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Nodeling graphs is a crucial challenge () i

Laboratories

* Qur understanding of network structure |
is still limited. Real Data Jled el
_ o Measurements
= We do not have the first principles. -

= Why model graphs?

= Real data will rarely be available. ‘ /
= Understanding normal helps identifying _
abnormal. Properties

uomeiqied

=  Benchmarking requires controlled experiments

b 4

=  Challenges

= Data analysis: ldentifying metrics that can
help in characterization (e.g., degree
distribution, clustering coefficients)

= Theoretical analysis: Understanding the
structure inferred by these metrics
= Algorithms: Designing algorithms to

compute these metrics, generate graphs, Nel=i[2GIzel BN =y | Measurements
etc.

\Y odel
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A Good Network Model... (1)

= Encapsulates underlying driving /
principals
= “Physics”

Story-driven models \

Example: Preferential Attachment

= Captures measurable characteristics (BRI A SEIEEE )
of real-world data - New nodes joins graph one at »

. tetributi atime, in sequence new *s
Degreeodlstrlbu'Flc-)n « Each new node chooses k new node &
= Clustering coefficients neighbors, according to degree  €49e(s)
=  Community structure » Node degrees updated after
» Connectedness, Diameter each addition — Rich get richer!
= Eigenvalues \ k=1 /
= Calibrates to specific data sets / Structure-driven models \
= (Quantitative vs. qualitative P
= Surrogate for real data, protecting Example: CL (aka Configuration)
privacy and security (Chung & Lu, PNAS, 2002) o
=  Provides results “like” the real data « Desired node degrees ',:ew
= Easy to share, reproduce specified in advance edge
_ ) * New edges inserted, choosing
=  Yijelds understandmg endpoints by desired degree (3]
= Serve as null model * Higher-degree nodes are more
. . . likely to be selected
= Statistical sampling guidance \ /
= Predictive capabilities
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= Encapsulates underlying driving
principals
= “Physics”
= Captures measurable characteristics
of real-world data
= Degree distribution
= Clustering coefficients
=  Community structure
= Connectedness, Diameter
= Eigenvalues

= Calibrates to specific data sets
= (Quantitative vs. qualitative

= Surrogate for real data, protecting
privacy and security

=  Provides results “like” the real data
= Easy to share, reproduce

= Yields understanding
= Serve as null model
= Statistical sampling guidance
= Predictive capabilities

A Good Network Model...

)

Sandia
National

Laboratories

/ Story-driven

Example: Preferential Attachment
(Barabasi & Albert, Science,1999)

* New nodes joins graph one at
a time, in sequence

» Each new node chooses k new
neighbors, according to degree

* Node degrees updated after

each addition — Rich get richer!

0

models

*

new N«
node &
edge(s)

~

/ Structure-driven models

Example: CL (aka Configuration)
(Chung & Lu, PNAS, 2002)

* Desired node degrees
specified in advance

* New edges inserted, choosing
endpoints by desired degree

* Higher-degree nodes are more

\Iikely to be selected

o
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Degree Dist. Measures Connectivity ) =

The degree distribution is one way to
characterize a graph.

Barabasi & Albert, Science, 1999:
“A common property of many

large networks is that the vertex
connectivities follow a scale-free
power-law distribution”

. Degree Distribution
10
‘ { ca-HepTh
¢
10 ¢
G = (V,E) .
n = |V| = number of nodes g1
m = | E| = number of edges 10"}
Vg = {i | d; = d} = set of nodes of degree d 100
nqg = |V4| = number of nodes of degree d 1o’

2/21/2014
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Clustering Coeff. Measures Cohesion B 5=

The clustering coefficient measures

the rate of wedge closure. : ;
In social networks, the clustering

coefficients decrease smoothly as

the degree increases. High
degree nodes generally have little
social cohesion.

Clustering Coefficient by Degree

o ‘ { ca-HepTh
0.8 o v
- # closed wedges centered at node 17 g 06y
v # wedges centered at node 1@ o
< 04
Cd = 'n%z E Cc; = average for nodes of degree d o
1€Vy
AN
c = 3 X # triangles in graph 10°

# wedges in graph
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Story-Driven Models

Examples

clustering coefficient

Preferential Attachment
= Barabasi & Albert, Science 1999
Forest Fire

= Leskovec, Kleinberg, Faloutsos, KDD 2005

Random Walk
= Vazquez, Phys. Rev. E 2003

Pros & Cons

0.4
0.35

o
w

0.25

o
no

0.15

o
—

0.05

2/21/2014

Poor fits to real data
Expensive to calibrate to real data
Do not scale — inherently sequential

Survey: Sala et al., WWW 2010

i Forest Fire
i Real Data
5 Nearest Neighbor ------
i Random Walk -------
i KronFit -

“““““

| E‘Jrrent State-of-the-Art Falls Short

Sandia
National
Laboratories

Structure-Driven Models

Examples
= CL: Chung-Lu; aka Configuration Model,
Weighted Erdos-Rényi
= PNAS 2002

= SKG: Stochastic Kronecker Graphs; R-MAT
is a special case

= |Leskovec et al., JMLR 2010; Chakrabarti,
Zhan, Faloutsos, SDM 2004

= Graph 500 Generator!

Pros & Cons

= Do not capture clustering coefficients

=  SKG expensive to calibrate
= Scales — generation cost O(m log n)

= CL & SKG very similar in behavior
= Pinar, Seshadhri, Kolda, SDM 2012
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= Pros
= Only 5 parameters

= 2x2 generator matrix (sums to 1)
* n=2'=#nodes
* m=16n=#edges

= O(m log n) generation cost

= Edge generation fully
parallelizable

= Except de-duplication
= Cons

= Qscillations in degree distribution
(fixed by adding special noise)

= Limited degree distribution
(noisy version is lognormal)

= Half the nodes are isolated!
= Tiny clustering coefficients!

5 ﬁ‘ﬂ’chastic Kronecker Graph (SKG)
as Graph 500 Generator

Avg. Frequency

Laboratories

SKG

e +  Noisy SKG (0.05)
% «  Noisy SKG (0.10)

10 10" 10 10° 10
Out Degree

Isolated G

42 74% 62

Seshadhri, Pinar, Kolda, Journal of the ACM, April 2012

2/21/2014
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The Physics of Graphs B 5=

Random graph:

(1) Formed according to CL Model eEetele :
(2) “High” clustering coefficient G = (V,E) {di}icv (prescribed)
\U/ Prob ((i,5) € E | i,j,€ V) x d; - d;
Thm: Must contain a “substantive” subgraph Global Clustering Coefficient
that is a dense Erd6és-Rényi graph. __ 3 X # triangles in graph
\U, C= # wedges in graph
A heavy-tailed network with a high clustering Dense Erdds-Rényi Subgraph
coefficient contains many Erdds-Rényi — =
affinity blocks. (The distribution of the block  YcochvbEck
sizes is also heavy tailed.) Prob ((i,j) € E | i,j € V)  constant

Basic measurements lead to inferences about larger structures
(communities) that are consistent with literature.

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012
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BTER: Block Two-Level Erdos-Rényi () .

o m@ @

) &
@ @ G

. . @ ¢ 9
Preprocessing Phase 1 Phase 2
+ Create affinity blocks of « Erd6és-Reényi graphs in * CL model on excess
godes Wgh (nea_lrlyzjsbame each block degree (a sort of
egree, determined by . . : . DAy
degree distribution Need to insert extra weighted Erdds I_?enyl)
Connectivity per block based links to Insure enough + Creates connections
on clustering coefficient unique links per block across blocks
« For each node, compute _(my 1
desired Wy = ( 9 ) In (1—Pb)
« within-block degree \ J
- excess degree |

Occurring independently

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012
Kolda, Pinar, Plantenga,, Seshadhri, arXiv:1302.6636, Feb. 2013
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Clusterlng Coeff|C|ents

BTER vs. SKG: Co-authorship

s Degree Dlstrlbutlon

10 _
; O ca- HepTh : O ca- HepTh
2& X A BTER | = A BTER
> o F ¥ SKG _ 4 SKG
10°t T Fgu + CL - + CL
= o
3 107 O @ OA
) [ o g A
© £ SKG &CL A
8 0.4 j5cking @ 1
' 3 enough
10"t O triangles
| 0.2
100 N REE
10° 10 10 10°

Degree
SKG parameters from Leskovec et al., JIMLR, 2010

2/21/2014
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| BTER vs. SKG: Social Website ) ==

0 Degree Dlstrlbutlon : Clusterlng Coeff|C|ents
% O SOC- Eplnlons1 O SOC- Eplnlons1
_ A BTER j A BTER
| + CL ; - + CL
' ' Q0
10°} Note % 0.6/
= ; oscillations 3
-] I .
0 j In SKG o
© 5 £
10° o
i (2]
- =
ﬁ O
10"}
10" 10’

Degree Degree
SKG parameters from Leskovec et al., JIMLR, 2010

2/21/2014 Pinar @ SIAM PP 14



Community Structure of BTER R
Improves Eigenvalue Fit

National
Laboratories

35

30

Magnitude
N N
O Ol

—
o

10

4

Leading E-vals of Adjacency Matrix

O ca-HepTh
A BTER

* SKG

+ CL

>0

g dcbebclbdod v sl dctacddidsdod

0 20 40

Eigenvalue

Leading E-vals of Adjacency Matrix
250 .

O soc-Epinions1
A BTER
N + CL
-
3 150
=
C
&
= 100{%
‘A
4 ?'
0 I I
o) 20 40

Eigenvalue

2/21/2014
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Making BTER Scalable (f=N

Degree 1 (48)(49) (50)(51) (52) (53) (54) (55 (56) 67) (58) 59) 60) 61 €2 €3 69 €5) - (3
Degree 2 (1)(2)(3) (4)(5)(6) (7)(8)(0) (1)1 1)(12) (13)(14)(15) (16)17)(18) (19)(0)

Degree 3 (21) (22](23)(24)(25) (26)(27)(28)(29) (30
Degree 4 (3132003 GUGIoR Requirements:

Degree 5 (37){38) (39)(40) = Extreme scalability requires independent edge insertion.
Degree 6 = Data structures should be o(|V|) to be duplicated at each
Degree 7 (14) (13) processor.

Degree 8 (46] = Data Structures:

Degree 9 (47) = Given the degree distribution, compute <block size,

#blocks>, which requires O(dmax) memory.

= Given the clustering coefficients, compute the number of
edges per block, hence the phase 1 degrees.

= Given Phase 1 degrees, we can compute residual (Phase 2)
degrees.

= Challenge: Adjust for repetitions

2/21/2014 Pinar @ SIAM PP 14
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Adjusting for repeated edges ) e

n,=10,p, =05 w, =31.1916

= Parallel edge insertion leads

to multiple edges. 00|

= This is negligible if edge 000
probabilities are small.

= This is the case for SKG, CL

= But not for BTER. oo

= BTER has dense blocks, il
0 R
hence many repeats. 5 10 15 20 25 30 35 40

Unique Items

= We had extra edges to guarantee the number of
unigue items is as expected.

= Coupon collector problem.

wy = (”';b) In(1/(1 — pp)).

800 — ldeal=225 |

--------- Ave rage

Frequency

600 |
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R for BIG Networks
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% Need degree distribution

= Calculate explicitly for real data
(d,..x Parameters)

= Can provide a formula, e.g., power
law (1-2 parameters)

ng = |Va| = number of nodes of degree d

% Need to specify clustering
coefficients per degree

= Calculate explicitly for real data
(d,,.x Parameters)

= (Can provide an arbitrary formula
(1-2 parameters)

Cq = # closed wedges centered at nodes of degree d
d — # wedges centered at node of degree d

= Cost per edgeis O(logd. )
= Edge generation is parallelizable
= Requires de-duplication (like SKG)

Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013

Choose block
proportional to
number of
“samples” per
block

Create Phase 1
in block k

Choose Choose

st 2nd

endpoint endpoint

Choose phase 1 or 27?

Create Phase 2
edge using CL
model on
expected
“‘excess degree”

Choose Choose
st 2nd
endpoint endpoint

2/21/2014
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# BTER Hadoop Results: uk-union
" (4.6B edges)
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6 Degree Distribution Clusterlng Coefficient
10° — e e -
E O uk union ? O uk union
10"L . A BTER 0.9+ /\ BTER
o | 0.8/
10°¢ . "y
: Total Time 0.7 %
5[ s
= i
3 10% c 05
@) %
i 0.3t
10°:
; 0.2
10'; 0.1f
of |
107 i T E—Ta——
10° 10" 10 10° > 10 10° 10" 10° 10° 10" 10° 10° 10
Degree Degree

Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013
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;oosmg BTER parameters for

) i
‘benchmarking aborlores
. Degree Distribution
= BTER can regenerate graphs with specifed 10 T earorm
parameters. o :
= Parameters are provided by an existing 0
graph.

107 ¢

Count

= Benchmarking requires non-existent graphs.
= Parameters for benchmarking
= Should be realistic

10 ¢

= Should be tunable for performance analysis. " -

=  \We want to control 1

= Hvertices, #edges, maximum-degree, 08/
cohesiveness. . ool

= Challenges: o
= What is a good degree distribution? o
= Whatis a good clustering coefficient curve? 02f

Clustering Coefﬁcient by Degree

{ ca-HepTh
o [0 cnem

What else would you like to control?

Discussion topic: What else does affect performance?
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What is a good degree distribution S
mOdeI? @ National

Laboratories

= Myth: Real graphs have power-law degree distribution.
= Common-wisdom: Not really, but they are okay.

= Reality: Power-law graphs are not good for benchmarking.
= Proposed: generalized log normal log d
Ng X exXp | —
0}
. A 5=200
107 ¢ 3=225] 10°
§=250
10%) 3 10°
10°; 10°
107 10
10'l 10'} |
e 0 10° 0 1 2* - 774 == ) 5
1) 10 10° 10 100 100 10" 10" 10
10 0 I1 I2 3 4 5 6 100 106
10° 10 10° 100 10" 10" 10
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Vhat is a good clustering coefficient Sandi
cu rve? @ National
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Clustering Coefficient

= Clustering coefficient curves ' [ ogn
come in all sorts and shapes. = ‘&
= Difficult to see a pattern
" Proposed method: N
= Can control the maximum '
and the global clustering
coefficient.
1 | | O Ideal-t 10°
A BTER O Ideal-2

A BTER

o
o]

o
()

Cqd = Cmax €xp(—(d — 1) - &)

o
~

Clustering Coefficient
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Conclusions and Future Work )=

= Generators are crucial for benchmarking (scalability,
sensitivity).
= Current generators are and future generators will be imperfect.

*" One has to understand the underlying graphs before drawing
conclusions.

= Block Two-level Erdos Renyi model improves the state of
the art.

" js based on theoretical analysis.
= matches degree distribution and clustering coefficients.
= allows scalable graph generation.

= For benchmarking,

= Generalized lognormal distributions provide realistic and
realizable degree distributions.

= We proposed reasonable clustering coefficient distributions.

= Codes are available:
http://www.sandia.gov/~tgkolda/feastpack
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THE END

2/21/2014 Pinar @ SIAM PP 14



