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Modeling graphs is a crucial challenge 

 Our understanding of network  structure 
is still limited.  
 We do not have the first principles. 

 Why model graphs? 
 Real data will rarely be available. 

 Understanding normal  helps identifying 
abnormal.  

 Benchmarking requires controlled experiments. 

 Challenges  
 Data analysis: Identifying metrics that can 

help in characterization (e.g., degree 
distribution, clustering coefficients) 

 Theoretical analysis:  Understanding the 
structure inferred by these metrics 

 Algorithms: Designing algorithms to 
compute these metrics,  generate graphs, 
etc. 
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Example: CL (aka Configuration) 

(Chung & Lu, PNAS, 2002) 

• Desired node degrees  

specified in advance 

• New edges inserted, choosing 

endpoints by desired degree 

• Higher-degree nodes are more 

likely to be selected 

A Good Network Model… 
 Encapsulates underlying driving 

principals 
 “Physics” 

 Captures measurable characteristics 
of real-world data 
 Degree distribution 
 Clustering coefficients 
 Community structure 
 Connectedness, Diameter 
 Eigenvalues 

 Calibrates to specific data sets 
 Quantitative vs. qualitative 
 Surrogate for real data, protecting 

privacy and security 
 Provides results “like” the real data 
 Easy to share, reproduce 

 Yields understanding 
 Serve as null model 
 Statistical sampling  guidance 
 Predictive capabilities 
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Story-driven models 

Structure-driven models 

Example: Preferential Attachment 

(Barabasi & Albert, Science,1999) 

• New nodes joins graph one at  

a time, in sequence 

• Each new node chooses k new 

neighbors, according to degree 

• Node degrees updated after 

each addition – Rich get richer! 
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Degree Dist. Measures Connectivity 
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The degree distribution is one way to 

characterize a graph.  

 
Barabasi & Albert, Science, 1999: 

“A common property of many 

large networks is that the vertex 

connectivities follow a scale-free 

power-law distribution” 
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Clustering Coeff. Measures Cohesion 
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The clustering coefficient measures 

the rate of wedge closure.  

 
In social networks, the clustering 

coefficients decrease smoothly as 

the degree increases. High 

degree nodes generally have little 

social cohesion. 
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Current State-of-the-Art Falls Short 
Story-Driven Models 
 Examples 

 Preferential Attachment  
 Barabasi & Albert, Science 1999 

 Forest Fire  
 Leskovec, Kleinberg, Faloutsos, KDD 2005 

 Random Walk  
 Vazquez, Phys. Rev. E 2003 

 Pros & Cons 
 Poor fits to real data 

 Expensive to calibrate to real data  

 Do not scale – inherently sequential 

 

Structure-Driven Models 
 Examples 

 CL: Chung-Lu; aka Configuration Model, 
Weighted Erdös-Rényi  

 PNAS 2002 

 SKG: Stochastic Kronecker Graphs; R-MAT 
is a special case  

 Leskovec et al., JMLR 2010; Chakrabarti, 
Zhan, Faloutsos, SDM 2004 

 Graph 500 Generator! 

 Pros & Cons 

 Do not capture clustering coefficients 

 SKG expensive to calibrate  

 Scales – generation cost O(m log n) 

 CL & SKG very similar in behavior  

 Pinar, Seshadhri, Kolda, SDM 2012 
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Survey: Sala et al., WWW 2010 
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Stochastic Kronecker Graph (SKG)  
as Graph 500 Generator 

 Pros 

 Only 5 parameters 

 2x2 generator matrix (sums to 1) 

 n = 2L = # nodes 

 m = 16n = # edges 

 O(m log n) generation cost 

 Edge generation fully  
parallelizable  

 Except de-duplication 

 Cons 

 Oscillations in degree distribution 
(fixed by adding special noise) 

 Limited degree distribution  
(noisy version is lognormal) 

 Half the nodes are isolated! 

 Tiny clustering coefficients! 

 

 
2/21/2014 Pinar @ SIAM PP 14 

Seshadhri, Pinar, Kolda, Journal of the ACM, April 2012 

L Isolated davg 

26 51% 32 

29 57% 37 

32 62% 41 

36 67% 49 

39 71% 55 

42 74% 62 
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The Physics of Graphs 
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Random graph: 

(1) Formed according to CL Model 

(2) “High” clustering coefficient 

Thm: Must contain a “substantive” subgraph 

that is a dense Erdös-Rényi graph. 

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012 

A heavy-tailed network with a high clustering 

coefficient contains many Erdös-Rényi 

affinity blocks. (The distribution of the block 

sizes is also heavy tailed.) 

CL Model 

Global Clustering Coefficient 

Dense Erdös-Rényi Subgraph 
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Basic measurements lead to inferences about larger structures 

(communities) that are consistent with literature.  



BTER: Block Two-Level Erdös-Rényi 
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Preprocessing 

• Create affinity blocks of 
nodes with (nearly) same 
degree, determined by 
degree distribution 

• Connectivity per block based 
on clustering coefficient 

• For each node, compute 
desired  

• within-block degree 
• excess degree 

Seshadhri, Kolda, Pinar, Phys. Rev. E, 2012 

Kolda, Pinar, Plantenga,, Seshadhri, arXiv:1302.6636, Feb. 2013 

Phase 2 
• CL model on excess 

degree (a sort of  

weighted Erdös-Rényi) 

• Creates connections 

across blocks 

Phase 1 
• Erdös-Rényi graphs in 

each block 

• Need to insert extra 

links to insure enough 

unique links per block 

 

Occurring independently 
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BTER vs. SKG: Co-authorship 
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BTER vs. SKG: Social Website 
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SKG parameters from Leskovec et al., JMLR, 2010 

Note 

oscillations 
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Community Structure of BTER 
Improves Eigenvalue Fit 
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Leading E-vals of Adjacency Matrix Leading E-vals of Adjacency Matrix 
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Making BTER Scalable 

 
 Requirements:  

 Extreme scalability requires independent edge insertion. 

 Data structures should be o(|V|) to be duplicated at each 
processor. 

 Data Structures: 
 Given the degree distribution, compute  <block size, 

#blocks>, which requires O(dmax) memory. 

 Given the clustering coefficients, compute  the number of 
edges per block, hence the phase 1 degrees. 

 Given Phase 1 degrees, we can compute residual (Phase 2) 
degrees. 

 Challenge:  Adjust  for repetitions 
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Adjusting for repeated edges 

 Parallel edge insertion leads 
to multiple edges. 

 This is negligible if edge 
probabilities are small.  
 This is the case for SKG, CL 
 But not for BTER. 

 BTER has dense blocks,  
hence many repeats.  

  We had extra edges to guarantee the number of 
unique items is as expected.  
 Coupon collector problem.    
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BTER for BIG Networks 
 Need degree distribution 

 Calculate explicitly for real data 
(dmax parameters) 

 Can provide a formula, e.g., power 
law (1-2 parameters) 
 

 
 Need to specify clustering 

coefficients per degree 
 Calculate explicitly for real data 

(dmax parameters) 
 Can provide an arbitrary formula 

(1-2 parameters) 
 
 

 
 Cost per edge is O(log dmax) 
 Edge generation is parallelizable 
 Requires de-duplication (like SKG) 
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Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013 
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BTER Hadoop Results: uk-union  
(4.6B edges) 
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Total Time 

1,638s 
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Kolda, Pinar, Plantenga, Seshadhri, arXiv:1302.6636, 2013 



Choosing BTER parameters for 
benchmarking 

 BTER can  regenerate graphs with specifed 
parameters. 

 Parameters are provided by an existing 
graph. 

 Benchmarking requires  non-existent graphs. 

 Parameters for benchmarking 

 Should be realistic 

 Should be tunable for  performance analysis.  

  We want to control  

 #vertices, #edges, maximum-degree, 
cohesiveness. 

 Challenges:  

 What is a good degree distribution?  

 What is a good clustering coefficient curve? 
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Discussion topic:  What else does affect performance? 

What else would you like to control?                            



What is a good degree distribution 
model?  

 Myth:  Real graphs have power-law degree distribution. 
 Common-wisdom: Not really, but they are okay. 
 Reality: Power-law graphs are not good  for benchmarking. 
 Proposed:  generalized log normal 
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What is a good clustering coefficient 
curve?  

 Clustering coefficient curves  
come in all sorts and shapes. 

 Difficult to see a pattern 
 Proposed method:  

 Can control the maximum   
 and the global clustering  
coefficient.   
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Conclusions and Future Work 

 Generators are crucial for benchmarking (scalability, 
sensitivity). 
 Current generators are and future generators will be imperfect. 
 One has to understand the underlying graphs before drawing 

conclusions.   
 Block Two-level Erdos Renyi model improves the state of 

the art. 
 is based on theoretical analysis.  
 matches degree distribution  and clustering coefficients. 
 allows scalable graph generation. 

 For benchmarking,  
 Generalized lognormal  distributions  provide realistic and 

realizable  degree distributions.  
 We proposed reasonable clustering coefficient  distributions.  

 Codes are available:  
http://www.sandia.gov/~tgkolda/feastpack 
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http://www.sandia.gov/feastpack
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THE END 
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