
David Luebke
NVIDIA Research

GPU Computing:
The Democratization of Parallel Computing

© NVIDIA Corporation 2007

Tutorial Speakers

David Luebke NVIDIA Research

Kevin Skadron University of Virginia

Michael Garland NVIDIA Research

John Owens University of California Davis

© NVIDIA Corporation 2007

Tutorial Schedule

1:30 – 1:55 Introduction & Motivation Luebke

1:55 – 2:15 Manycore architectural trends Skadron

2:15 – 3:15 CUDA model & programming Garland

3:15 – 3:30 Break

3:30 – 4:00 GPU architecture & implications Luebke

4:00 – 5:00 Advanced data-parallel programming Owens

5:00 – 5:30 Architectural lessons & research opportunities Skadron

© NVIDIA Corporation 2007

Parallel Computing’s Golden Age

1980s, early `90s: a golden age for parallel computing
Particularly data-parallel computing

Architectures
Connection Machine, MasPar, Cray
True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models
Solved a wide variety of problems
Various parallel algorithmic models developed
P-RAM, V-RAM, circuit, hypercube, etc.

Parallel Computing’s Dark Age

But…impact of data-parallel computing limited
Thinking Machines sold 7 CM-1s (100s of systems total)
MasPar sold ~200 systems

Commercial and research activity subsided
Massively-parallel machines replaced by clusters
of ever-more powerful commodity microprocessors
Beowulf, Legion, grid computing, …

Massively parallel computing lost momentum to
the inexorable advance of commodity technology

© NVIDIA Corporation 2007

Enter the GPU

GPU = Graphics Processing Unit
Chip in computer video cards, PlayStation 3, Xbox, etc.
Two major vendors: NVIDIA and ATI (now AMD)

© NVIDIA Corporation 2007

Enter the GPU

GPUs are massively multithreaded manycore chips
NVIDIA Tesla products have up to 128 scalar processors
Over 12,000 concurrent threads in flight
Over 470 GFLOPS sustained performance

Users across science & engineering disciplines are
achieving 100x or better speedups on GPUs

CS researchers can use GPUs as a research platform
for manycore computing: arch, PL, numeric, …

© NVIDIA Corporation 2007

Enter CUDA

CUDA is a scalable parallel programming model and a
software environment for parallel computing

Minimal extensions to familiar C/C++ environment
Heterogeneous serial-parallel programming model

NVIDIA’s TESLA GPU architecture accelerates CUDA
Expose the computational horsepower of NVIDIA GPUs
Enable general-purpose GPU computing

CUDA also maps well to multicore CPUs!

© NVIDIA Corporation 2007

The Democratization
of Parallel Computing

GPU Computing with CUDA brings data-parallel
computing to the masses

Over 46,000,000 CUDA-capable GPUs sold
A “developer kit” costs ~$200 (for 500 GFLOPS)

Data-parallel supercomputers are everywhere!
CUDA makes this power accessible
We’re already seeing innovations in data-parallel
computing

Massively parallel computing has become a
commodity technology!

GPU Computing:
Motivation

GPU Computing:
Motivation

110-240X

13–457x

45X 100X

35X

17X

© NVIDIA Corporation 2007

GPUs Are Fast

Theoretical peak performance: 518 GFLOPS

Sustained μbenchmark performance:
Raw math: 472 GFLOPS (8800 Ultra)
Raw bandwidth: 80 GB per second (Tesla C870)

Actual application performance:
Molecular dynamics: 290 GFLOPS
(VMD ion placement)

© NVIDIA Corporation 2007

GPUs Are Getting Faster, Faster

© NVIDIA Corporation 2007

G80 (launched Nov 2006 – GeForce 8800 GTX)
128 Thread Processors execute kernel threads
Up to 12,288 parallel threads active
Per-block shared memory (PBSM) accelerates processing

Manycore GPU – Block Diagram

Thread Execution Manager

Input Assembler

Host

PBSM

Global Memory

Load/store

PBSM

Thread Processors

PBSM

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSMPBSM

CUDA Programming Model

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a CPU thread
Parallel kernel C code executes in thread blocks
across multiple processing elements

Serial Code

. . .

. . .

Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

© NVIDIA Corporation 2007

GPU Computing with CUDA:
A Highly Multithreaded Coprocessor

The GPU is a highly parallel compute device
serves as a coprocessor for the host CPU
has its own device memory on the card
executes many threads in parallel

Parallel kernels run a single program in many threads

GPU threads are extremely lightweight
Thread creation and context switching are essentially free

GPU expects 1000’s of threads for full utilization

CUDA: Programming GPU in C

Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live
__global__ void KernelFunc(...); // kernel function, runs on device
__device__ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // variable in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

Intrinsics that expose specific operations in kernel code
__syncthreads(); // barrier synchronization within kernel

© NVIDIA Corporation 2007

TeslaTM

High Performance Computing
Quadro®

Design & Creation
GeForce®

Entertainment

Architecture: TESLA
Chips: G80, G84, G92, …

Decoder Ring

© NVIDIA Corporation 2007

A New Platform: Tesla

HPC-oriented product line
C870: board (1 GPU)
D870: deskside unit (2 GPUs)
S870: 1u server unit (4 GPUs)

© NVIDIA Corporation 2007

Conclusion

GPUs are massively parallel manycore computers
Ubiquitous - most successful parallel processor in history
Useful - users achieve huge speedups on real problems

CUDA is a powerful parallel programming model
Heterogeneous - mixed serial-parallel programming
Scalable - hierarchical thread execution model
Accessible - minimal but expressive changes to C

They provide tremendous scope for innovative,
impactful research

Questions?

David Luebke
dluebke@nvidia.com

	GPU Computing:�The Democratization of Parallel Computing
	Tutorial Speakers
	Tutorial Schedule
	Parallel Computing’s Golden Age
	Parallel Computing’s Dark Age
	Enter the GPU
	Enter the GPU
	Enter CUDA
	The Democratization �	of Parallel Computing
	GPU Computing:�Motivation
	GPUs Are Fast
	GPUs Are Getting Faster, Faster
	Manycore GPU – Block Diagram
	CUDA Programming Model
	Heterogeneous Programming
	GPU Computing with CUDA:�A Highly Multithreaded Coprocessor
	CUDA: Programming GPU in C
	A New Platform: Tesla
	Conclusion
	Questions?��David Luebke�dluebke@nvidia.com

