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Modeling graphs is a crucial challenge 

 Our understanding of network  structure 
is still limited.  
 We do not have the first principles. 

 Why model graphs? 
 Real data will rarely be available. 

 Understanding normal  helps identifying 
abnormal.  

 Benchmarking requires controlled experiments. 

 Challenges  
 Data analysis: Identifying metrics that can 

help in characterization (e.g., degree 
distribution, clustering coefficients) 

 Theoretical analysis:  Understanding the 
structure inferred by these metrics 

 Algorithms: Designing algorithms to 
compute these metrics,  generate graphs, 
etc. 
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Example: CL (aka Configuration) 

(Chung & Lu, PNAS, 2002) 

• Desired node degrees  

specified in advance 

• New edges inserted, choosing 

endpoints by desired degree 

• Higher-degree nodes are more 

likely to be selected 

A Good Network Model… 
 Encapsulates underlying driving 

principals 
 “Physics” 

 Captures measurable characteristics 
of real-world data 
 Degree distribution 
 Clustering coefficients 
 Community structure 
 Connectedness, Diameter 
 Eigenvalues 

 Calibrates to specific data sets 
 Quantitative vs. qualitative 
 Surrogate for real data, protecting 

privacy and security 
 Provides results “like” the real data 
 Easy to share, reproduce 

 Yields understanding 
 Serve as null model 
 Statistical sampling  guidance 
 Predictive capabilities 
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Story-driven models 

Structure-driven models 

Example: Preferential Attachment 

(Barabasi & Albert, Science,1999) 

• New nodes joins graph one at  

a time, in sequence 

• Each new node chooses k new 

neighbors, according to degree 

• Node degrees updated after 

each addition – Rich get richer! 
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Degree Dist. Measures Connectivity 
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The degree distribution is one way to 

characterize a graph.  

 
Barabasi & Albert, Science, 1999: 

“A common property of many 

large networks is that the vertex 

connectivities follow a scale-free 

power-law distribution” 
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Clustering Coeff. Measures Cohesion 
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The clustering coefficient measures 

the rate of wedge closure.  

 
In social networks, the clustering 

coefficients decrease smoothly as 

the degree increases. High 

degree nodes generally have little 

social cohesion. 
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Current State-of-the-Art Falls Short 
Story-Driven Models 
 Examples 

 Preferential Attachment  
 Barabasi & Albert, Science 1999 

 Forest Fire  
 Leskovec, Kleinberg, Faloutsos, KDD 2005 

 Random Walk  
 Vazquez, Phys. Rev. E 2003 

 Pros & Cons 
 Poor fits to real data 

 Expensive to calibrate to real data  

 Do not scale – inherently sequential 

 

Structure-Driven Models 
 Examples 

 CL: Chung-Lu; aka Configuration Model, 
Weighted Erdös-Rényi  

 PNAS 2002 

 SKG: Stochastic Kronecker Graphs; R-MAT 
is a special case  

 Leskovec et al., JMLR 2010; Chakrabarti, 
Zhan, Faloutsos, SDM 2004 

 Graph 500 Generator! 

 Pros & Cons 

 Do not capture clustering coefficients 

 SKG expensive to calibrate  

 Scales – generation cost O(m log n) 

 CL & SKG very similar in behavior  

 Pinar, Seshadhri, Kolda, SDM 2012 
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Survey: Sala et al., WWW 2010 
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Stochastic Kronecker Graph (SKG)  
as Graph 500 Generator 

 Pros 

 Only 5 parameters 

 2x2 generator matrix (sums to 1) 

 n = 2L = # nodes 

 m = 16n = # edges 

 O(m log n) generation cost 

 Edge generation fully  
parallelizable  

 Except de-duplication 

 Cons 

 Oscillations in degree distribution 
(fixed by adding special noise) 

 Limited degree distribution  
(noisy version is lognormal) 

 Half the nodes are isolated! 

 Tiny clustering coefficients! 

 

 
2/21/2014 Pinar @ SIAM PP 14 

Seshadhri, Pinar, Kolda, Journal of the ACM, April 2012 

L Isolated davg 

26 51% 32 

29 57% 37 

32 62% 41 

36 67% 49 

39 71% 55 

42 74% 62 
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The Physics of Graphs 
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Random graph: 

(1) Formed according to CL Model 

(2) “High” clustering coefficient 

Thm: Must contain a “substantive” subgraph 

that is a dense Erdös-Rényi graph. 

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012 

A heavy-tailed network with a high clustering 

coefficient contains many Erdös-Rényi 

affinity blocks. (The distribution of the block 

sizes is also heavy tailed.) 

CL Model 

Global Clustering Coefficient 

Dense Erdös-Rényi Subgraph 
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Basic measurements lead to inferences about larger structures 

(communities) that are consistent with literature.  



BTER: Block Two-Level Erdös-Rényi 
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Preprocessing 

• Create affinity blocks of 
nodes with (nearly) same 
degree, determined by 
degree distribution 

• Connectivity per block based 
on clustering coefficient 

• For each node, compute 
desired  

• within-block degree 
• excess degree 

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012 

Kolda, Pinar, Plantenga,, Seshadhri, arXiv:1302.6636, Feb. 2013 

Phase 2 
• CL model on excess 

degree (a sort of  

weighted Erdös-Rényi) 

• Creates connections 

across blocks 

Phase 1 
• Erdös-Rényi graphs in 

each block 

• Need to insert extra 

links to insure enough 

unique links per block 

 

Occurring independently 
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BTER vs. SKG: Co-authorship 
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SKG  & CL 

lacking 

enough 

triangles 

SKG parameters from Leskovec et al., JMLR, 2010 

Degree Distribution Clustering Coefficients 
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BTER vs. SKG: Social Website 
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SKG parameters from Leskovec et al., JMLR, 2010 

Note 

oscillations 

in SKG  
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12 



Community Structure of BTER 
Improves Eigenvalue Fit 
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Leading E-vals of Adjacency Matrix Leading E-vals of Adjacency Matrix 
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Making BTER Scalable 

 
 Requirements:  

 Extreme scalability requires independent edge insertion. 

 Data structures should be o(|V|) to be duplicated at each 
processor. 

 Data Structures: 
 Given the degree distribution, compute  <block size, 

#blocks>, which requires O(dmax) memory. 

 Given the clustering coefficients, compute  the number of 
edges per block, hence the phase 1 degrees. 

 Given Phase 1 degrees, we can compute residual (Phase 2) 
degrees. 

 Challenge:  Adjust  for repetitions 
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Adjusting for repeated edges 

 Parallel edge insertion leads 
to multiple edges. 

 This is negligible if edge 
probabilities are small.  
 This is the case for SKG, CL 
 But not for BTER. 

 BTER has dense blocks,  
hence many repeats.  

  We had extra edges to guarantee the number of 
unique items is as expected.  
 Coupon collector problem.    
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BTER for BIG Networks 
 Need degree distribution 

 Calculate explicitly for real data 
(dmax parameters) 

 Can provide a formula, e.g., power 
law (1-2 parameters) 
 

 
 Need to specify clustering 

coefficients per degree 
 Calculate explicitly for real data 

(dmax parameters) 
 Can provide an arbitrary formula 

(1-2 parameters) 
 
 

 
 Cost per edge is O(log dmax) 
 Edge generation is parallelizable 
 Requires de-duplication (like SKG) 
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Choose phase 1 or 2? 
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Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013 
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BTER Hadoop Results: uk-union  
(4.6B edges) 
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Total Time 

1,638s 
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Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013 



Choosing BTER parameters for 
benchmarking 

 BTER can  regenerate graphs with specifed 
parameters. 

 Parameters are provided by an existing 
graph. 

 Benchmarking requires  non-existent graphs. 

 Parameters for benchmarking 

 Should be realistic 

 Should be tunable for  performance analysis.  

  We want to control  

 #vertices, #edges, maximum-degree, 
cohesiveness. 

 Challenges:  

 What is a good degree distribution?  

 What is a good clustering coefficient curve? 
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Discussion topic:  What else does affect performance? 

What else would you like to control?                            



What is a good degree distribution 
model?  

 Myth:  Real graphs have power-law degree distribution. 
 Common-wisdom: Not really, but they are okay. 
 Reality: Power-law graphs are not good  for benchmarking. 
 Proposed:  generalized log normal 
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What is a good clustering coefficient 
curve?  

 Clustering coefficient curves  
come in all sorts and shapes. 

 Difficult to see a pattern 
 Proposed method:  

 Can control the maximum   
 and the global clustering  
coefficient.   
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Conclusions and Future Work 

 Generators are crucial for benchmarking (scalability, 
sensitivity). 
 Current generators are and future generators will be imperfect. 
 One has to understand the underlying graphs before drawing 

conclusions.   
 Block Two-level Erdos Renyi model improves the state of 

the art. 
 is based on theoretical analysis.  
 matches degree distribution  and clustering coefficients. 
 allows scalable graph generation. 

 For benchmarking,  
 Generalized lognormal  distributions  provide realistic and 

realizable  degree distributions.  
 We proposed reasonable clustering coefficient  distributions.  

 Codes are available:  
http://www.sandia.gov/~tgkolda/feastpack 
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THE END 
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