CS240A: Computation on Graphs

Graphs and Sparse Matrices
« Sparse matrix is a representation of a (sparse) graph

3
1 1 2 |

Y

« Matrix entries can be just 1's, or edge weights
« Diagonal can represent self-loops or vertex weights
* Nnz per row (off diagonal) is vertex out-degree

A N A W N -

Sparse matrix data structure (stored by rows, CSR)

Va|ue:‘ 31 ‘ 93 ‘ 99 ‘ 41 ‘ 26 ‘

31| 0 | 53 —_—
col:‘1‘3‘2‘1‘2‘
0 1591 0
411261 0
rowstart: |_1 ‘ 3 ‘ 4 ‘ 64‘
. Full storage: Sparse storage:
. 2-dimensional array of * compressed storage by
Y rows (CSR)

real or complex numbers

. * three 1-dimensional arrays
* (nrows*ncols) memory

* (2*nzs + ncols + 1) memory
 similarly, CSC

Compressed graph data structure (CSR)

Like matrix CSR, but indices & vertex numbers start at 0

wor [T o 2]]]2]

firstnbr: [0‘2‘5‘6‘7‘
CSR graph storage:

 three 1-dimensional arrays
» digraph: ne + nv + 1 memory

 undirected graph: 2*ne + nv + 1 memory;
edge {v,w} appears once for v, once for w

« firstnbr[0] = O; for a digraph, firstnbr[nv] = ne

2 3

Graph (or sparse matrix) in distributed memory, CSR

. 1 3123]1

31141]59] 26| 53

lT/'/'/'

| 1 &

Row-wise decomposition

Each processor stores:

« # of local edges (nonzeros)
* range of local vertices (rows)
« edges (nonzeros) in CSR form

Alternative: 2D decomposition

Large graphs are everywhere...

Internet structure Scientific datasets: biological, chemical,
Social interactions cosmological, ecological, ...

WWW snapshot, courtesy Y. Hyun Yeast protein interaction network, courtesy H. Jeong

UCSB

Node-to-node searches in graphs ...

* Who are my friends’ friends?

« How many hops from A to B? (six degrees of Kevin Bacon)
« What's the shortest route to Las Vegas?

* Am | related to Abraham Lincoln?

 Who likes the same movies | do, and what other movies do
they like?

« See breadth-first search example slides

Social Network Analysis in Matlab: 1993

¢ 0BV BEL R QBN T A
S L
. BR% S O THFES &
oy ¢ S8& Co-author graph
70,55 e from 1993
5, TR rom
27 “Bwiwee Householder
33%?3 ot g2 i
5o Ve Symposium
S
Sy S
RizAg @n id
mosdies
) e
xemsie\%mgg‘} S&‘gderﬁc
\@ \lﬁ'ﬂé ng
}iaﬁp\;\i.\ '[7 f%@,ﬁ
e Lhanlt s
\? "‘\&&/\ &6 e{?ﬂfﬁ &
RAR NS 250,00 "ohy,
R s T
@*’f)@ N e O
g 5 ISRuEQZOZEY o30S
=7

Social network analysis

Applications

Network Vulnerability Analysis
Combinatorial Algorithms

Betweenness Centrality || Graph Clustering

Parallel Combinatorial BLAS

m SpRef/SpAsgn SpMV SpAdd

A typical software stack for an
application enabled with the
Combinatorial BLAS

Betweenness Centrality (BC)

Cg(v): Among all the shortest
paths, what fraction of them pass
through the node of interest?

Cpv)=) 7(v)

stvgtcy Ost
sF#Ft

Brandes’ algorithm

UCSB

A graph problem: Maximal Independent Set

» Graph with vertices V ={1,2,...,n}

 Aset S of vertices is independent if no
two vertices in S are neighbors.

* Anindependent set S is maximal if it is
Impossible to add another vertex and

stay independent
| O J°
* An independent set S is maximum
if no other independent set has more
vertices

* Finding a maximum independent set is The set of red vertices
intractably difficult (NP-hard) S = {4, 5} is independent

« Finding a maximal independent set is and is maximal
easy, at least on one processor. but not maximum

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton/{
if (v has no neighbor in S) {
addvto S

o o kL h o~

S={1,5,6}

work ~ O(n), but span ~O(n) and
parallelism ~O(1)

Parallel, Randomized MIS Algorithm [Luby]

1

2
3
4
3
6.
7
8
9
1

0.}

. S=emptyset; C=YV,
while C is not empty {

label each v in C with a random r(v);*
for all vin C in parallel { 5 ‘
if r(v) < min(r(neighbors of v)) {
move v from C to S;

remove neighbors of v from C;

* (simplified version with some details omitted)

S={}
C={1,2,3,4,5,6,7,8)

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all vin C in parallel { 5 ‘ b‘ 6
5 if r(v) < min(r(neighbors of v)) {

6. move Vv from C to S;

7 remove neighbors of v from C;

g } S={}

9 } C={1,2,3,4,5,6,7,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v); s g
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
3 } S={}
9 } C={1,2,3,4,5,6,7,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v); s g
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
3 } S={1,5}
9 } C={6,8}
10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5())6
3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S; 1.8

7 remove neighbors of v from C;

3 } S={1,5}

9 } C={6,8}

10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 57
4 for all vin C in parallel { 5() OL
3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S; 1.8

7 remove neighbors of v from C;

3 } $={1,5,8}

0.) c={}

10. }

Parallel, Randomized MIS Algorithm [Luby]

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v);

4 for all vin C in parallel { 5 ‘ b‘ 6

3 if r(v) < min(r(neighbors of v)) {

6. move v from C to S;

7 remove neighbors of v from C;

3 } Theorem: This algorithm
“very probably” finishes

9 } within O(log n) rounds.

10. } work ~ O(n log n), but span ~O(log? n),

so parallelism ~O(n/log n)

Connected components of undirected graph

* Sequential: use any search (BFS, DFS, etc.); work O(nv+ne):

1. for vertexv=1ton

2. if (v is not labeled)

3. search from v to label a component

- Parallel:
« Various heuristics using BFS, e.g. “bully algorithm™ (Berry et al.
paper); most with worst-case span O(n) but okay in practice.

 Linking / pointer-jumping algorithms with theoretical span O(log n)
or O(log? n) (Greiner paper).

Strongly connected components

.—\
o OoNn
o~

O W ol N AN -
®
o
®
® ®
®

* Symmetric permutation to block triangular form

* Find P in linear time by depth-first search [Tarjan]

Strongly Connected Components

¥ 10 RMAT strongly connected components

10F

nz = 9163095 5

Strongly connected components of directed graph

« Sequential: depth-first search (Tarjan paper); work O(nv+ne).
* DFS seems to be inherently sequential.

» Parallel: divide-and-conquer and BFS (Fleischer et al. paper);
worst-case span O(n) but good in practice on many graphs.

Laplacian Matrix

 Definition: The Laplacian matrix L(G) of a graph G(N,E)
is an |N| by [N| symmetric matrix, with one row and
column for each node. It is defined by

* L(G) (i,i) = degree of node | (number of incident edges)
* L(G) (i,j) =-1ifi!=jand there is an edge (i,j)
* L(G) (i,j) = 0 otherwise

1 4 (2 -1-10 0)
G M LG)=1 1210 0
=2 3 5 1 -14

Properties of Laplacian Matrix

« Theorem: L(G) has the following properties
* L(G) is symmetric.

» This implies the eigenvalues of L(G) are real,
and its eigenvectors are real and orthogonal.

e Rows of L sum to zero:

 Lete=[1,...,1]7, i.e. the column vector of all ones.
Then L(G)*e=0.

* The eigenvalues of L(G) are nonnegative:
c 0= <=A2<=..<=p

* The number of connected components of G is equal
to the number of A that are O.

EXTRA SLIDES

Top 500 List (November 2010)

Top500 Benchmark:

Solve a large system
of linear equations
by Gaussian elimination

P

A

L

xN\U

Rank

)

Site

National
Supercomputing
Center in Tianjin
China

DOE/SC/Oak Ridge
National Laboratory
United States

National
Supercomputing
Centre in Shenzhen
(NSCS)

China

GSIC Center, Tokyo
Institute of
Technology

Japan

DCE/SC
/LBNL/NERSC
United States

Computer/Year
Vendor

Tianhe-1A - NUDT TH
MPP, X5670 2.93Gnz
6C, NVIDIA GPU,
FT-1000 8C/ 2010
NUDT

Jaguar - Cray XT5-HE
Opteron B-core 2.6 GHz /
2009

Cray Inc.

Nebulae - Dawning
TC3600 Blade, Int=l
X5650, NVidia Tesla
C2050 GPU/s 2010
Dawning

TSUBAME 20 - HP
Proliant SL380s G7
Xeon 6C X5870, Nvdia
GPU, Linux'Windows /
2010

NEC/HP

Hopper - Cray XEB
12-core 2.1 GHz/ 2010
Cray Inc.

Cores

186368

24182

120640

73278

153408

SUPERCOMPUTER SITES

Rnnx

2566.00

1759.00

1271.00

1182.00

1054.00

Graph 500 List (November 2010)

Graph500
Benchmark:

Breadth-first search
In a large
power-law graph

GR

Rank Machine Owner Prg:)zlgm TEPS
1 DOE/SC/ANL Intrepid (IBM BlueGene/P, 8192 |[Argonne National Scale 36 6
of 40960 nodes / 32k of 163840 cores) Laboratory (Medium) ||GE/s
2 [Franklin (Cray XT4, 500 of 9544 nodes) NERSC (szzl‘;ﬂ Iggs
Pacific Northwest Scale 29 1.2
3| cougana (128 node Cray XMT) National Laboratory |Mini) |GEls
Sandia National Scale 29 1.17
4 ||graphstorm (128 node Cray XMT) Laboratories (Mini) GEls
Endeavor (256 node, 512 core Westmere . Scale 29 533
> ¥56702.83, 1B network) e Coporation i) ’ME/s
Oak Ridge National Scale 29 50.5
6 |Erdos (64 node Cray XMT) Laborat g; (Mini ’ME/s
- Red Sky (Nehalem X5570 @2.93 GHz, IB Sandia National Scale 28 75
Torus, 512 processors) Laboratories (Toy++) ME/s
5 Nouar (Cray XTSHE S12nodesubset) |y S0 ST m
Endeavor (128 node, 256 core Westmere ' Scale 26 15.8
¥ 1¥5670233, 1B network) el Coporation | 7oy ’:nas

Floating-Point vs. Graphs

2.5 Petaflops 6.6 Gigateps

SN

2.5 Peta / 6.6 Giga is about 380,000!

Betweenness centrality

BC example from Robinson slides

BC sequential algorithm from Brandes paper

BC demo

Several potential sources of parallelism in BC

Characteristics of graphs

Vertex degree histogram
Average shortest path length
Clustering coefficient
¢ = 3*(# triangles) / (# connected triples)
Separator size
Gaussian elimination fill (chordal completion size)

Finite element meshes
Circuit simulation graphs
Relationship network graphs
Erdos-Renyi random graphs
Small world graphs

Power law graphs

RMAT graph generator

RMAT Approximate Power-Law Graph

2566897

- 192673

- 1268449

5 10 15 20 25 30
Matrix nr= 32768, nc = 32768, nnz = 12140477
Bucket nnz: max = 256897, min = 35, avg = 11855.9, total = 12140477, max/avyg = 22

Strongly Connected Components

¥ 10 RMAT strongly connected components

10F

nz = 9163095 5

Graph partitioning

Assigns subgraphs to processors

Determines parallelism and locality.

Tries to make subgraphs all same size (load balance)
Tries to minimize edge crossings (communication).
Exact minimization is NP-complete.

edge crossings = 6 edge crossings = 10

36

Sparse Matrix-Vector Multiplication

Partitioning a Sparse Symmetric Matrix

Clustering benchmark graph

Example: Web graph and matrix

1 2 3 4 5 6 7
o o

N o g b WN =
®
®

- Web page = vertex
* Link = directed edge
» Link matrix: Ay =1 if page i links to page]

Web graph: PageRank (Google) [Brin, Page]

An important page is one that
many important pages point to.

« Markov process: follow a random link most of the time;
otherwise, go to any page at random.

* Importance = stationary distribution of Markov process.

* Transition matrix is p*A + (1-p)*ones(size(A)),
scaled so each column sums to 1.

* Importance of page i is the i-th entry in the principal
eigenvector of the transition matrix.

» But the matrix is 1,000,000,000,000 by 1,000,000,000,000.

A Page Rank Matrix

° Importance ranking
of web pages

*Stationary distribution
of a Markov chain

Power method: matvec
and vector arithmetic

*Matlab*P page ranking
demo (from SC’ 03) on
a web crawl of mit.edu
(170,000 pages)

Social Network Analysis in Matlab: 1993

¢ 0BV BEL R QBN T A
S L
. BR% S O THFES &
oy ¢ S8& Co-author graph
70,55 e from 1993
5, TR rom
27 “Bwiwee Householder
33%?3 ot g2 i
5o Ve Symposium
S
Sy S
RizAg @n id
mosdies
) e
xemsie\%mgg‘} S&‘gderﬁc
\@ \lﬁ'ﬂé ng
}iaﬁp\;\i.\ '[7 f%@,ﬁ
e Lhanlt s
\? "‘\&&/\ &6 e{?ﬂfﬁ &
RAR NS 250,00 "ohy,
R s T
@*’f)@ N e O
g 5 ISRuEQZOZEY o30S
=7

Social Network Analysis in Matlab: 1993

Sparse Adjacency Matrix Which author has
the most collaborators?

>>[count,author] = max(sum(a))
count = 32
author =1

>>name (author, :)
ans = Golub

100 §

u L] - o l.- o L] - - L N 1 l..l
10 20 30 40 50 60 70 80 90 100
nr=104, nc =104, nnz = 526

Social Network Analysis in Matlab: 1993

Have Gene Golub and Cleve Moler ever been coauthors?
>> A (Golub,Moler)
ans = 0
No.
But how many coauthors do they have in common?
>> AA = AN2;
>> AA (Golub,Moler)
ans = 2
And who are those common coauthors?
>> name(find (A(:,Golub) .* A(:,Moler)), :)
ans =
Wilkinson
VanLoan

Breadth-First Search: Sparse mat * vec

o o
o O
® O ® O
o o o ®
o o o
o ® O
o o
Al X

* Multiply by adjacency matrix - step to neighbor vertices
« Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

° ° o
o0
oo oo o
° ° o o 2 |o
° o o
e oo
° °
AT X Alx

* Multiply by adjacency matrix - step to neighbor vertices
« Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

° ° ° o
o0 S
oo oo ° o
° ° ol [2 |0/ 2> |o
° o o
o oo S
° °
Al X ATx (A1)°x

* Multiply by adjacency matrix - step to neighbor vertices
« Work-efficient implementation from sparse data structures

