
1

Scalable Parallel Primitives for
Massive Graph Computation

!"#$% Buluç
University of California, Santa Barbara

Sources of Massive Graphs

(WWW snapshot, courtesy Y. Hyun) (Yeast protein interaction network, courtesy H. Jeong)

Graphs naturally arise
from the internet and
social interactions

Many scientific (biological, chemical,
cosmological, ecological, etc)
datasets are modeled as graphs.

Examples:

- Centrality

- Shortest paths

- Network flows

- Strongly Connected
Components

Examples:

- Loop and multi
edge removal

- Triangle/Rectangle
enumeration

3

Types of Graph Computations

Fuzzy intersection

Examples: Clustering,

Algebraic Multigrid

Tool: Graph

Traversal Tool: Map/Reduce

1 3

4

2 5

7

6

Tightly

coupled

Filtering

based

map map map

reduce reduce

Tightly Coupled Computations

& Many graph mining algorithms are computationally intensive.
(e.g. graph clustering, centrality)

& Some computations are inherently latency-bound.
(e.g. finding shortest paths)

& Interesting graphs are sparse, typically |edges| = O(|vertices|)

4

Huge Graphs Expensive Kernels+ !
High Performance and
Massive Parallelism

Sparse Graphs/Data
Sparse Data

Structures (Matrices)
!

Tightly Coupled Computations
on Sparse Graphs

555

Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on
the TeX project is that software
is hard. It's harder than anything
4/14*6784*4845*9+#*3.*#.:

666

Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on
the TeX project is that software
is hard. It's harder than anything
4/14*6784*4845*9+#*3.*#.:

Dealing with
software is hard !

777

Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on
the TeX project is that software
is hard. It's harder than anything
4/14*6784*4845*9+#*3.*#.:

Dealing with
software is hard !

High performance
computing (HPC)

software is harder !

888

Software for Graph Computation

'((()"*)+,%*-.%-/01,.%*+2345*

spending ten years of my life on
the TeX project is that software
is hard. It's harder than anything
4/14*6784*4845*9+#*3.*#.:

Dealing with
software is hard !

High performance
computing (HPC)

software is harder !

Deal with parallel
HPC software?

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

9

10

& Input: ;,54-34#*<5+=9*>,39*'-.131:*.%*4#<41

& Find least-cost paths between all reachable vertex pairs

& Classical algorithm: Floyd-Warshall

& Case study of implementation on multicore architecture:

? graphics processing unit (GPU)

All-Pairs Shortest Paths

for k=1:n // the induction sequence
for i = 1:n

for j = 1:n
if(w(i!k)+w(k!") < w(i!"))

w(i!"):= w(i!k) + w(k!")

1 52 3 4

1

5

2

3

4

k = 1 case

11

GPU characteristics

Powerful: two Nvidia 8800s > 1 TFLOPS

Inexpensive: $500 each

! !"##"$%&'()*+,*-.."/,(.+01&2((

3/1("/4'*%$'"+/(4'*1-.(0*"514(6(-*"'7.1'"$(%/"'4

! 81*#+*.-/$1("4($+%/'1*"/'%"'"51(-/0(#*-,"&12

91.+*:(-$$144()-''1*/(7-4(4%;'&1(1##1$'4(+/($+4'((

! <='*1.1&:(1-4:('+(%/01*%'"&">1('71(015"$12

!+"/,("'(?*+/,(1-4"&:($+4'4(@AA=("/('".1

t1

t3

t2

t4

t6

t5

t7

t9

t8

t10

t12

t11

t13

t14

t16

t15

But:

12

Recursive All-Pairs Shortest Paths

A B

C D
A

B

D

C

A = A*; % recursive call

B = AB; C = CA;

D = D + CB;

D = D*; % recursive call

B = BD; C = DC;

A = A + BC;

+ ,1*'),%:@ ! ,1*'+##:

Based on R-Kleene algorithm

Well suited for GPU architecture:

& Fast matrix-multiply kernel

& In-place computation =>
low memory bandwidth

& Few, large MatMul calls =>

low GPU dispatch overhead

& Recursion stack on host CPU,
not on multicore GPU

& Careful tuning of GPU code

The Case for Primitives

13

480x

Lifting Floyd-Warshall
to GPU

The right primitive !

Conclusions:

High performance is achievable but not simple

Carefully chosen and optimized primitives will be key

Unorthodox
R-Kleene algorithm

APSP: Experiments and
observations

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

14

15

Sparse Adjacency Matrix and Graph

& Every graph is a sparse matrix and vice-versa

& Adjacency matrix: sparse array w/ nonzeros for graph edges

& Storage-efficient implementation from sparse data structures

!

1 2

3

4 7

6

5

"#

!

The Case for Sparse Matrices

& Many irregular applications contain su!cient coarse-
grained parallelism that can ONLY be exploited using
abstractions at proper level.

16

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven.
Unpredictable communication.

Fixed communication patterns.

Irregular and unstructured.
Poor locality of reference

Operations on matrix blocks.
Exploits memory hierarchy

Fine grained data accesses.
Dominated by latency

Coarse grained parallelism.
Bandwidth limited

The Case for Sparse Matrices

Identification of Primitives

Sparse matrix-matrix
Multiplication (SpGEMM)

Element-wise operations

17

Linear Algebraic Primitives

x

!"#$%&'()*+)(',%$%+-(.)'/-/)0!.)12.)0"+3.)*$2.)01.),%+2

Sparse matrix-vector
multiplication

Sparse Matrix Indexing

x

.*

Why focus on SpGEMM?

& Graph clustering (Markov, peer pressure)

& Subgraph / submatrix indexing

& Shortest path calculations

& Betweenness centrality

& Graph contraction

& Cycle detection

& Multigrid interpolation & restriction

& Colored intersection searching

& Applying constraints in

finite element computations

& Context-free parsing ...

18

Applications of Sparse GEMM

1
1

1
1

1
x x

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

19

20

Two Versions of Sparse GEMM

A1 A2 A3 A4 A7A6A5 A8 B1 B2 B3 B4 B7B6B5 B8 C1 C2 C3 C4 C7C6C5 C8

j

x =
i

k

k

Cij

Cij += Aik Bkj

Ci = Ci + A Bi

x =
1D block-column
distribution

Checkerboard
(2D block)
distribution

Comparative Speedup of
Sparse 1D & 2D

21

!"#$%&'()'*+#,-#&./0%)(123#1&4*#(1*#$0(*"()&. (0#3'&.*+#)5 #)2$.*2*"(*6#

'0%%*'(.78##94*%.&$$)"/#'022:")'&()0"+#&"6#2&)"(&)")"/#.0&6#

;&.&"'*#&%*#'%:')&.8#

Projected performances of
Sparse 1D & 2D

N P

1D 2D

N
P

& Stores entries in column-major order

& Dense collection of #$%&'$()*+,-./$0

& Uses storage.
22

Compressed Sparse Columns (CSC):

A Standard Layout

!"#$%&'(")&*+,-

./*/

8
10

2 3,"0)&.
&!& %/*,)1'0)*2'
&&3 &"&3+,"+-

&

0 2 3 4 0 1 5 7 3 4 5 4 5 6 7

0
4

11
12
13
16
17

 nnznO)("

23

Submatrices are 'hypersparse0 (i.e. nnz << n)

blocks

blocks

Total Storage:

Average of c nonzeros per column

& A data structure or algorithm that depends on
the matrix dimension n (e.g. CSR or CSC)
is asymptotically too wasteful for submatrices

Node Level Considerations

Sequential Kernel

& Strictly O(nnz) data structure

& Outer-product formulation

& Work-efficient

24

X

#&+)4

//>

/

Standard +/<.5,39)A1*-.)=/4B,3"C

Sequential Hypersparse Kernel

))()(lg(BnzrAnzcnif lops ""!#

))((mnBnnzf lops """#

New hypersparse kernel:

25

Scaling Results for SpGEMM

" RMat X RMat product (graphs
with high variance on degrees)

" Random permutations useful for
the overall computation.

" Bulk synchronous algorithms
may still suffer due to imbalance
within the stages.

" Asynchronous algorithm to avoid
the curse of synchronicity

" One sided communication via
RDMA (using MPI-2)

" Results obtained on
TACC/Lonestar for graphs with
average degree 8

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

26

27

Software design of the
Combinatorial BLAS

Generality, of the numeric type of matrix elements, algebraic
operation performed, and the library interface.

Without the language abstraction penalty: C++ Templates

& Achieve mixed precision arithmetic: Type traits

& Enforcing interface and strong type checking: CRTP

& General semiring operation: Function Objects

template <class IT, class NT, class DER>

class SpMat;

& Abstraction penalty is not just a programming language issue.

& In particular, view matrices as indexed data structures and stay away
from single element access (Interface should discourage)

28

Extendability, of the library while maintaining compatibility and
seamless upgrades.

! Decouple parallel logic from the sequential part.

TuplesCSC DCSC

SpSeq

Commonalities:
- Support the sequential API
- Composed of a number of arrays

SpSeq

SpPar<Comm, SpSeq>

Any parallel logic:
asynchronous, bulk synchronous, etc

Software design of the
Combinatorial BLAS

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

29

Applications and Algorithms

30

Betweenness Centrality (BC)

CB(v): Among all the shortest
paths, what fraction of them pass
through the node of interest?

BrandesA*+/<.5,39)

A typical software stack for an application
enabled with the Combinatorial BLAS

Social Network Analysis

31

6

XAT (ATX).*¬X

!

1 2

3

4 7 5

Betweenness Centrality using
Sparse GEMM

& Parallel breadth-first search is implemented with
sparse matrix-matrix multiplication

& Work efficient algorithm for BC

32

BC Performance on
Distributed-memory

& TEPS: Traversed Edges Per Second

& Batch of 512 vertices at each iteration

& Code only a few lines longer than Matlab version

!

"!

#!!

#"!

$!!

$"!

$" %& '(&')# #!! #$# #'' #&(#(& $$" $"& $)(%$' %&# '!! ''# ')'

!
"
#
$
%&
'(
)*

+
,-
-,
(
.
&

/012*)%(3%4()*&

54%6*)3()17.'*%

*+,-./#0

*+,-./#)

*+,-./#(

*+,-./$!

Input: RMAT scale N
2N vertices
Average degree 8

Pure MPI-1 version.
No reliance on any
particular hardware.

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

33

34

SpMV on Multicore

Our parallel algorithms for y Ax and "A ATxA*using the

new compressed sparse blocks (CSB) layout have

& span, and work,

& yielding parallelism.)lg/(nnnnz#

)(nnz#)lg(nn#

!

#!!

$!!

%!!

'!!

"!!

&!!

$ % ' " & 0)

+
8-
(
6
&9
&*
'

#)('*&&()&

Our CSB
algorithms

Star-P
(CSR+blockrow
distribution)

Serial
(Naïve CSR)

Outline

& The Case for Primitives

& The Case for Sparse Matrices

& Parallel Sparse Matrix-Matrix Multiplication

& Software Design of the Combinatorial BLAS

& An Application in Social Network Analysis

& Other Work

& Future Directions

35

3636

Future Directions

"Novel scalable algorithms

"Static graphs are just the beginning.

Dynamic graphs, Hypergraphs, Tensors

" Architectures (mainly nodes) are evolving

Heterogeneous multicores

Homogenous multicores with more cores per node

TACC Lonestar (2006)

4 cores / node

TACC Ranger (2008)

16 cores / node

SDSC Triton (2009)

32 cores / node

! ! !

XYZ Resource (2020)

Hierarchical
parallelism

3737

New Architectural Trends

LANL / IBM Roadrunner

NVIDIA Tesla

Intel

80-core chip

Cray
XMT

A unified

architecture ?

38

Remarks

& Graph computations are pervasive in sciences and will
become more so.

& High performance software libraries improve
productivity.

& Carefully chosen and implemented primitive operations
are key to performance.

& Linear algebraic primitives:

! General enough to be widely useful

! Compact enough to be implemented in a reasonable time.

39

Related Publications

& Hypersparsity in 2D decomposition, sequential kernel.
B., Gilbert, "On the Representation and Multiplication of Hypersparse D+35,-41'@*6E;EFAGH*

& Parallel analysis of sparse GEMM, synchronous implementation
B., Gilbert, "Challenges and Advances in Parallel Sparse Matrix-D+35,B*D0/3,=/,-+3,.%@*6IEEAGH

& The case for primitives, APSP on the GPU
B., Gilbert, Budak, #1+,23/4)5&67)5'+8,(.$)+/)67()95:#, Parallel Computing, 2009

& SpMV on Multicores
B., Fineman, Frigo, Gilbert, Leiserson, "Parallel Sparse Matrix-Vector and Matrix-Transpose-
;(*6+')<-,63%,3*&63+/)-$3/4)=+.%'($$(>)1%&'$()?,+*@$#@*FE!!AGJ

& Betweenness centrality results
B., Gilbert, #5&'&,,(,)1%&'$()<&6'3A-<&6'3A)<-,63%,3*&63+/)&/>)B&'4()1*&,()C%%,3*&63+/$0

& Software design of the library
B., Gilbert, #5&'&,,(,)=+.83/&6+'3&,)?BC1D)E/6('F&*()&/>)G(F('(/*()E.%,(.(/6&63+/0

40

!-K%.>/4#<)4%31L

David Bader, Erik Boman, Ceren Budak, Alan
Edelman, Jeremy Fineman, Matteo
Frigo, Bruce Hendrickson, Jeremy

Kepner, Charles Leiserson, Kamesh
Madduri, Steve Reinhardt, Eric Robinson, Viral

Shah, Sivan Toledo

