
CS 240A:  Solving Ax = b in parallel 

•  Dense A:  Gaussian elimination with partial pivoting (LU) 
•  Same flavor as matrix * matrix, but more complicated 

•  Sparse A:  Gaussian elimination – Cholesky, LU, etc. 
•  Graph algorithms 

•  Sparse A:  Iterative methods – Conjugate gradient, etc. 
•  Sparse matrix times dense vector 

•  Sparse A:  Preconditioned iterative methods and multigrid 
•  Mixture of lots of things 



CS 240A:  Solving Ax = b in parallel 

•  Dense A:  Gaussian elimination with partial pivoting (LU) 
•  Same flavor as matrix * matrix, but more complicated 

•  Sparse A:  Gaussian elimination – Cholesky, LU, etc. 
•  Graph algorithms 

•  Sparse A:  Iterative methods – Conjugate gradient, etc. 
•  Sparse matrix times dense vector 

•  Sparse A:  Preconditioned iterative methods and multigrid 
•  Mixture of lots of things 



CS267  Dense Linear Algebra I.3 Demmel Fa 2001 

 
 

Dense Linear Algebra (Excerpts)  

James Demmel 
 

http://www.cs.berkeley.edu/~demmel/cs267_221001.ppt 



CS267  Dense Linear Algebra I.4 Demmel Fa 2001 

Motivation  

° 3 Basic Linear Algebra Problems 
•  Linear Equations: Solve Ax=b for x 

•  Least Squares: Find x that minimizes Σ ri2 where r=Ax-b 
•  Eigenvalues: Find λ and x where Ax = λ x 
•  Lots of variations depending on structure of A (eg symmetry) 

° Why dense A, as opposed to sparse A? 
•  Aren’t “most” large matrices sparse? 
•  Dense algorithms easier to understand  
•  Some applications yields large dense matrices 

-  Ax=b: Computational Electromagnetics 
-  Ax = λx: Quantum Chemistry 

•  Benchmarking 
-  “How fast is your computer?” =                                            
“How fast can you solve dense Ax=b?” 

•  Large sparse matrix algorithms often yield smaller (but still large) 
dense problems 



CS267  Dense Linear Algebra I.5 Demmel Fa 2001 

Review of Gaussian Elimination (GE) for solving Ax=b 

°  Add multiples of each row to later rows to make A upper 
triangular 

°  Solve resulting triangular system Ux = c by substitution 
… for each column i 
… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    … for each row j below row i 
    for j = i+1 to n 
         … add a multiple of row i to row j 
         for k = i to n 
               A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k) 



CS267  Dense Linear Algebra I.6 Demmel Fa 2001 

Refine GE Algorithm (1) 

°  Initial Version 

° Remove computation of constant A(j,i)/A(i,i) from 
inner loop 

… for each column i 
… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    … for each row j below row i 
    for j = i+1 to n 
         … add a multiple of row i to row j 
         for k = i to n 
               A(j,k) = A(j,k) - (A(j,i)/A(i,i)) * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 



CS267  Dense Linear Algebra I.7 Demmel Fa 2001 

Refine GE Algorithm (2) 

° Last version 

° Don’t compute what we already know:                    
zeros below diagonal in column i 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 



CS267  Dense Linear Algebra I.8 Demmel Fa 2001 

Refine GE Algorithm (3) 

° Last version 

° Store multipliers m below diagonal in zeroed entries 
for later use 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 



CS267  Dense Linear Algebra I.9 Demmel Fa 2001 

Refine GE Algorithm (4) 

° Last version for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

o  Split Loop 
for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 



CS267  Dense Linear Algebra I.10 Demmel Fa 2001 

Refine GE Algorithm (5) 

° Last version 

° Express using matrix operations (BLAS) 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) * ( 1 / A(i,i) ) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  
              - A(i+1:n , i) * A(i , i+1:n) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 



CS267  Dense Linear Algebra I.11 Demmel Fa 2001 

What GE really computes 

° Call the strictly lower triangular matrix of multipliers 
M, and let L = I+M 

° Call the upper triangle of the final matrix U 
° Lemma (LU Factorization): If the above algorithm 

terminates (does not divide by zero) then A = L*U 
° Solving A*x=b using GE 

•  Factorize A = L*U using GE                   (cost = 2/3 n3 flops) 
•  Solve L*y = b for y, using substitution (cost = n2 flops) 
•  Solve U*x = y for x, using substitution (cost = n2 flops) 

° Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 



CS267  Dense Linear Algebra I.12 Demmel Fa 2001 

Problems with basic GE algorithm 

°  What if some A(i,i) is zero? Or very small? 
•  Result may not exist, or be “unstable”, so need to pivot 

°  Current computation all BLAS 1 or BLAS 2, but we know that 
BLAS 3 (matrix multiply) is fastest (earlier lectures…) 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 
              - A(i+1:n , i) * A(i , i+1:n) 

Peak 
BLAS 3 

BLAS 2 
BLAS 1 



CS267  Dense Linear Algebra I.13 Demmel Fa 2001 

Pivoting in Gaussian Elimination 
°   A =  [ 0  1 ]    fails completely, even though A  is “easy” 
           [ 1  0 ] 
 
°  Illustrate problems in 3-decimal digit arithmetic: 
 
        A = [ 1e-4  1  ]    and    b = [ 1 ],   correct answer to 3 places is x = [ 1 ] 
               [    1    1  ]                    [ 2 ]                                                            [ 1 ] 
 
°   Result of LU decomposition is 
 
        L = [  1               0 ]   =  [  1        0  ]                  … No roundoff error yet 
              [ fl(1/1e-4)    1 ]       [ 1e4     1  ] 
 
        U = [ 1e-4           1          ]  =  [  1e-4        1  ]    … Error in 4th decimal place 
               [ 0          fl(1-1e4*1) ]      [     0      -1e4 ] 
 
        Check if A = L*U = [ 1e-4     1 ]                        … (2,2) entry entirely wrong 
                                        [     1      0 ] 
 
°  Algorithm “forgets” (2,2) entry, gets same L and U for all |A(2,2)|<5 

°  Numerical instability 
°  Computed solution x totally inaccurate 

°  Cure: Pivot (swap rows of A) so entries of L and U bounded 



CS267  Dense Linear Algebra I.14 Demmel Fa 2001 

Gaussian Elimination with Partial Pivoting (GEPP) 
°  Partial Pivoting: swap rows so that each multiplier   
                 |L(i,j)|  =  |A(j,i)/A(i,i)| <=  1          

for i = 1 to n-1 
     find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)| 
            … i.e. largest entry in rest of column i 
     if |A(k,i)| = 0 
          exit with a warning that A is singular, or nearly so 
     elseif  k != i 
          swap rows i and k of A 
     end if        
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)        … each quotient lies in [-1,1] 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 

°  Lemma: This algorithm computes A = P*L*U, where P is a 
                  permutation matrix 
°  Since each entry of |L(i,j)| <= 1, this algorithm is considered 
       numerically stable 
°  For details see LAPACK code at www.netlib.org/lapack/single/sgetf2.f 



CS267  Dense Linear Algebra I.15 Demmel Fa 2001 

Converting BLAS2 to BLAS3 in GEPP 

° Blocking 
•  Used to optimize matrix-multiplication   
•  Harder here because of data dependencies in GEPP  

° Delayed Updates 
•  Save updates to “trailing matrix” from several consecutive BLAS2 

updates 
•  Apply many saved updates simultaneously in one BLAS3 

operation 

° Same idea works for much of dense linear algebra 
•  Open questions remain 

° Need to choose a block size b 
•  Algorithm will save and apply b updates 
•  b must be small enough so that active submatrix consisting of b 

columns of A fits in cache 
•  b must be large enough to make BLAS3 fast 



CS267  Dense Linear Algebra I.16 Demmel Fa 2001 

Blocked GEPP   (www.netlib.org/lapack/single/sgetrf.f) 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 
     end = ib + b-1                … Point to end of block of b columns  
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     
                                       … apply delayed updates with single matrix-multiply 
                                       … with inner dimension b 



CS267  Dense Linear Algebra I.17 Demmel Fa 2001 

Overview of LAPACK 

° Standard library for dense/banded linear algebra 
•  Linear systems: A*x=b 
•  Least squares problems:  minx || A*x-b ||2 
•  Eigenvalue problems: Ax = λx, Ax = λBx 
•  Singular value decomposition (SVD):  A = UΣVT 

° Algorithms reorganized to use BLAS3 as much as 
possible 

° Basis of math libraries on many computers, Matlab 6 
° Many algorithmic innovations remain 

•  Automatic optimization 
•  Quadtree matrix data structures for locality 
•  New eigenvalue algorithms 

 



CS267  Dense Linear Algebra I.18 Demmel Fa 2001 

Parallelizing Gaussian Elimination 

° Recall parallelization steps from earlier lecture 
•  Decomposition: identify enough parallel work, but not too much 
•  Assignment:  load balance work among threads 
•  Orchestrate: communication and synchronization 
•  Mapping: which processors execute which threads 

° Decomposition 
•  In BLAS 2 algorithm nearly each flop in inner loop can be done in 

parallel, so with n2 processors, need 3n parallel steps 

•  This is too fine-grained, prefer calls to local matmuls instead 
•  Need to discuss parallel matrix multiplication 

° Assignment 
•  Which processors are responsible for which submatrices?  

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 
              - A(i+1:n , i) * A(i , i+1:n) 



CS267  Dense Linear Algebra I.19 Demmel Fa 2001 

Different Data Layouts for Parallel GE (on 4 procs) 

 The winner! 

Bad load balance: 
P0 idle after first 
n/4 steps 

Load balanced, but can’t easily 
use BLAS2 or BLAS3 

Can trade load balance 
and BLAS2/3  
performance by  
choosing b, but 
factorization of block 
column is a bottleneck 

Complicated addressing 



CS267  Dense Linear Algebra I.20 Demmel Fa 2001 

Review: BLAS 3 (Blocked) GEPP 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 
     end = ib + b-1                … Point to end of block of b columns  
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     
                                       … apply delayed updates with single matrix-multiply 
                                       … with inner dimension b 

BLAS 3 



CS267  Dense Linear Algebra I.21 Demmel Fa 2001 

Review: Row and Column Block Cyclic Layout 

processors and matrix blocks 
are distributed in a 2d array 
 
pcol-fold parallelism 
in any column, and calls to the  
BLAS2 and BLAS3 on matrices of  
size brow-by-bcol 
 
serial bottleneck is eased 
 
need not be symmetric in rows and 
columns 
 
 



CS267  Dense Linear Algebra I.22 Demmel Fa 2001 

Distributed GE with a 2D Block Cyclic Layout 

block size b in the algorithm and the block sizes brow  
and bcol in the layout satisfy b=brow=bcol.  
 
shaded regions indicate busy processors or  
communication performed. 
 
unnecessary to have a barrier between each  
step of the algorithm, e.g.. step 9, 10, and 11 can be  
pipelined 
 
 



CS267  Dense Linear Algebra I.23 Demmel Fa 2001 

Distributed GE with a 2D Block Cyclic Layout 



CS267  Dense Linear Algebra I.24 Demmel Fa 2001 

M
at

rix
 m

ul
tip

ly
 o

f 

 g
re

en
 =

 g
re

en
 - 

bl
ue

 * 
pi

nk
 



CS267  Dense Linear Algebra I.25 Demmel Fa 2001 


