Graph Algorithms in the
Language of Linear Algebra

John R. Gilbert

University of California, Santa Barbara

CS 240A presentation adapted from:
Intel Non-Numeric Computing Workshop
January 17, 2014 R

Support: Intel, Microsoft, DOE Office of Science, NSF

The middleware of scientific computing

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

The challenge of the software stack

* By ana_logy to Basic Linear Algebra Subroutines (BLAS):
numerical Ops/Sec vs. Matrix Size
scientific T T
computing. . . Ic = A*B
gm- |y = A*x
= xT
« What should the so/ I y
combinatorial %/ T T
BLAS IOOk Iike? Order of vectorsmatrices

Sparse matrices for graph algorithms

Multiple-source breadth-first search

Multiple-source breadth-first search

Multiple-source breadth-first search

® o o
o o
o ® O o o
o o o 9 o
[] o
o o o
[]
Al X ATX

. Sparse array representation => space efficient

. Sparse matrix-matrix multiplication => work efficient

. Three possible levels of parallelism: searches, vertices, edges

Graph contraction via

sparse triple product

Contract @
i > H
“ A3
& (r)—»)
1 2 3 4 5 6 1 2 3 4 5 6
111 1 1 ° ° 1 ®
2 1 1 X 2@ ° X |1 = | @ ®
3 1 1 3] @ o0 1 ot
4 ° ° 1
5@ @ 1
6 ° 1

Subgraph extraction via

sparse triple product

Extract
| >
5
12 3 4 5 6 1 2 3 4 5 6
1 1 1 ® ° ®
2 1 X 2@ ° X = |® ®
3 1 3] @ e e 1 o
4 ° ° 1
5@ °
6 ° 1

Counting triangles (clustering coefficient)

Clustering coefficient:

« Pr (wedge i-j-k makes a triangle with edge i-k)
« 37 #triangles / # wedges
« 3%4/19=0.63 in example

« may want to compute for each vertex j

10 Y o5 _aB

Counting triangles (clustering coefficient)

Clustering coefficient:

« Pr (wedge i-j-k makes a triangle with edge i-k)
« 37 #triangles / # wedges
« 3%4/19=0.63 in example

« may want to compute for each vertex j

Inefficient way to count triangles with matrices:

. A = adjacency matrix ® ¢ o000
J g A ° A’ g 000
e #triangles = trace(A%) /6 cee G000 00
. but A3 is likely to be pretty dense ® oo © 00000
o o o ® 6 06 06 0 O
® 6 06 0 O ® 6 6 06 0 O

UCSB

1

Counting triangles (clustering coefficient)

Clustering coefficient:

« Pr (wedge i-j-k makes a triangle with edge i-k)
« 37 #triangles / # wedges
« 3%4/19=0.63 in example

« may want to compute for each vertex j

Cohen’s algorithm to count triangles:
hi(v) hi - Count triangles by lowest-degree vertex.

lo

hi(v) hi - Enumerate “low-hinged” wedges.

lo

hiq_,phi - Keep wedges that close.

9, U/ C S B

12

Counting triangles (clustering coefficient)

A=L+U
LxU=B
ANB=C
sum(C)/2 =

(hi->lo + lo->hi)
(wedge, low hinge)
(closed wedge)

4 triangles

A o L
e 06 o
[o o [
o o o ® o

13

Betweenness centrality [Robinson 2008]

b = BETWEENNESSCENTRALITY(G = A : BNv*Nv)

1 b=0
9 . , N -
2 for 1 ior S Variables: Storage:
4 d=0 A: sparse adjacency matrix B™N O(M+N)
5 S =0 f: sparse fringe vector Z5™ O(N)
6 p=0.p, = p : shortest path vector ZN O(N)
4 f=a,, S : sparse depth matrix BS™NN O(N)
g Wh"gi 70 u: centrality update vector RN O(N)
10 d=d+1
11 p=p+f
12 sg. =1
13 f =fA < —p
14 while d > 2
15 do
16 w=s4.%x(1l4u)+p
17 w=Aw
18 W=W X84 1:XP Storage: O(M+N)
19 u=u+w Time: O(MN + N?)
20 d = (l —1
21 b=b+u

Graph algorithms in the language of linear algebra

Kepner et al. study [2006]:
fundamental graph algorithms
inCIUding min Spanning tree’ Jeremy Ke ii]rt:?mohn Gilbert
shortest paths, independent ' \
set, max flow, clustering, ...

° =

° SSCA#2 / Centra“ty [2008] Graph Aléorithms in the

Language of Linear Algebra

. Basic breadth-first search /
Graph500 [2010] H H

. Beamer et al. [2013] direction-
optimizing breadth-first search,
implemented in CombBLAS

) UCSB

Sparse array-based primitives

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® O ® o ® o

® ® ®

XQ o ® o .xQ
® ©o o ®
o o

Element-wise operations

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices over various semirings: (+.x), (min.+), (or.and), ...

UCsSB

16

The case for sparse matrix graph primitives

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph Graphs in the language of

computations linear algebra

Data driven, Fixed communication patterns
unpredictable communication.

Irregular and unstructured, Operations on matrix blocks exploit
poor locality of reference memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

Matrices over semirings

E.g. matrix multiplication C = AB (or matrix/vector):
Ci,j - Ai,1XB1,j + Ai,ZXBZ,j + e + Ai,nXBn,j

 Replace scalar operations x and + by

® : associative, distributes over @

@ : associative, commutative
o Then Ci,j = Ai,1®B1,j @ Ai,2®Bz,j @ =" @ Ai,n®Bn,j
« Examples: x.+; and.or; +.min; ...

« Same data reference pattern and control flow

UCSB

18

Examples of semirings in graph algorithms

19

(R, +, X) Standard numerical linear algebra
Real Field
({0,1}, |, &) Graph traversal

Boolean Semiring

(R U {00}, min, +)
Tropical Semiring

Shortest paths

(R U {0}, min, x)

Select subgraph, or contract nodes
to form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

UCSB

Jon Berry challenge problems for GALA

(all final project possibilities)

« Clustering coefficient (triangle counting)

« Connected components (bully algorithm)

« Maximum independent set (NP-hard)

« Maximal independent set (Luby algorithm)
« Single-source shortest paths

« Special betweenness (for subgraph isomorphism)

UCSB

20

Fast Approximate Neighborhood Function (S. Vigna)

(final project possibility)

21

Distribution of distances between vertices in a graph
— For each vertex v, how many vertices at distance k?

— What's the average distance (or closeness) between vertices?
Expensive to compute exactly
Nifty but simple data structure gives good approximation fast

Could be implemented as sparse matrix times sparse vector,
with the nifty data structure in the semiring

E.g., using Combinatorial BLAS library

Link to paper on course web site

UCSB

« CombBLAS: sparse arrays and graphs on parallel machines

22

12 3 45

6 7

Combinatorial BLAS

gauss.cs.ucsb.edu/~aydin/CombBLAS

N o A WN
[

An extensible distributed-memory library offering a
small but powerful set of linear algebraic operations
specifically targeting graph analytics.

Aimed at graph algorithm designers/programmers who are
not expert in mapping algorithms to parallel hardware.

Flexible templated C++ interface.

Scalable performance from laptop to 100,000-processor HPC.

Open source software.
Version 1.4.0 released January 16, 2014.

24

Combinatorial BLAS: Functions

Function Applies to Parameters Returns Matlab Phrasing
Sparse Matrix A B: sparse matrices
SPGEMM (as friend) trA: transpose A if true Sparse Matrix C=A=xB
trB: transpose B if true
SPMV Sparse Matrix A: sparse matrices
(as friend) x: sparse or dense vector(s) Sparse or Dense y=Axx
trA: transpose A if true Vector(s)
Sparse Matrices A, B: sparse matrices
SPEWIsEX (as friend) notA: negate A if true Sparse Matrix C=A=xB
notB: negate B if true
Any Matrix dim: dimension to reduce
Rebuce (as method) binop: reduction operator Dense Vector sum(A)
Sparse Matrix p: row indices vector
SPREF (as method) q column indices vector Sparse Matrix B=A(p, q)
Sparse Matrix p: row indices vector
SPAsGN (as method) q: column indices vector none A(p,q) =B
B: matrix to assign
Any Matrix rhs: any object Check guiding
ScaLe (as method) (except a sparse matrix) none principles 3 and 4
Any Vector rhs: any vector none none
ScALE (as method)
Any Object unop: unary operator
APPLY (as method) (applied to non-zeros) None

- UCSB

Combinatorial BLAS: Distributed-memory reference

implementation

Combinatorial BLAS
functions and operators

_— S

DistMat @ CommGrid ® FullyDistVec
... HAS A
/A\ /‘{lymorphism
DenseDistMat SpDistMat &—— SpMat SpDistVec DenseDistVec

Enforces interface only

DCSC CSC Triples CSB

2D layout for sparse matrices & vectors

l X1
n/pr Al,l Al’z 'A1’3 Matrlx/vector dlStFIbUl’IOhS,
........................... l . Interleaved on eaCh Other.
T 5
Ay, Az l A 22 De au.td|str.|but|on n
X Combinatorial BLAS.
' X31
Ao | Ae A | v Scalable with increasing
I X, number of processes

- 2D matrix layout wins over 1D with large core counts
and with limited bandwidth/compute
- 2D vector layout sometimes important for load balance

Parallel sparse matrix-matrix

multiplication algorithm

C; += HyperSparseGEMM(Arew, Breev)
[

\

4-?-5-,5---> \
. IOOK . 5K$ 4;? \\\
EZSK \\
N
| -
N\
\ —
X g 100k = Vo1
~ / \
Z NN (TIC. [
— / ‘\\ l:j ll’
Mo ’
5K A B 7 C

2D algorithm: Sparse SUMMA (based on dense SUMMA)
General implementation that handles rectangular matrices

1D vs. 2D scaling for sparse

matrix-matrix multiplication

Restriction on Freescale matrix Restriction on GHS psdef/ldoor matrix
20 T T T T T * 35 T T T T T
SpSUMMA —— 25X SpSUMMA —— 4
EpetraExt — "‘.00 EpetraExt LT TrT -‘-__.--"'---------E7X
* "”0’] “‘x --------
==3 AX 0“"’ 8;“‘x
15 -= 04 + o
H 25 0 14X
-g ‘i“ » -‘é’ 20 ["'.;.*"'
g 0% 8 1.6X ’
[0 % () ®1l. R
@ § A N
................ #1.6X
...*
0 1 1 1 1 1 0 L L L L L
9 36 64 121 150 256 9 36 64 121 150 256
Number of Cores Number of Cores

SpSUMMA = 2-D data layout (Combinatorial BLAS)
EpetrabExt = 1-D data layout

Scaling to more processors...

Almost linear scaling until bandwidth costs starts to dominate

Seconds

0.5

0.25

0.125

"" | Scale-21 ——t—
Compute bound ====s====
Bandwidth-bound o

Slope = -0.854

,,, S
.

,,

Number of Cores

Scaling proportional
to \p afterwards

T;'omp = O(I’l)

Work In Progress:
QuadMat Shared-memory data structure

subdivide by dimension __
on power of 2 indices

T M rows

Blocks store a fixed
number of elements. More
dense parts of matrix have
more blocks, but each

block has enough data for \ J

. - '
meaningful computation. n columns

Example

Scale 10 RMAT

(887x887, 21304 non-nulls)
up to 1024 non-nulls per block
Sorted by degree

Blue blocks: uint16_t indices
Green blocks: uint8_t indices
Each (tiny) dot is a non-null

Implementation in templated C++

* Parallelized with TBB’s task scheduler.
— Continuation passing style.

* Leaf operations are instantiated templates with
statically-known data types.

— No virtual functions or other barriers to compiler
optimization. Note: slow compilation times due to
number of permutations of block types.

* Only pay for what you use.
— Sorts are optional.
— Overhead for variable-length data only if used.

KDT: attributed semantic graphs in a high-level language

33

Parallel graph analysis software

Discrete
structure analysis

l

Graph theory

l

Parallel graph analysis software

Domain scientists Discrete

Knowledge Discovery Toolbox (KDT) --------------------------------------

structure analysis

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

Graph algorithm
developers 1
Graph theory
HPC scientists 1
and engineers

I

Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

 KDT is higher level (graph abstractions)
 Combinatorial BLAS is for performance

Domain expert vs. graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree ())
— vectors

Clustering / components
Centrality / authority:
betweenness centrality, PageRank

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Markov
Clustering

o
o)
s
4
(‘) To %4,
! ;
o ’ \ »o\oo °
.
o
o X—— ,Do
R 0
4
o]
L
o
Graph of
° Clusters
o—o

Largest
Component

Domain expert vs. graph expert

(Semantic) directed graphs ;‘igﬁ
— constructors, I/O G =
— basic graph metrics (e.g., degree L) e
— vectors

. 1
Clustering / components o
Centrality / authority: smal

vi

betweenness centrality, PageR

= bigG.connComp ()

tComp = comp.hist () .argmax()
bigG. subgraph (comp==giantComp)

ters = G.cluster (*Markov’)

Nedge = G.nedge(clusters)
1G = G.contract (clusters)

sualize

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Domain expert vs. graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree
— vectors

Clustering / components
Centrality / authority:

betweenness centrality, PageR

comp = bigG.connComp ()

giantComp = comp.hist () .argmax()

G = bigG.subgraph (comp==giantComp)
clusters = G.cluster (*Markov’)
clusNedge = G.nedge (clusters)
smallG = G.contract (clusters)

visualize

Hypergraphs and sparse matri
Graph primitives (e.g., bfsTree
SpMV / SpGEMM on semirings

[...]

L = G.toSpParMat ()

d = L.sum(kdt.SpParMat.Column)

L = -L

L.setDiag (d)

M = kdt.SpParMat.eye (G.nvert()) — mu*L

pos = kdt.ParVec.rand(G.nvert ())
for 1 in range (nsteps):
pos = M.SpMV (pos)

12 3 45 6 7

Discovery

N o A WN
[]
® 0 O

Toolbox

http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

* Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

e Easy-to-use Python interface

 Runson alaptop as well as a cluster with 10,000 processors

e Open source software (New BSD license)
* V3 release April 2013 (V4 expected spring 2014)

—

e

A few KDT applications

Markov Clustering

A

$ i

&

image courtesy Stijn van Dongen

Markov Clustering (MCL) finds clusters by
postulating that a random walk that visits
a dense cluster will probably visit many of
its vertices before leaving.

We use a Markov chain for the random
walk. This process is reinforced by adding
an inflation step that uses the Hadamard
product and rescaling.

-

J

40

(—[Betweenness Centrality]—\

77
Rocchini

Betweenness Centrality says that a vertex
is important if it appears on many
shortest paths between other vertices.
An exact computation requires a BFS for
every vertex. A good approximation can
be achieved by sampling starting vertices.

\§

J

—

o
PageRank €

courtesy Felipe Micaroni Lalli

—

PageRank

PageRank says a
vertex is important
if other important
vertices link to it.

5

Each vertex (webpage) votes by splitting
its PageRank score evenly among its out
edges (links). This broadcast (an SpMV) is
followed by a normalization step
(ColWise). Repeat until convergence.

PageRank is the stationary distribution of a
Markov Chain that simulates a "random

J

_ surfer”.

(—[Belief Propagation]—\

P& ;0
QO AT
Sum-up:
p= Pn+ZkEN(i) Py,
1= 151_1(131'1/11@ + ZkeN(i) Priping), Vi
Update i’s messages to its neighbors
Py = *;'112]' (P = Py),
tij = (Pifts — Pjipegi) [Aij.
Gaussian belief propagation (GaBP) is an
iterative algorithm for solving the linear
system of equations Ax = b, where A is
symmetric positive definite.
GaBP assumes each variable follows a
normal distribution. It iteratively calculates
the precision P and mean value u of each

variable; the converged mean-value vector

_ approximates the actual solution.

Attributed semantic graphs and filters

Example:

Vertex types: Person, Phone,
Camera, Gene, Pathway

Edge types: PhoneCall, TextMessage,
Colocation, SequenceSimilarity

Edge attributes: Time, Duration

Calculate centrality just for emails
among engineers sent between given
start and end times

def onlyEngineers (self):
return self.position == Engineer

def timedEmail (self, sTime, eTime):

return ((self.type == email) and
(self.Time > sTime) and
(self.Time < eTime))

G.addVFilter (onlyEngineers)
G.addEFilter (timedEmail (start, end))

rank via centrality based on recent
email transactions among engineers

bc = G.rank (' approxBC’)

SEJITS for filter/semiring acceleration

Standard KDT

Filter (Py)

Semiring (Py)

Python | KDT Algorithm

!

C++ CombBLAS
Primitive

SEJITS for filter/semiring acceleration

Standard KDT KDT+SEJITS

[pr———— X

Filter (Py) I Filter (Py) :

| |

Semiring (Py) 1 | Semiring (Py) | !

Python | KDT Algorithm KDT Algorithm | (-7 I ——— !
l l SEJITS ITransIation

C++ CombBLAS CombBLAS [—— oo \

Primitive Primitive Filter (C++) | |

I

: Semiring (C++) :

N e e e e = —— -

Embedded DSL: Python for the whole application
* Introspect, translate Python to equivalent C++ code
e Call compiled/optimized C++ instead of Python

Filtered BFS with SEJITS

«O=KDT =i=SEJITS+KDT “***CombBLAS

64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50

Mean BFS time

i

025 I I T T 1
121 256 576 1024 2025

Number of MPI processes

Time (in seconds) for a single BFS iteration on scale 25 RMAT (33M vertices,
500M edges) with 10% of elements passing filter. Machine is NERSC’s Hopper.

SEJITS+KDT multicore performance

T 10F ' =
I F

3

2 - MIS= Maximal

:cg“ Independent Set

§ L - 36 cores of Mirasol
3 (Intel Xeon E7-8870)
£ - Erdés-Rényi (Scale
” 22, edgefactor=4)

9 01 F Python/Python KDT =i -

= Python/SEJITS KDT ==]

= SEJITS/SEJITS KDT metpmm

é’ ’ C-||-+/C++ COmbBLAS === N

1% 10% 100%
Filter Permeability

Synthetic data with weighted randomness to match filter permeability
Notation: [semiring impl] / [filter impl]

SEJITS+KDT cluster performance

i

Python/Python KDT = sl
Python/SEJITS KDT e
SEJITS/SEJITS KDT =g 1
CT+/C++ COombBLAS ==y II

1% 10% 100%
Filter Permeability

o
-
T

Mean BFS Time (seconds, log scale)

Breadth-first search

576 cores of Hopper
(Cray XE6 at NERSC
with AMD Opterons)

R-MAT (Scale 25,
edgefactor=16,
symmetric)

A roofline model for shows how SEJITS moves KDT analytics from
being Python compute bound to being bandwidth bound.

SEJITS+KDT real graph performance

@
S
O
0
o)

9
7}
e
S
S 1
o)
@2
o
E
|_
n
I8
m
C
I
[
=

SI1ZES (VERTEX AND EDGE COUNTS) OF DIFFERENT COMBINED TWITTER

10 |

0.1

Python/Python KDT s
SEJITS/SEJITS KDT st
C++/C++ ICombBLAS ——

small

medium

large huge

Twitter Input Graph

* Breadth-first search

16 cores of Mirasol
(Intel Xeon E7-8870)

STATISTICS ABOUT THE LARGEST STRONGLY CONNECTED COMPONENTS

GRAPHS. OF THE TWITTER GRAPHS
Label Vertices Edges (millions) Vertices Edges traversed Edges processed
(millions) | Tweet Follow Tweet&follow Small 78.397 147,873 29 4 million
Small 0.5 0.7 653 0.3 Medium | 55,872 93,601 54.1 million
Medium 4.2 142 386.5 4.8 Large | 45291 73,031 59.7 million
Large 11.3 59.7 589.1 12.5 Huge | 43,027 68,751 60.2 million
Huge 16.8 1024 634.2 15.6

Roofline analysis: Why does SEJITS+KDT work?

Processed Edges Per Second (in Millions)

12800

6400

3200

1600

800

400

Mirasol (Xeon E7 8870) — 36 cores

CombBLAS Compute Bound

SEJITS Compute Bound

|.. DRAM BandwidthBound . N
P

KDT Compute Bound

1%

10% 100%
Filter Permeability

Even with SEJITS, there are
run-time overheads with
function calls via pointers.

How is it so close to the
Combinatorial BLAS
performance?

Because once we are
bandwidth bound,
additional complexity does
not hurt.

Standards for graph algorithm primitives

49

The (original) BLAS

The Basic Linear Algebra Subroutines
had a revolutionary impact
on computational linear algebra.

BLAS 1 | vector ops Lawson, Hanson, Kincaid, | LINPACK
Krogh, 1979

BLAS 2 | matrix-vector ops | Dongarra, Du Croz, LINPACK on
Hammarling, Hanson, 1988 | vector machines

BLAS 3 | matrix-matrix ops | Dongarra, Du Croz, LAPACK on
Hammarling, Hanson, 1990 | cache based machines

« Experts in mapping algorithms to hardware tune BLAS for specific platforms.

» Experts in numerical linear algebra build software on top of the BLAS to get
high performance “for free.”

Today every computer, phone, etc. comes with /usr/lib/libblas

UCSB

50

51

Can we define and standardize

the “Graph BLAS™?

No, it is not reasonable to define a universal set of graph
algorithm building blocks:

Huge diversity in matching algorithms to hardware platforms.
No consensus on data structures and linguistic primitives.
Lots of graph algorithms remain to be discovered.

Early standardization can inhibit innovation.

Yes, it is reasonable to define a common set of graph
algorithm building blocks ... for Graphs as Linear Algebra:

Representing graphs in the language of linear algebra is a mature
field.

Algorithms, high level interfaces, and implementations vary.

But the core primitives are well established.

UCSB

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory). Jack Dongarra (University of Tennessee).
Christos Faloutsos (Carnegie Melon University). John Feo (Pacific Northwest National Laboratory). John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley). Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign). Stephen Poole (Oak Ridge National Laboratory). Steve Reinhardt (Cray
Corporation). Mike Stonebraker (Massachusetts Institute of Technology). Steve Wallach (Convey Corporation).
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract— It is our view that the state of the art in
constructing a large collection of graph algorithms in
terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive
building blocks. This paper is a position paper defining
the problem and announcing our intention to launch an
open effort to define this standard.

Graph Algorithm Building Blocks workshop: GABB @ IPDPS May 2014

Sparse array attribute survey

Function STINGER D4M Tensor GraphlLab
Toolbox
Version 1.3.0 2006 r633 2.5 13.9 2.5 0.2.0 2.2
Language any C++ F.C,C++ C Matlab C++ Matlab, C++ Julia C++
Dimension 2 1,2 2 1,2,3 2 1to100 2,3 1,2 2
Index Base Oor1l 0 Oor1l 0 1 +N 1 1 0
Index Type uinté4 uint64 int int64 double, string int64 double anyint uint64
Value Type 7 user single, int64 logical, double, yser logical, double, yser user
double, complex, string complex
complex
Null 0 user 0 0 <0 null 0 0 int64(-1)
Sparse ? tuple undef linked dense, csc, RLE dense, csc csc csr/csc
Format list tuple
Parallel ? 2D block none block arbitrary N-D block, none N-D block, Edge based
cyclic w/ cyclic w/ w/ vertex
overlap overlap split
+ operations user? user + user +% ,max,min, user + user user
* operations user? user * user nu user * user user

Matrix times matrix over semiring

Inputs
matrix A: SMN (sparse or dense)

matrix B: SN (sparse or dense)
Optional Inputs

matrix C: SMXL (sparse or dense)
scalar “add” function @

scalar “multiply” function ®
transpose flags for A, B, C
Outputs

matrix C: SMXL (sparse or dense)

Implements Co=A ®.® B

forj=1:N
CG,k) =Cak) @ (AG,) ® B(,k))

If input C is omitted, implements
C=A®®B

Transpose flags specify operation
on AT, BT, and/or C! instead

Notes

S is the set of scalars, user-specified
S defaults to IEEE double float

@ defaults to floating-point +

& defaults to floating-point *

Specific cases and function names:

SpGEMM: sparse matrix times sparse matrix
SpMSpV: sparse matrix times sparse vector
SpMV: Sparse matrix times dense vector
SpMM: Sparse matrix times dense matrix

Sparse matrix indexing & assignment

Inputs
matrix A: SMXN (sparse)

matrix B: SPX49 (sparse)
vector p C {1, ...,M}
vector g € {1, ...,N}
Optional Inputs

none

Outputs

matrix A: SMXN (sparse)
matrix B: SPX4 (sparse)

SpRef Implements B = A(p.g)

fori=1:Ipl
forj=1:lgl
B(1j) = A(p(1).4()

SpAsgn Implements A(p,g) =B

fori=1:Ipl
forj=1:Iqgl
A(p(1).4()) =B@y)

Notes

S is the set of scalars, user-specified
S defaults to IEEE double float

Ipl = length of vector p

lgl = length of vector g

Specific cases and function names

SpRef: get sub-matrix
SpAsgn: assign to sub-matrix

Element-wise operations

Inputs Implements Ce=A ®B
- . QMxN

atric B SN iy | Fi=1:M

. Sparse or aense fOI’j:l:N
Optional Inputs C(1y) = C1y) @ (A1) ® B(1,))
matrix C: SMXN (sparse or dense) If input C is omitted, implements
scalar “add” function @ C=A®B
scalar “multiply” function ®
Outputs
matrix C: SMXN (sparse or dense)

Specific cases and function names:

Notes . ‘ .
S is the set of scalars, user-specified ifPIWBeN)E' lr‘natnx ele:lmentw1S§
S defaults to IEEE double float =1 or N=1: vector elementwise

@ defaults to floating-point + Scale: when A or B is a scalar

& defaults to floating-point *

Apply/Update

Inputs
matrix A: SMN (sparse or dense)

Optional Inputs

matrix C: SMXN (sparse or dense)
scalar “add” function @

unary function f()

Outputs
matrix C: SMXN (sparse or dense)

Implements C ®=f(A)

fori=1:M
forj=1:N
if A(i,)) #0
C(ij) = C(i4) @ f(A(i)

If input C 1s omitted, implements
C=1(A)

Notes
S is the set of scalars, user-specified

S defaults to IEEE double float
@ defaults to floating-point +

Specific cases and function names:
Apply: matrix apply
M=1 or N=1: vector apply

58

It helps to look at things from two directions.

Sparse arrays and matrices yield useful primitives and
algorithms for high-performance graph computation.

Graphs in the language of linear algebra are
sufficiently mature to support a standard set of BLAS.

UCSB

