
Introducing the Cray XMT

Petr Konecny
November 29th 2007

November 07 Slide 2

Agenda

Shared memory programming model
• Benefits/challenges/solutions

Origins of the Cray XMT
Cray XMT system architecture
• Cray XT infrastructure
• Cray Threadstorm processor

Basic programming environment features
Examples
• HPCC Random Access
• Breadth first search

Rules of thumb
Summary

November 07 Slide 3

Shared memory model

Benefits
• Uniform memory access
• Memory is distributed across all nodes
• No (need for) explicit message passing
• Productivity advantage over MPI

Challenges
• Latency: time for a single operation
• Network bandwidth limits performance
• Legacy MPI codes

November 07 Slide 4

Addressing shared memory challenges

Latency
• Little’s law:

Parallelism is necessary !
Concurrency = Bandwidth * Latency
e.g.: 800 MB/s, 2μs latency => 200 concurrent 64-bit word ops

• Need a lot of concurrency to maximize bandwidth
Concurrency per thread (ILP, vector, SSE) => SPMD
Many threads (MTA, XMT) => MPMD

Network Bandwidth
• Provision lots of bandwidth

~1 GB/s per processor, ~5 GB/s per router on XMT
• Efficient for small messages
• Software controlled caching (registers, nearby memory)

Eliminates cache coherency traffic
Reduces network bandwidth

November 07 Slide 5

Origins of the Cray XMT

Multithreaded Architecture (MTA)
Shared memory programming model
Thread level parallelism
Lightweight synchronization

Cray XT Infrastructure
Scalable
I/O, HSS, Support
Network efficient for
small messages

Cray XMT (a.k.a. Eldorado)
Upgrade Opteron to Threadstorm

November 07 Slide 6

Cray XMT System Architecture

MTK Linux

Compute Service & IO

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs
IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
MTK (BSD)

November 07 Slide 7

Cray XMT Speeds and feeds

Threadstorm
ASIC

140M memory op/s

500M memory op/s

500M instructions/s

500M memory op/s

66M cache lines/s

110M→30M memory op/s (1→ 4K processors);
bisection bandwidth impact

4,8 or 16 GB DDR DRAM

November 07 Slide 8

Cray Threadstorm architecture

Streams (128 per processor)
• Registers, program counter, other state

Protection domain (16 per processor)
• Provides address space
• Each running stream belongs to exactly one protection domain

Functional units
• Memory
• Arithmetic
• Control

Memory buffer (cache)
• Only store data of the DIMMs attached to the processor
• Never cache remote data (no coherency traffic)
• All requests go through the buffer
• 128 KB, 4-way associative, 64 byte cache lines

November 07 Slide 9

XMT Programming Environment supports multithreading

Flat distributed shared memory!
Rely on the parallelizing compilers
• They do great with loop level parallelism

Many computations need to be restructured
• To expose parallelism
• For thread safety

Light-weight threading
• Full/empty bit on every word

writeef/readfe/readff/writeff
• Compact thread state
• Low thread overhead
• Low synchronization overhead
• Futures (see LISP)

Performance tools
• Apprentice2 – parse compiler annotations, visualize runtime behavior

November 07 Slide 10

HPCC Random Access

Update a large table based on a random number generator
NEXTRND returns next value of RNG
unsigned rnd

= 1;
for(i=0; i<NUPDATE; i++) {
rnd

= NEXTRND(rnd);
Table[rnd&(size-1)] ^= rnd;

}

HPCC_starts(k) returns k-th value of RNG
for(i=0; i<NUPDATE; i++) {
unsigned rnd

= HPCC_starts(i);
Table[rnd&(size-1)] ^= rnd;

}

Compiler can automatically parallelize this loop
It generates readfe/writeef for atomicity

November 07 Slide 11

HPCC Random Access - tuning

HPCC_starts is expensive
Restructure loop to amortize cost
for(i=0; i<NUPDATE; i+=bigstep) {
unsigned v = HPCC_starts(i);
for(j=0;j<bigstep;j++) {
v = NEXTRND(v);
Table[(v&(size-1)] ^= v;

}
}

The compiler parallelizes outer loop across all processors
Apprentice2 reports
• Five instructions per update (includes NEXTRND)
• Two (synchronized) memory operations per update

November 07 Slide 12

HPCC Random Access - performance

Performance analysis
• Each update requires a read from and a write to a DIMM
• Peak of 66 M cachelines/s/processor =>
• Peak of 33 M updates/s/processor

Single processor performance
• Measured 20.9 M updates/s

On 64 CPU preproduction system
• Measured 1.28 Gup/s

95% scaling efficiency from 1P to 64P

November 07 Slide 13

Breadth first search

Algorithm to find shortest path tree in unweighted graph

Parent[*] = null

Enqueue(source)

Parent[source] = source

While queue not empty:
For all u already in queue:

Dequeue(u)
For all neighbors v of u:

If Parent[v] is null:
Parent[v] = u
Enqueue(v)

November 07 Slide 14

Breadth first search

An algorithm to find shortest path tree in unweighted graph

parent[*] = null ← parallel
enqueue(source)

parent[source] = source

while queue not empty: ←

serial
for all u already in queue:

←

parallel

dequeue(u)

for all neighbors v of u:←

possibly parallel
if Parent[v] is null: ←

atomic (readfe)

parent[v] = u ←

writeef
enqueue(v)

November 07 Slide 15

Breadth first search - queue

Each vertex can be enqueued at most once
Use an array of size |V| with head and tail pointers

oldtail

= tail;

oldhead

= head;

head = tail;

#pragma

mta

assert parallel

for(int

i = oldhead; i<oldtail; i++) {

Node u = Queue[i];

…

}

November 07 Slide 16

Breadth first search – tuning and performance

Tune on sparse Erdös-Rényi graphs
Reduce overhead of queue operations
Eliminate contention for queue tail pointer
Performance counters show:
• 2 memory operations/edge
• 8.45 memory operations/vertex

32p system
• 1 billion nodes/10 billion edges: ~17s

128p system
• 4 billion nodes/40 billion edges: ~20s

November 07 Slide 17

Performance – rules of thumb

Instructions are cheap compared to memory ops
Most workloads will be limited by bandwidth

Keep enough memory operations in flight at all times
Load balancing
Minimize synchronization

Use moderately cache friendly algorithms
Cache hits are not necessary to hide latency
Cache can improve effective bandwidth

~40% cache hit rate for distributed memory
~80% cache hit rate for nearby memory

Reduce cache footprint
Be careful about speculative loads (bandwidth is scarce)

Think of XMT as a lot of processors running at 1 MHz

November 07 Slide 18

Traits of strong Cray XMT applications

1. Use lots of memory
• Cray XMT supports terabytes

2. Lots of parallelism
• Amdahl’s law
• Parallelizing compiler

3. Fine granularity of memory access
• Network is efficient for all (including short) packets

4. Data hard to partition
• Uniform shared memory alleviates the need to partition

5. Difficult load balancing
• Uniform shared memory enables work migration

November 07 Slide 19

Summary

Shared memory programming is good for productivity
Cray XMT adds value for an important class of problems
• Terabytes of memory
• Irregular access with small granularity
• Lots of parallelism exploitable by programming environment

Working on scaling the system

November 07 Slide 20

struct Tree {
Tree *llink;
Tree *rlink;
int data;

};

int search_tree(Tree *root, int target) {
int sum = 0;
if (root) {

sum = (root->data == target ? 1 : 0);
sum += search_tree(root->rlink, target);
sum += search_tree(root->llink, target);

}
return sum;

}

struct Tree {
Tree *llink;
Tree *rlink;
int data;

};

int search_tree(Tree *root, int target) {
int sum = 0;
if (root) {
future int left$;
future left$(root, target) {
return search_tree(root->llink, target);

}
sum = (root->data == target ? 1 : 0);
sum += search_tree(root->rlink, target);
sum += left$;

}
return sum;

}

Future example: Tree search

Declare a future variable. All
loads are readff(). All stores

are writeff().
Create a continuation based on
the future variable left$. Set

left$ to empty.
Return the result in the future
variable left$. Set left$ to

full.
Wait for left$ to be full before

adding it to the sum.

	Introducing the Cray XMT
	Agenda
	Shared memory model
	Addressing shared memory challenges
	Origins of the Cray XMT
	Cray XMT System Architecture
	Cray XMT Speeds and feeds
	Cray Threadstorm architecture
	XMT Programming Environment supports multithreading
	HPCC Random Access
	HPCC Random Access - tuning
	HPCC Random Access - performance
	Breadth first search
	Breadth first search
	Breadth first search - queue
	Breadth first search – tuning and performance
	Performance – rules of thumb �
	Traits of strong Cray XMT applications
	Summary
	Future example: Tree search

