
CS240A: Conjugate Gradients
and the Model Problem

The middleware of scientific computing

Computers

Continuous
physical modeling

Linear algebra Ax = b

Example: The Temperature Problem

•  A cabin in the snow
•  Wall temperature is 0°, except for a radiator at 100°
•  What is the temperature in the interior?

Example: The Temperature Problem

•  A cabin in the snow (a square region J)
•  Wall temperature is 0°, except for a radiator at 100°
•  What is the temperature in the interior?

The physics: Poisson’s equation

6.43

Many Physical Models Use Stencil Computations
•  PDE models of heat, fluids, structures, …
•  Weather, airplanes, bridges, bones, …
•  Game of Life
•  many, many others

Model Problem: Solving Poisson’s equation for temperature

•  Discrete approximation to Poisson’s equation:

t(i) = ¼ (t(i-k) + t(i-1) + t(i+1) + t(i+k))

•  Intuitively:
Temperature at a point is the average

of the temperatures at surrounding points

k = n1/2

Model Problem: Solving Poisson’s equation for temperature

•  For each i from 1 to n, except on the boundaries:

– t(i-k) – t(i-1) + 4*t(i) – t(i+1) – t(i+k) = 0

•  n equations in n unknowns: A*t = b
•  Each row of A has at most 5 nonzeros

•  In three dimensions, k = n1/3 and each row has at most 7 nzs

k = n1/2

 Examples of stencils

5-point stencil in 2D
 (temperature problem)

9-point stencil in 2D
(game of Life)

7-point stencil in 3D
(3D temperature problem)

25-point stencil in 3D
(seismic modeling)

… and many more

A Stencil Computation Solves a System of Linear Equations
•  Solve Ax = b for x
•  Matrix A, right-hand side vector b, unknown vector x
•  A is sparse: most of the entries are 0

The Landscape of Ax=b Solvers

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Direct
A = LU

Iterative
y’ = Ay

Non-
symmetric

Symmetric
positive
definite

More Robust Less Storage (if sparse)

More Robust

More General

CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting (LU)
•  See Jim Demmel’s slides
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Iterative methods – Conjugate gradient, etc.
•  Sparse matrix times dense vector

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting
•  See Jim Demmel’s slides
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Iterative methods – Conjugate gradient etc.
•  Sparse matrix times dense vector

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	
xk = xk-1 + … new approx solution

	
 rk = … new residual	

 	

	
dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	
αk = … step length

	
xk = xk-1 + αk dk-1 new approx solution

	
 rk = … new residual	

	
 	

	
dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	
αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	
xk = xk-1 + αk dk-1 new approx solution

	
 rk = … new residual	

	
 	

	
dk = … new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	
αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	
xk = xk-1 + αk dk-1 new approx solution

	
 rk = … new residual	

	
βk = (rT

k rk) / (rT
k-1rk-1)	

	
dk = rk + βk dk-1 new search direction	

	

Conjugate gradient iteration for Ax = b

x0 = 0 approx solution	

r0 = b residual = b - Ax	

d0 = r0 search direction	

for k = 1, 2, 3, . . .	

	
αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	
xk = xk-1 + αk dk-1 new approx solution

	
 rk = rk-1 – αk Adk-1 new residual	

	
βk = (rT

k rk) / (rT
k-1rk-1)	

	
dk = rk + βk dk-1 new search direction	

	

Conjugate gradient iteration to solve A*x=b

•  One matrix-vector multiplication per iteration
•  Two vector dot products per iteration
•  Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0 (these are all vectors)	

for k = 1, 2, 3, . . .	

	
αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	
xk = xk-1 + αk dk-1 approximate solution

	
 rk = rk-1 – αk Adk-1 residual = b - Axk	

	
βk = (rT

k rk) / (rT
k-1rk-1) improvement	

	
dk = rk + βk dk-1 search direction	

	

Vector and matrix primitives for CG

•  DAXPY: v = α*v + β*w (vectors v, w; scalars α, β)

•  Broadcast the scalars α and β, then independent * and +
•  comm volume = 2p, span = log n

•  DDOT: α = vT*w = Σj v[j]*w[j] (vectors v, w; scalar α)
•  Independent *, then + reduction
•  comm volume = p, span = log n

•  Matvec: v = A*w (matrix A, vectors v, w)
•  The hard part
•  But all you need is a subroutine to compute v from w
•  Sometimes you don’t need to store A (e.g. temperature problem)
•  Usually you do need to store A, but it’s sparse ...

Broadcast and reduction
•  Broadcast of 1 value to p processors in log p time

•  Reduction of p values to 1 in log p time
•  Takes advantage of associativity in +, *, min, max, etc.

α

8

 1 3 1 0 4 -6 3 2"

Add-reduction"

Broadcast"

Where’s the data (temperature problem)?

•  The matrix A: Nowhere!!

•  The vectors x, b, r, d:
•  Each vector is one value per stencil point
•  Divide stencil points among processors, n/p points each

•  How do you divide up the sqrt(n) by sqrt(n) region of points?

•  Block row (or block col) layout: v = 2 * p * sqrt(n)

•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

6.43

How do you partition the sqrt(n) by sqrt(n) stencil points?
•  First version: number the grid by rows
•  Leads to a block row decomposition of the region
•  v = 2 * p * sqrt(n)

6.43

How do you partition the sqrt(n) by sqrt(n) stencil points?
•  Second version: 2D block decomposition
•  Numbering is a little more complicated
•  v = 4 * sqrt(p) * sqrt(n)

Where’s the data (temperature problem)?

•  The matrix A: Nowhere!!

•  The vectors x, b, r, d:
•  Each vector is one value per stencil point
•  Divide stencil points among processors, n/p points each

•  How do you divide up the sqrt(n) by sqrt(n) region of points?

•  Block row (or block col) layout: v = 2 * p * sqrt(n)

•  2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

Detailed complexity measures for data movement I:
 Latency/Bandwidth Model

Moving data between processors by message-passing

•  Machine parameters:
•  α latency (message startup time in seconds)
•  β inverse bandwidth (in seconds per word)

•  between nodes of Triton, α ∼ 2.2 × 10-6 and β ∼ 6.4 × 10-9

•  Time to send & recv or bcast a message of w words: α + w*β

•  tcomm total commmunication time

•  tcomp total computation time

•  Total parallel time: tp = tcomp + tcomm

27"

Ghost Nodes in Stencil Computations

Comm cost = α * (#messages) + β * (total size of messages)

•  Keep a ghost copy of neighbors’ boundary nodes
•  Communicate every second iteration, not every iteration
•  Reduces #messages, not total size of messages
•  Costs extra memory and computation
•  Can also use more than one layer of ghost nodes

Green = my interior nodes

Yellow
 = neighbors’ boundary nodes
 = my “ghost nodes”

Blue = my boundary nodes

The Landscape of Ax = b Algorithms

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Gaussian
elimination Iterative

Any
matrix

Symmetric
positive
definite
matrix

More Robust Less Storage

More Robust

More General

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

•  But usually the matrix isn’t just a stencil.
•  Now we do need to store the matrix A. Where’s the data?

Conjugate gradient in general

•  CG can be used to solve any system Ax = b, if …
•  The matrix A is symmetric (aij = aji) …
•  … and positive definite (all eigenvalues > 0).

•  Symmetric positive definite matrices occur a lot
 in scientific computing & data analysis!

•  But usually the matrix isn’t just a stencil.
•  Now we do need to store the matrix A. Where’s the data?

•  The key is to use graph data structures and algorithms.

Vector and matrix primitives for CG

•  DAXPY: v = α*v + β*w (vectors v, w; scalars α, β)

•  Broadcast the scalars α and β, then independent * and +
•  comm volume = 2p, span = log n

•  DDOT: α = vT*w = Σj v[j]*w[j] (vectors v, w; scalar α)
•  Independent *, then + reduction
•  comm volume = p, span = log n

•  Matvec: v = A*w (matrix A, vectors v, w)
•  The hard part
•  But all you need is a subroutine to compute v from w
•  Sometimes you don’t need to store A (e.g. temperature problem)
•  Usually you do need to store A, but it’s sparse ...

Conjugate gradient: Krylov subspaces

•  Eigenvalues: Av = λv { λ1, λ2 , . . ., λn}

•  Cayley-Hamilton theorem:
 (A – λ1I)·(A – λ2I) · · · (A – λnI) = 0

Therefore Σ ciAi = 0 for some ci

so A-1 = Σ (–ci/c0) Ai–1

•  Krylov subspace:	

Therefore if Ax = b, then x = A-1 b and

x ∈ span (b, Ab, A2b, . . ., An-1b) = Kn (A, b)

0 ≤ i ≤ n	

1 ≤ i ≤ n	

Conjugate gradient: Orthogonal sequences

•  Krylov subspace: Ki (A, b) = span (b, Ab, A2b, . . ., Ai-1b)
•  Conjugate gradient algorithm:

 for i = 1, 2, 3, . . .
 find xi ∈ Ki (A, b)
 such that ri = (b – Axi) ⊥ Ki (A, b)

	

•  Notice ri ∈ Ki+1 (A, b), so ri ⊥ rj for all j < i

•  Similarly, the “directions” are A-orthogonal:
 (xi – xi-1)T·A· (xj – xj-1) = 0

	

•  The magic: Short recurrences. . .
 A is symmetric => can get next residual and direction
 from the previous one, without saving them all.

Conjugate gradient: Convergence

•  In exact arithmetic, CG converges in n steps
 (completely unrealistic!!)

•  Accuracy after k steps of CG is related to:
•  consider polynomials of degree k that are equal to 1 at 0.
•  how small can such a polynomial be at all the eigenvalues of A?

•  Thus, eigenvalues close together are good.

•  Condition number: κ(A) = ||A||2 ||A-1||2 = λmax(A) / λmin(A)

•  Residual is reduced by a constant factor by
 O(κ1/2(A)) iterations of CG.

Other Krylov subspace methods

•  Nonsymmetric linear systems:
•  GMRES:

for i = 1, 2, 3, . . .
 find xi ∈ Ki (A, b) such that ri = (Axi – b) ⊥ Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space
 (Usually “restarted” every k iterations to use less space.)

•  BiCGStab, QMR, etc.:
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases
Short recurrences => O(n) space, but less robust

•  Convergence and preconditioning more delicate than CG
•  Active area of current research

•  Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

Conjugate gradient iteration

•  One matrix-vector multiplication per iteration
•  Two vector dot products per iteration
•  Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0	

for k = 1, 2, 3, . . .	

	
αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	
xk = xk-1 + αk dk-1 approx solution

	
 rk = rk-1 – αk Adk-1 residual	

	
βk = (rT

k rk) / (rT
k-1rk-1) improvement	

	
dk = rk + βk dk-1 search direction	

	

