
CS240A: Conjugate Gradients  
and the Model Problem 

 



The middleware of scientific computing 

Computers 

Continuous 
physical modeling 

Linear algebra Ax = b 



Example:  The Temperature Problem 

 

•  A cabin in the snow 
•  Wall temperature is 0°, except for a radiator at 100° 
•  What is the temperature in the interior? 



Example:  The Temperature Problem 

 

•  A cabin in the snow (a square region J) 
•  Wall temperature is 0°, except for a radiator at 100° 
•  What is the temperature in the interior? 



The physics:  Poisson’s equation 



6.43 

Many Physical Models Use Stencil Computations 
•  PDE models of heat, fluids, structures, … 
•  Weather, airplanes, bridges, bones, … 
•  Game of Life 
•  many, many others 
 



Model Problem:  Solving Poisson’s equation for temperature 

•  Discrete approximation to Poisson’s equation: 

t(i) = ¼ ( t(i-k) + t(i-1) + t(i+1) + t(i+k) ) 

•  Intuitively:  
Temperature at a point is the average  

of the temperatures at surrounding points 
 

k = n1/2 



Model Problem:  Solving Poisson’s equation for temperature 

•  For each i from 1 to n, except on the boundaries: 

– t(i-k) – t(i-1) + 4*t(i) – t(i+1) – t(i+k) = 0 
 

•  n equations in n unknowns:  A*t = b 
•  Each row of A has at most 5 nonzeros 

•  In three dimensions, k = n1/3  and each row has at most 7 nzs 

k = n1/2 



            Examples of stencils 

 
 

5-point stencil in 2D 
 (temperature problem) 

9-point stencil in 2D 
(game of Life)  

7-point stencil in 3D 
(3D temperature problem)  

25-point stencil in 3D 
(seismic modeling)  

… and many more 



A Stencil Computation Solves a System of Linear Equations 
•  Solve Ax = b  for  x 
•  Matrix A, right-hand side vector b, unknown vector x 
•  A is sparse:  most of the entries are 0 



The Landscape of Ax=b Solvers 

 

 
Pivoting 

LU 

 
GMRES, 

BiCGSTAB, 
… 

 
Cholesky 

 
Conjugate 
gradient 

 

 

Direct 
A = LU 

Iterative 
y’ = Ay 

Non- 
symmetric 

Symmetric 
positive 
definite 

More Robust Less Storage (if sparse) 

More Robust 

More General 



CS 240A:  Solving Ax = b in parallel 

•  Dense A:  Gaussian elimination with partial pivoting (LU) 
•  See Jim Demmel’s slides 
•  Same flavor as matrix * matrix, but more complicated 

•  Sparse A:  Iterative methods – Conjugate gradient, etc. 
•  Sparse matrix times dense vector 

•  Sparse A:  Gaussian elimination – Cholesky, LU, etc. 
•  Graph algorithms 

•  Sparse A:  Preconditioned iterative methods and multigrid 
•  Mixture of lots of things 
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Conjugate gradient iteration for Ax = b 

x0 =  0               approx solution	

r0 =  b                residual = b - Ax	

d0 =  r0                      search direction	


for  k  =  1, 2, 3, . . .	

 

	
xk  =  xk-1 + …                       new approx solution 

	
 rk =  …                                new residual	

 	

	
dk  =  …                                  new search direction	
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Conjugate gradient iteration for Ax = b 

x0 =  0               approx solution	

r0 =  b                residual = b - Ax	

d0 =  r0                      search direction	

for  k  =  1, 2, 3, . . .	

	
αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)   step length 

	
xk  =  xk-1 + αk dk-1                 new approx solution 

	
 rk =  rk-1 – αk Adk-1                 new residual	

	
βk =  (rT

k rk) / (rT
k-1rk-1)	


	
dk  =  rk + βk dk-1                     new search direction	

	




Conjugate gradient iteration to solve A*x=b 

•  One matrix-vector multiplication per iteration 
•  Two vector dot products per iteration 
•  Four n-vectors of working storage 

x0 =  0,    r0 =  b,    d0 =  r0     (these are all vectors)	


for  k  =  1, 2, 3, . . .	

	
αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)    step length 

	
xk  =  xk-1 + αk dk-1                             approximate solution 

	
 rk =  rk-1 – αk Adk-1                           residual  =  b - Axk	

	
βk =  (rT

k rk) / (rT
k-1rk-1)            improvement	


	
dk  =  rk + βk dk-1                                  search direction	

	




Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Broadcast  the scalars α and β, then independent  *  and  + 
•  comm volume = 2p, span = log n 

•  DDOT:     α = vT*w  = Σj v[j]*w[j]   (vectors v, w; scalar α) 
•  Independent  *,  then  +  reduction 
•  comm volume = p, span = log n 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  The hard part 
•  But all you need is a subroutine to compute v from w 
•  Sometimes you don’t need to store A (e.g. temperature problem) 
•  Usually you do need to store A, but it’s sparse ... 



Broadcast and reduction 
•  Broadcast of 1 value to p processors in log p time 

•  Reduction of p values to 1 in log p time 
•  Takes advantage of associativity in +, *, min, max, etc. 

α 
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Where’s the data (temperature problem)? 

•  The matrix A:  Nowhere!! 

•  The vectors x, b, r, d: 
•  Each vector is one value per stencil point 
•  Divide stencil points among processors, n/p points each 

•  How do you divide up the sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 
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How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  First version: number the grid by rows 
•  Leads to a block row decomposition of the region 
•  v = 2 * p * sqrt(n) 

 



6.43 

How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  Second version: 2D block decomposition 
•  Numbering is a little more complicated 
•  v = 4 * sqrt(p) * sqrt(n) 



Where’s the data (temperature problem)? 

•  The matrix A:  Nowhere!! 

•  The vectors x, b, r, d: 
•  Each vector is one value per stencil point 
•  Divide stencil points among processors, n/p points each 

•  How do you divide up the sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 



Detailed complexity measures for data movement I:     
                   Latency/Bandwidth Model 
 
 

Moving data between processors by message-passing 
 

•  Machine parameters: 
•   α      latency (message startup time in seconds)  
•   β     inverse bandwidth (in seconds per word) 

•  between nodes of Triton,  α ∼ 2.2 × 10-6  and  β ∼ 6.4 × 10-9 

•  Time to send & recv or bcast a message of w words:    α + w*β 

•  tcomm    total commmunication time 

•  tcomp     total computation time 

•  Total parallel time:  tp   =   tcomp  +  tcomm  



27"

Ghost Nodes in Stencil Computations 

Comm cost = α * (#messages) + β * (total size of messages) 

•  Keep a ghost copy of neighbors’ boundary nodes 
•  Communicate every second iteration, not every iteration 
•  Reduces #messages, not total size of messages 
•  Costs extra memory and computation 
•  Can also use more than one layer of ghost nodes 

Green = my interior nodes 

Yellow  
  = neighbors’ boundary nodes  
  = my “ghost nodes”  

Blue = my boundary nodes 



The Landscape of Ax = b Algorithms 

 

 
Pivoting 

LU 

 
GMRES, 

BiCGSTAB, 
… 

 
Cholesky 

 
Conjugate 
gradient 

 

 

Gaussian 
elimination Iterative 

Any 
matrix 

Symmetric 
positive 
definite 
matrix 

More Robust Less Storage 

More Robust 

More General 



Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
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Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
•  The matrix A is symmetric (aij = aji) … 
•  … and positive definite (all eigenvalues > 0). 

•  Symmetric positive definite matrices occur a lot 
 in scientific computing & data analysis! 

•  But usually the matrix isn’t just a stencil. 
•  Now we do need to store the matrix A.  Where’s the data? 

•  The key is to use graph data structures and algorithms. 



Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Broadcast  the scalars α and β, then independent  *  and  + 
•  comm volume = 2p, span = log n 

•  DDOT:     α = vT*w  = Σj v[j]*w[j]   (vectors v, w; scalar α) 
•  Independent  *,  then  +  reduction 
•  comm volume = p, span = log n 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  The hard part 
•  But all you need is a subroutine to compute v from w 
•  Sometimes you don’t need to store A (e.g. temperature problem) 
•  Usually you do need to store A, but it’s sparse ... 



Conjugate gradient:  Krylov subspaces 

•  Eigenvalues:       Av = λv         { λ1, λ2 , . . ., λn} 

•  Cayley-Hamilton theorem: 
 (A – λ1I)·(A – λ2I) · · · (A – λnI) = 0  

Therefore   Σ ciAi  =  0   for some ci 
 

so                A-1  =  Σ (–ci/c0) Ai–1  

•  Krylov subspace:	

Therefore if  Ax = b, then x = A-1 b  and 

x ∈ span (b, Ab, A2b, . . ., An-1b) = Kn (A, b)  

0 ≤ i ≤ n	


1 ≤ i ≤ n	




Conjugate gradient:  Orthogonal sequences 

•  Krylov subspace:  Ki (A, b) = span (b, Ab, A2b, . . ., Ai-1b)  
•  Conjugate gradient algorithm: 

 for  i = 1, 2, 3, . . . 
  find xi ∈ Ki (A, b)  
  such that   ri   =  (b – Axi)  ⊥  Ki (A, b) 

	


•  Notice  ri ∈ Ki+1 (A, b),  so   ri ⊥ rj   for all  j < i 

•  Similarly, the “directions” are A-orthogonal: 
  (xi – xi-1 )T·A· (xj – xj-1 ) = 0 

	


•  The magic: Short recurrences. . . 
 A is symmetric => can get next residual and direction 
      from the previous one, without saving them all. 



Conjugate gradient:  Convergence 

•  In exact arithmetic, CG converges in n steps  
                        (completely unrealistic!!) 

•  Accuracy after k steps of CG is related to: 
•  consider polynomials of degree k that are equal to 1 at 0. 
•  how small can such a polynomial be at all the eigenvalues of A? 

•  Thus, eigenvalues close together are good. 

•  Condition number:   κ(A)   =   ||A||2 ||A-1||2  =  λmax(A) / λmin(A) 

•  Residual is reduced by a constant factor by  
           O(κ1/2(A))  iterations of CG. 



Other Krylov subspace methods 

•  Nonsymmetric linear systems: 
•  GMRES:   

for  i = 1, 2, 3, . . . 
    find xi ∈ Ki (A, b) such that  ri   =  (Axi – b)  ⊥  Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space 
 (Usually “restarted” every k iterations to use less space.) 

•  BiCGStab, QMR, etc.: 
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases 
Short recurrences => O(n) space, but less robust 

•  Convergence and preconditioning more delicate than CG 
•  Active area of current research 

•  Eigenvalues:  Lanczos (symmetric), Arnoldi (nonsymmetric) 



Conjugate gradient iteration 

•  One matrix-vector multiplication per iteration 
•  Two vector dot products per iteration 
•  Four n-vectors of working storage 

x0 =  0,    r0 =  b,    d0 =  r0	

for  k  =  1, 2, 3, . . .	

	
αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)   step length 

	
xk  =  xk-1 + αk dk-1                         approx solution 

	
 rk =  rk-1 – αk Adk-1                         residual	

	
βk =  (rT

k rk) / (rT
k-1rk-1)          improvement	


	
dk  =  rk + βk dk-1                             search direction	

	



