjects: Global and other nonlocal variables can inhibit parallelism
by inducing race conditions. Cilk hyperobjects are an innovative construct that
side-steps races that might otherwise be created by parallel accesses to global

variables.

4. The Cilk++ runtime system: The Cilk++ RTS links with the binary executable of
the Cilkified program. The RTS contains a proprietary “work-stealing” scheduler
that is provably efficient.

5. Cilkscreen: The Cilkscreen™ race detector is used to test a Cilk++ binary
program to ensure its parallel correctness. Cilkscreen is mathematically
guaranteed to find all race conditions in a Cilk++ program execution.

As an example, let’s see how to use Cilk++ to multicore-enable the following C++
program which implements Tony Hoare’s classical quicksort algorithm:

template <typename lter>
void gsort(lter begin, Iter end) {
// Sort the range between begin and end-1.
typedef typename std::iterator_traits<lter>::value_type T;
ifT (begin = end) {
--end; // Exclude pivot (last element) from partition
Iter middle = std::partition(begin, end,
std: :bind2nd(std: : less<T>(),*end));
using std::swap;
swap(*end, *middle); // Move pivot to middle
gsort(begin, middle);
gsort(++middle, ++end); // Exclude pivot and restore end

Page 27

Speed-up

Speed-up of
Quicksort Algorithm
(Each core: x86 1.7 GHz 2GB RAM)

D Serial Code

o Cilk++

4
3
2
1
o _
2 3 4 5 6
of Cores

www.cilk.com

To parallelize this code using Cilk++, we insert two Cilk++ keywords into the code:

template <typename Ilter>
void gsort(lter begin, Iter end) {
// Sort the range between begin and end-1.
typedef typename std::iterator_traits<Ilter>::value_type T;
if (begin = end) {
--end; // Exclude pivot (last element) from partition
Iter middle = std::partition(begin, end,
std: :bind2nd(std: : less<T>(),*end));
using std::swap;
swap(*end, *middle); // NMove pivot to middle
cilk _spawn gsort(begin, middle);
gsort(++middle, ++end); // Exclude pivot and restore end
cilk_sync;
}
¥

The Cilk++ keyword ci lk_spawn indicates that the named child function — in this
case, the recursive quicksort on the lower part of the partition — can execute in parallel
with the parent caller. After calling the recursive quicksort on the upper part of the
partition, we execute a ci Ik _sync, which prevents control from passing that point
until all the spawned children have completed. Because the gsort() routine is
recursive, this code generates a tree of parallel activity. (Cilk++ also provides a
cilk_for keyword which can be used to parallelize loops.)

The graph on the left shows the speedup obtained. A cilk spawn/cilk _sync is
over 450 times faster than a Pthread create/exit — less than 4 times slower than
an ordinary C++ function call. As a result, Cilk++ overhead typically measures just a few
percent on a single processor, and for the gsort () program, it is less than 1 percent.

Cilk++ obtains this kind of speedup because the RTS contains a powerful work-stealing
scheduler. Unlike a work-sharing scheduler, which immediately disburses parallel work
to processors when the work is generated and thereby incurs communication and
synchronization overheads, with a work-stealing scheduler, each processor posts

Page 28

Join the
Early Visibility
Program

Multicore-enable
your C++ App!

www.cilk.com/EVP

www.cilk.com

generated work to its own local queue. When a processor runs out of work, it steals
work from another processor’'s queue. This strategy incurs no overhead for
communication and synchronization when there is ample parallelism. Only when a
processor runs out of work does the execution incur these overheads, which can be
mathematically proved to be small if there is sufficient parallelism in the application.
Moreover, unlike most work-sharing schedulers, the Cilk++ work-stealing scheduler
guarantees that the stack space used by the parallel code when run on P processors is
no more than P times the stack space of a one-processor execution.

The C++ code that is obtained by deleting the cilk spawn and cilk _sync
keywords from the Cilk++ code and replacing cilk Tor by for is called the
serialization of the Cilk++ code. The C++ serialization of a Cilk++ program is always a
legal interpretation of the Cilk++ code. Moreover, a Cilk++ program running on a single
processing core executes identically to the C++ serialization. Most other concurrency
platforms do not provide this simplifying property.

One advantage of this approach is that conventional debugging tools can be used to
ensure the serial correctness of Cilk++ programs. To test for parallel correctness, the
programmer runs the Cilkscreen race detector, which is guaranteed to find any
discrepancies between the execution of the serialization and a parallel execution. In
particular, if there is any way that the scheduling of a Cilk++ code could differ from its
C++ serialization, Cilkscreen guarantees to locate the determinacy race responsible.

6. Twenty Questions to Ask When Going
Multicore

To help you survive the multicore revolution, and determine the best concurrency
platform for your unique needs, we have compiled a set of key questions to ask — some
regarding your application, others regarding your potential solution. No one-size-fits-all
solution exists. Your optimal choice must be driven by your unique project's
requirements. We've organized the questions in terms of the three legs of the

Page 29

www.cilk.com

multicore software triad: application performance, software reliability, and
development time.

Application performance

1. Does the concurrency platform allow me to measure the parallelism I've exposed in
my application?

2. Does the concurrency platform address response-time bottlenecks, or just offer
more throughput?

3. Does application performance scale up linearly as cores are added, or does it quickly
reach diminishing returns?

4. |Is my multicore-enabled code just as fast as my original serial code when run on a
single processor?

5. Does the concurrency platform's scheduler load-balance irregular applications
efficiently to achieve full utilization?

6. Will my application “play nicely” with other jobs on the system, or do multiple jobs
cause thrashing of resources?

7. What tools are available for detecting multicore performance bottlenecks?

Software reliability

8. How much harder is it to debug my multicore-enabled application than to debug my
original application?

9. Can luse my standard, familiar debugging tools?

10. Are there effective debugging tools to identify and localize parallel-programming
errors, such as data-race bugs?

11. Must | use a parallel debugger even if | make an ordinary serial programming error?

12. What changes must | make to my release-engineering processes to ensure that my
delivered software is reliable?

13. Can | use my existing unit tests and regression tests?

Page 30

Chérles E.

[

Leiserson and Illya Mirman

www.cilk.com

Development time

14.

15.
16.
17.

18.

19.

20.

To multicore-enable my application, how much logical restructuring of my
application must | do?

Can | easily train programmers to use the concurrency platform?
Can | maintain just one code base, or must | maintain a serial and parallel versions?

Can | avoid rewriting my application every time a new processor generation
increases the core count?

Can | easily multicore-enable ill-structured and irregular code, or is the concurrency
platform limited to data-parallel applications?

Does the concurrency platform properly support modern programming paradigms,
such as objects, templates, and exceptions?

What does it take to handle global variables in my application?

About the Authors

Charles E. Leiserson is a founder of Cilk Arts, Inc., and Professor of Computer Science

and Engineering at MIT. His research work on parallel computing spans 30 years.
Charles enjoys family, skiing, and Diet Moxie.

llya Mirman is VP of Marketing at Cilk Arts, Inc., and has spent the past decade building,
marketing, and supporting software tools for engineers. Prior to that, he designed high-
speed lasers for long-haul telecom networks. Illya enjoys jamming with friends,
freelance political photography, and San Pellegrino mineral water.

Page 31

www.cilk.com

About Cilk Arts

Cilk Arts is a company OF software engineers, building a product FOR software
engineers. We celebrate beauty in engineering, and are jazzed about the opportunity to
help build a community that changes the future of programming. Inspired by 15 years
of award-winning research at MIT, Cilk Arts is building Cilk++, a cross-platform solution
that offers the easiest, quickest, and most reliable way to maximize application
performance on multicore processors.

Cilk++ provides a simple set of extensions for C++, coupled with a powerful runtime
system for multicore-enabled applications. Cilk++ enables rapid development, testing,
and deployment of multicore applications. Cilk++ solves the two large problems facing
the software industry as a result of the multicore revolution:

1. Enabling today's mainstream programmers to develop multithreaded (or
parallel) applications; and

2. Providing a smooth path to multicore for legacy applications that otherwise
cannot easily leverage the performance capabilities of multicore processors.

On our website, www.cilk.com, we have pulled together resources of interest to folks
interested in multicore programming — including links to commercial solutions and
open-source projects, technical notes, and links to blogs and other multicore-related
sites.

e Multicore Programming Resources

e Subscribe to Multicore Blog

e Join the Early Visibility Program

e Cilk++ Solution Overview and Product Demonstration

Page 32

Index

Amdahl’s Law
array statement......cocceeeecieeeeiiiee e
atomic

Cilkscreen
concurrency platform........ccccceveeeeieeceeneennnns

data-parallel language.......cccccevveevvenirenieennenne 22
deadlock .19
determinacy racecccceeveeeeciveeesiieeescvee e 11
deterministic program.......ccccceeeeveeeneeneenneennns 9
global variableccccoviiiiiiiiciicceeeee

high-performance computing (HPC) ..
hyperobject

linear speedup......cceeeevveeeciee e, 5
JOCK 1ot ittt 13
MESSAZE PASSING .eereeieinirireeereriirieeeeeesireeeeeeeans 20
MOOFE’'S LAW ..eeiiieiieeieeiie et 1
multicore software triadccccevveeriernieneennen. 2
mutual-exclusion lock (mutex)ccceeeeeenneeen. 13
nondeterministic programcccceeevveeeeivveeenns 10

Page 33

www.cilk.com

nonlocal variableccocevvieiciineeneeceeeiee 8
OPENMP ..ottt 25
[1= =] S 4
parallelismcccooeciieiiiiiicee e, 6
parameter proliferation........cccceeceerverneeniiennneen. 9
PArENT et 28
perfect linear speedupcoceeevveenciieeiniee e, 5
POSIX threads (pthreads)ccccoeceevvereeviennenne. 14
PragmMas..ccceueeeeeeeeeeireieeeeeerereeee e e e s nreeeeeeseanes 25
PrOCESSING COME.einuiiriiiniierieenieeeieesiresreeniaesreens 1
QUICKSOIT e et 27
race CONAitioN....covveevveereerieenie e e see e 9
FEAA FACE...ecteieieeieeeieetee ettt 11
sequential coNSISTENCY ..oovveecveereerieereeeeeeeenne 10
Serialization ...ccevveeceevec 29
SPAN ceiiiiii e 6
SPAN LAW ..ttt 6
SPEEAUP ..ottt ettt 5
SEFANG oo 10
superlinear speedup......cccceevverceeeceereerceesee e 5
TBB ettt 24
thread.....ccoocvee i 14
thread pool... .19
Threading Building Blocks...........ccceeveveeiveennnnen. 24
WINAPI threads.......ccceevvveeeniieiniieesiee e 14
WOTK.teeiiteieeste et
Work Law.........

work queue

WOTIK SNariNG ...ccovvieiiieieeiie e 26
WOrk stealingc.cevveerieriieniineencceeee e 28

write race

Join the
Early Visibility
Program

Multicore-enable
your C++ App!

www.cilk.com/EVP

Multicore Challenges

Development
Time

Application
Performance

Software
Reliahility

* Will you be forced to
redesign your application?

* How will you get your product
out in time?

* \Where will you find enough
parallel programming talent?

» Can you achieve best-in-class
performance?

* Will your solution scale with
the number of cores?

* Can you debug and test your
multi-core application?

» Can you assure that there
are no race conditions?

www.cilk.com

Multicore-enable your C++ Application:

Join the Cilk++ Early Visibility Program!

www.cilk.com/EVP
CILK Arts Solution
SHRINK v Minimal application changes
Development v Can be learned in hours by a
Time

C++ programmer

v/ Seamless path forward
(and backward)

BOOST v Minimal overhead on a single-core
Application v Linear scaling as cores are added

Performance v Adaptive load balancing

ENSURE v/ Multithreaded version guaranteed
Software as reliable as the original
Reliability @ v’ No fundamental change to release

engineering
v/ Automatically detect race conditions

Page 34

