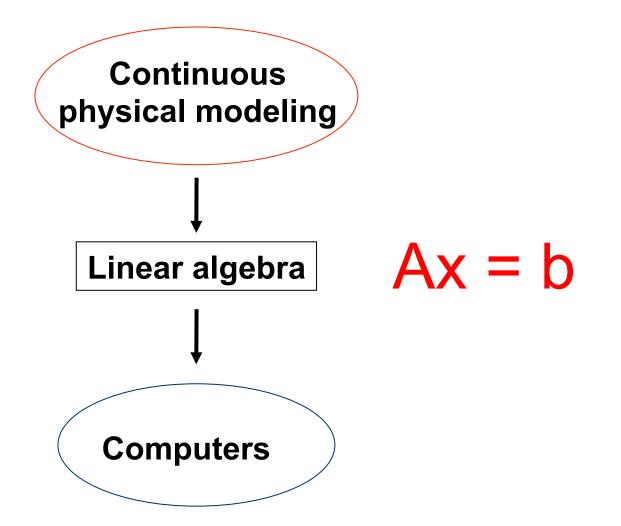
CS240A: Conjugate Gradients and the Model Problem

The middleware of scientific computing

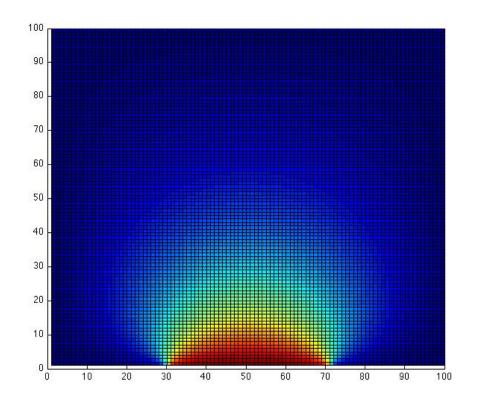


Example: The Temperature Problem

- A cabin in the snow
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?

Example: The Temperature Problem

- A cabin in the snow (a square region ☺)
- Wall temperature is 0°, except for a radiator at 100°
- What is the temperature in the interior?



The physics: Poisson's equation

$$\nabla^2 u(x, y) \equiv \frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) = f(x, y)$$

for $(x, y) \in \mathbb{R} = \{ (x, y) \mid a < x < b, c < y < d \}$, and
 $u(x, y) = g(x, y)$

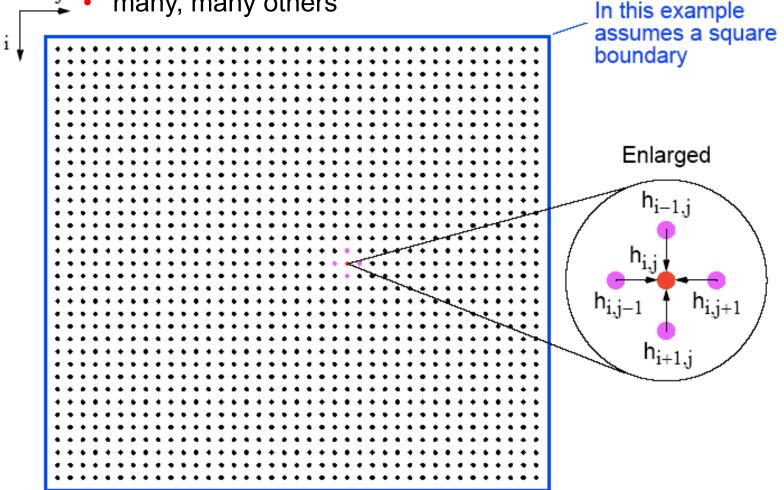
for (x, y) on the boundary of *R*.

Many Physical Models Use Stencil Computations

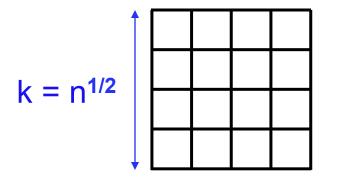
- PDE models of heat, fluids, structures, ... •
- Weather, airplanes, bridges, bones, ... •
- Game of Life •

J

many, many others



Model Problem: Solving Poisson's equation for temperature



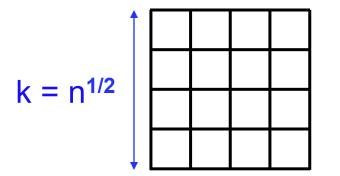
• Discrete approximation to Poisson's equation:

 $t(i) = \frac{1}{4} (t(i-k) + t(i-1) + t(i+1) + t(i+k))$

• Intuitively:

Temperature at a point is the average of the temperatures at surrounding points

Model Problem: Solving Poisson's equation for temperature

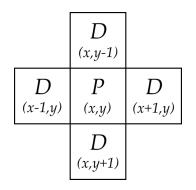


• For each i from 1 to n, except on the boundaries:

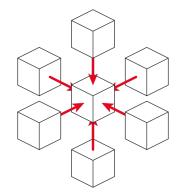
 $-t(i-k) - t(i-1) + 4^{*}t(i) - t(i+1) - t(i+k) = 0$

- n equations in n unknowns: A*t = b
- Each row of A has at most 5 nonzeros
- In three dimensions, $k = n^{1/3}$ and each row has at most 7 nzs

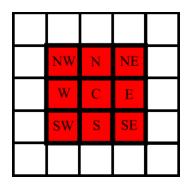
Examples of stencils

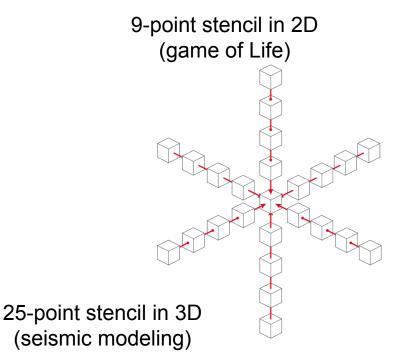


5-point stencil in 2D (temperature problem)



7-point stencil in 3D (3D temperature problem)

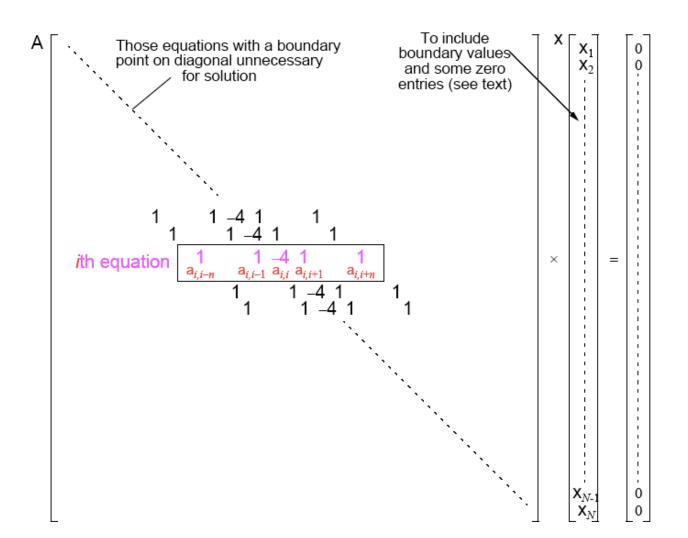




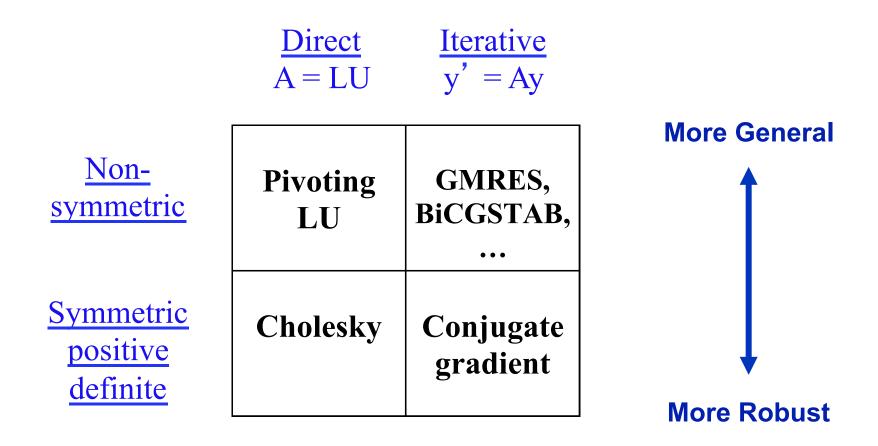
... and many more

A Stencil Computation Solves a System of Linear Equations

- Solve Ax = b for x
- Matrix A, right-hand side vector b, unknown vector x
- A is *sparse*: most of the entries are 0



The Landscape of Ax=b Solvers

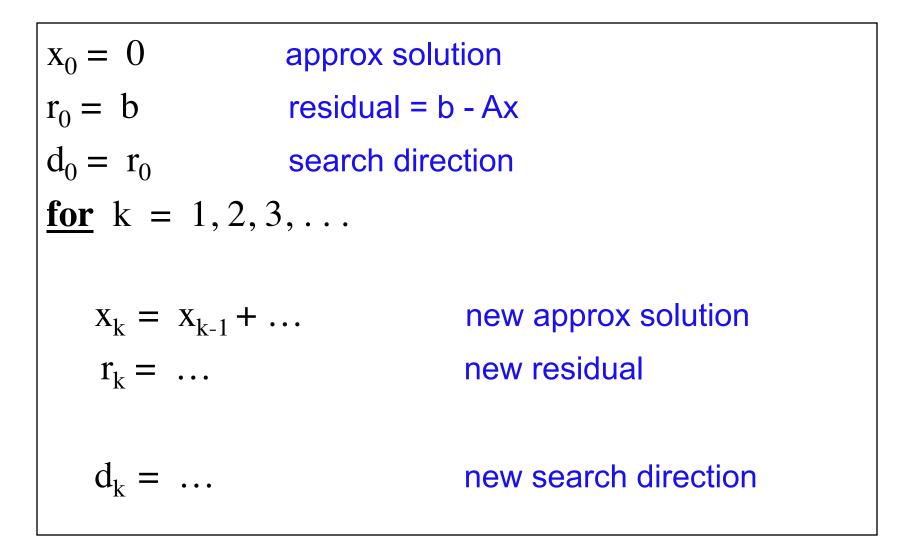


CS 240A: Solving Ax = b in parallel

- <u>Dense A:</u> Gaussian elimination with partial pivoting (LU)
 - See Jim Demmel's slides
 - Same flavor as matrix * matrix, but more complicated
- <u>Sparse A:</u> Iterative methods Conjugate gradient, etc.
 - Sparse matrix times dense vector
- <u>Sparse A:</u> Gaussian elimination Cholesky, LU, etc.
 - Graph algorithms
- Sparse A: Preconditioned iterative methods and multigrid
 - Mixture of lots of things

CS 240A: Solving Ax = b in parallel

- <u>Dense A:</u> Gaussian elimination with partial pivoting
 - See Jim Demmel's slides
 - Same flavor as matrix * matrix, but more complicated
- <u>Sparse A:</u> Iterative methods Conjugate gradient etc.
 - Sparse matrix times dense vector
- Sparse A: Gaussian elimination Cholesky, LU, etc.
 - Graph algorithms
- Sparse A: Preconditioned iterative methods and multigrid
 - Mixture of lots of things



 $x_0 = 0$ $r_0 = b$ approx solution residual = b - Ax $d_0 = r_0$ search direction for $k = 1, 2, 3, \ldots$ step length $\alpha_k = \ldots$ $x_{k} = x_{k-1} + \alpha_{k} d_{k-1}$ new approx solution new residual $r_k = \dots$ $d_k = \dots$ new search direction

 $x_0 = 0$ $r_0 = b$ approx solution residual = b - Ax $d_0 = r_0$ search direction for $k = 1, 2, 3, \ldots$ $\alpha_{k} = (r_{k-1}^{T} r_{k-1}) / (d_{k-1}^{T} A d_{k-1})$ step length $x_{k} = x_{k-1} + \alpha_{k} d_{k-1}$ new approx solution new residual $r_k = \dots$ $d_{k} = ...$ new search direction

 $x_0 = 0$ $r_0 = b$ approx solution residual = b - Ax $d_0 = r_0$ search direction for $k = 1, 2, 3, \ldots$ $\alpha_{k} = (r_{k-1}^{T} r_{k-1}) / (d_{k-1}^{T} A d_{k-1})$ step length $X_{k} = X_{k-1} + \alpha_{k} d_{k-1}$ new approx solution new residual $r_k = \dots$ $\beta_{k} = (r_{k}^{T} r_{k}) / (r_{k-1}^{T} r_{k-1})$ $d_k = r_k + \beta_k d_{k-1}$ new search direction

 $x_0 = 0$ approx solution $r_0 = b$ residual = b - Ax $d_0 = r_0$ search direction for $k = 1, 2, 3, \ldots$ $\alpha_{k} = (r_{k-1}^{T} r_{k-1}) / (d_{k-1}^{T} A d_{k-1})$ step length $x_{k} = x_{k-1} + \alpha_{k} d_{k-1}$ new approx solution $r_{k} = r_{k-1} - \alpha_{k} Ad_{k-1}$ new residual $\beta_{k} = (r_{k}^{T} r_{k}) / (r_{k-1}^{T} r_{k-1})$ $d_k = r_k + \beta_k d_{k-1}$ new search direction

Conjugate gradient iteration to solve A*x=b

$$\begin{split} x_0 &= 0, \quad r_0 = b, \quad d_0 = r_0 \quad (\text{these are all vectors}) \\ \hline \textbf{for} \quad k &= 1, 2, 3, \dots \\ \alpha_k &= (r^T_{k-1}r_{k-1}) / (d^T_{k-1}Ad_{k-1}) \quad \text{step length} \\ x_k &= x_{k-1} + \alpha_k \, d_{k-1} \qquad \text{approximate solution} \\ r_k &= r_{k-1} - \alpha_k \, Ad_{k-1} \qquad \text{residual } = b - Ax_k \\ \beta_k &= (r^T_k r_k) / (r^T_{k-1}r_{k-1}) \qquad \text{improvement} \\ d_k &= r_k + \beta_k \, d_{k-1} \qquad \text{search direction} \end{split}$$

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage

Vector and matrix primitives for CG

• DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

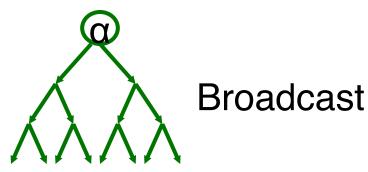
- Broadcast the scalars α and β , then independent * and +
- comm volume = 2p, span = log n
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j]^*w[j]$ (vectors v, w; scalar α)
 - Independent *, then + reduction
 - comm volume = p, span = log n
- Matvec: v = A*w

(matrix A, vectors v, w)

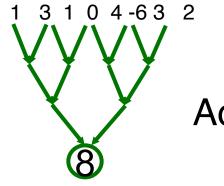
- The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don't need to store A (e.g. temperature problem)
- Usually you do need to store A, but it's sparse ...

Broadcast and reduction

• Broadcast of 1 value to p processors in log p time



- Reduction of p values to 1 in log p time
- Takes advantage of associativity in +, *, min, max, etc.



Add-reduction

Where's the data (temperature problem)?

- The matrix A: Nowhere!!
- The vectors x, b, r, d:
 - Each vector is one value per stencil point
 - Divide stencil points among processors, n/p points each
- How do you divide up the sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

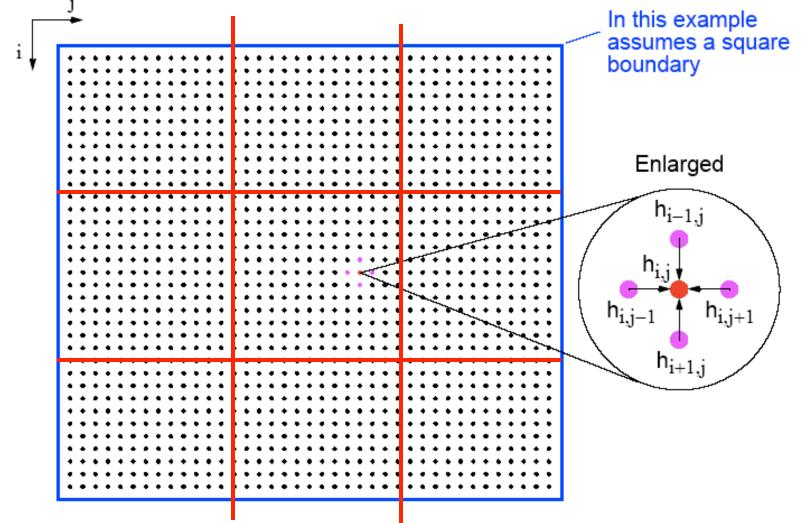
How do you partition the sqrt(n) by sqrt(n) stencil points?

- First version: number the grid by rows
- Leads to a block row decomposition of the region

```
v = 2 * p * sqrt(n)
                                                                                       In this example
                                                                                       assumes a square
i
                                                                                       boundary
                                                                                           Enlarged
                                                                                              h_{i-1,j}
                                                                                           h<sub>i,j</sub>.
                                                                                      h<sub>i,j-1</sub>
                                                                                                     h<sub>i,j+1</sub>
                                                                                             \mathsf{h}_{i+1,j}
```

How do you partition the sqrt(n) by sqrt(n) stencil points?

- Second version: 2D block decomposition
- Numbering is a little more complicated
- v = 4 * sqrt(p) * sqrt(n)



Where's the data (temperature problem)?

- The matrix A: Nowhere!!
- The vectors x, b, r, d:
 - Each vector is one value per stencil point
 - Divide stencil points among processors, n/p points each
- How do you divide up the sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

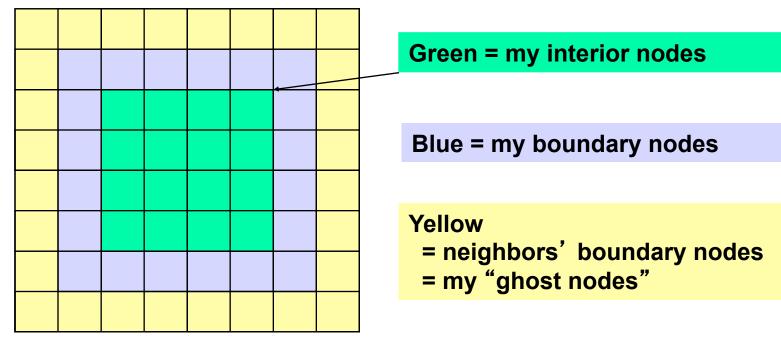
Detailed complexity measures for data movement I: Latency/Bandwidth Model

Moving data between processors by message-passing

- Machine parameters:
 - α latency (message startup time in seconds)
 - β inverse bandwidth (in seconds per word)
 - between nodes of Triton, $\alpha \sim 2.2 \times 10^{-6}$ and $\beta \sim 6.4 \times 10^{-9}$
- Time to send & recv or bcast a message of w words: $\alpha + w^*\beta$
- t_{comm} total communication time
- t_{comp} total computation time
- Total parallel time: $t_p = t_{comp} + t_{comm}$

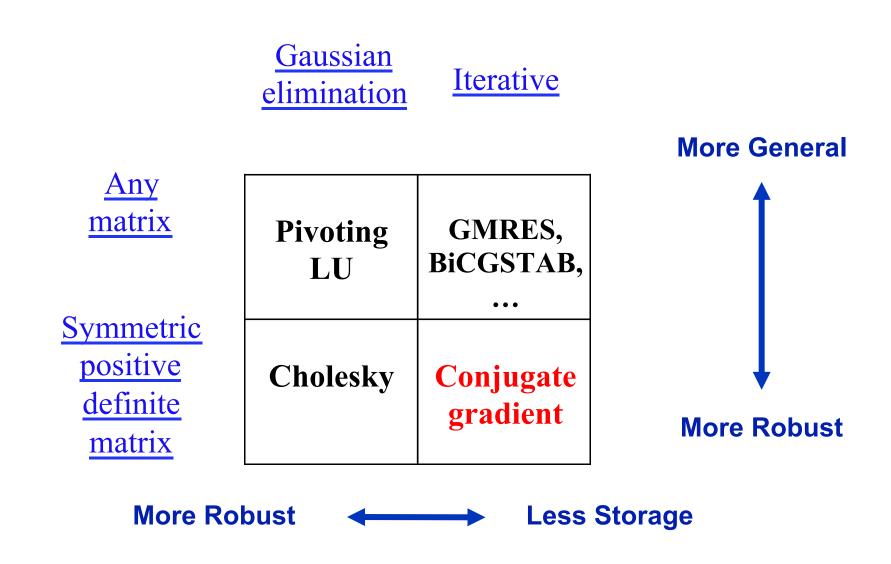
Ghost Nodes in Stencil Computations

Comm cost = α * (#messages) + β * (total size of messages)



- Keep a ghost copy of neighbors' boundary nodes
- Communicate every second iteration, not every iteration
- Reduces #messages, not total size of messages
- Costs extra memory and computation
- Can also use more than one layer of ghost nodes **27**

The Landscape of Ax = b Algorithms



• CG can be used to solve *any* system Ax = b, if ...

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ij} = a_{ji}) ...
- ... and *positive definite* (all eigenvalues > 0).

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and *positive definite* (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?
- The key is to use graph data structures and algorithms.

Vector and matrix primitives for CG

• DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

- Broadcast the scalars α and β , then independent * and +
- comm volume = 2p, span = log n
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j]^*w[j]$ (vectors v, w; scalar α)
 - Independent *, then + reduction
 - comm volume = p, span = log n
- Matvec: v = A*w

(matrix A, vectors v, w)

- The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don't need to store A (e.g. temperature problem)
- Usually you do need to store A, but it's sparse ...

Conjugate gradient: Krylov subspaces

- Eigenvalues: $Av = \lambda v$ { $\lambda_1, \lambda_2, \ldots, \lambda_n$ }
- Cayley-Hamilton theorem: $(A - \lambda_1 I) \cdot (A - \lambda_2 I) \cdots (A - \lambda_n I) = 0$ Therefore $\sum_{0 \le i \le n} C_i A^i = 0$ for some C_i so $A^{-1} = \sum_{1 \le i \le n} (-C_i/C_0) A^{i-1}$
- Krylov subspace:

Therefore if Ax = b, then $x = A^{-1}b$ and $x \in \text{span}(b, Ab, A^2b, \dots, A^{n-1}b) = K_n(A, b)$

Conjugate gradient: Orthogonal sequences

- Krylov subspace: K_i (A, b) = span (b, Ab, A²b, ..., Aⁱ⁻¹b)
- Conjugate gradient algorithm:

 $\begin{array}{l} \underline{for} \ i=1,\,2,\,3,\,\ldots\\ & \mbox{find} \ x_i \!\in\! K_i\,(A,\,b)\\ & \mbox{such that} \ \ r_i \ = \ (b-Ax_i) \ \bot \ K_i\,(A,\,b) \end{array}$

- Notice $r_i \in K_{i+1}(A, b)$, so $r_i \perp r_j$ for all j < i
- Similarly, the "directions" are A-orthogonal: $(x_i - x_{i-1})^T \cdot A \cdot (x_j - x_{j-1}) = 0$
- The magic: Short recurrences...
 A is symmetric => can get next residual and direction from the previous one, without saving them all.

Conjugate gradient: Convergence

- In exact arithmetic, CG converges in n steps (completely unrealistic!!)
- Accuracy after k steps of CG is related to:
 - consider polynomials of degree k that are equal to 1 at 0.
 - how small can such a polynomial be at all the eigenvalues of A?
- Thus, eigenvalues close together are good.
- Condition number: $\kappa(A) = ||A||_2 ||A^{-1}||_2 = \lambda_{max}(A) / \lambda_{min}(A)$
- Residual is reduced by a constant factor by $O(\kappa^{1/2}(A))$ iterations of CG.

Other Krylov subspace methods

- Nonsymmetric linear systems:
 - GMRES:
 - <u>for</u> i = 1, 2, 3, . . .

find $x_i \in K_i(A, b)$ such that $r_i = (Ax_i - b) \perp K_i(A, b)$ But, no short recurrence => save old vectors => lots more space (Usually "restarted" every k iterations to use less space.)

• BiCGStab, QMR, etc.:

Two spaces $K_i(A, b)$ and $K_i(A^T, b)$ w/ mutually orthogonal bases Short recurrences => O(n) space, but less robust

- Convergence and preconditioning more delicate than CG
- Active area of current research
- Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

Conjugate gradient iteration

- One matrix-vector multiplication per iteration
- Two vector dot products per iteration
- Four n-vectors of working storage