CS240A: Computation on Graphs

Graphs and Sparse Matrices

• Sparse matrix is a representation of a (sparse) graph

- Matrix entries can be just 1's, or edge weights
- Diagonal can represent self-loops or vertex weights
- Nnz per row (off diagonal) is vertex out-degree

Sparse matrix data structure (stored by rows, CSR)

- Full storage:
 - 2-dimensional array of real or complex numbers
 - (nrows*ncols) memory

- Sparse storage:
 - compressed storage by rows (CSR)
 - three 1-dimensional arrays
 - (2*nzs + ncols + 1) memory
 - similarly, CSC

Compressed graph data structure (CSR)

Like matrix CSR, but indices & vertex numbers start at 0

CSR graph storage:

- three 1-dimensional arrays
- digraph: ne + nv + 1 memory
- undirected graph: 2*ne + nv + 1 memory; edge {v,w} appears once for v, once for w
- firstnbr[0] = 0; for a digraph, firstnbr[nv] = ne

Graph (or sparse matrix) in distributed memory, CSR

Alternative: 2D decomposition

Large graphs are everywhere...

Internet structure Social interactions Scientific datasets: biological, chemical, cosmological, ecological, ...

WWW snapshot, courtesy Y. Hyun

Yeast protein interaction network, courtesy H. Jeong

Node-to-node searches in graphs ...

- Who are my friends' friends?
- How many hops from A to B? (six degrees of Kevin Bacon)
- What's the shortest route to Las Vegas?
- Am I related to Abraham Lincoln?
- Who likes the same movies I do, and what other movies do they like?
- • •
- See breadth-first search example slides

Co-author graph from 1993 Householder symposium

Social network analysis

Applications						
Community	Detection	Network Vulnerability Analysis				
Combinatorial Algorithms						
Betweenness Centrality		Graph Clustering		Contraction		
Parallel Combinatorial BLAS						
SpGEMM	SpRef/Sp	Asgn	SpMV	SpAdd		

A typical software stack for an application enabled with the Combinatorial BLAS

Betweenness Centrality (BC)

 $C_B(v)$: Among all the shortest paths, what fraction of them pass through the node of interest?

$$C_B(v) = \sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Brandes' algorithm

A graph problem: Maximal Independent Set

- Graph with vertices V = {1,2,...,n}
- A set S of vertices is independent if no two vertices in S are neighbors.
- An independent set S is maximal if it is impossible to add another vertex and stay independent
- An independent set S is maximum if no other independent set has more vertices
- Finding a *maximum* independent set is intractably difficult (NP-hard)
- Finding a *maximal* independent set is easy, at least on one processor.

The set of red vertices S = {4, 5} is *independent* and is *maximal* but not *maximum*

8

- 1. S = empty set;
- 2. for vertex v = 1 to n {
- 3. if (v has no neighbor in S) {
- 4. add v to S
- 5. }
- 6. }

S = { }

- 1. S = empty set;
- 2. for vertex v = 1 to n {
- 3. if (v has no neighbor in S) {
- 4. add v to S
- 5. }
- 6. }

S = { 1 }

- 1. S = empty set;
- 2. for vertex v = 1 to n {
- 3. if (v has no neighbor in S) {
- 4. add v to S
- 5. }
- 6. }

S = { 1, 5 }

- 1. S = empty set;
- 2. for vertex v = 1 to n {
- 3. if (v has no neighbor in S) {
- 4. add v to S
- 5. }
- 6. }

S = { 1, 5, 6 }

work ~ O(n), but *span* ~O(n) and *parallelism* ~O(1)

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);*
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9.
- 10. }

* (simplified version with some details omitted)

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9. }

10. }

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9. }

10. }

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v))
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9. }

10. }

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9. }
- 10. }

 $S = \{ 1, 5 \}$

C = { 6, 8 }

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;
- 7. remove neighbors of v from C;
- 8. }
- 9.
- 10. }

- 1. S = empty set; C = V;
- 2. while C is not empty {
- 3. label each v in C with a random r(v);
- 4. for all v in C in parallel {
- 5. if r(v) < min(r(neighbors of v)) {
- 6. move v from C to S;

}

}

7. remove neighbors of v from C;

<u>Theorem</u>: This algorithm "very probably" finishes within O(log n) rounds.

8

10. }

8.

9.

work ~ O(n log n), but span ~O(log² n),
 so parallelism ~O(n/log n)

5

Connected components of undirected graph

• Sequential: use any search (BFS, DFS, etc.); work O(nv+ne):

1.	for vertex $v = 1$ to n
2.	if (v is not labeled)
3.	search from v to label a component

- Parallel:
 - Various heuristics using BFS, e.g. "bully algorithm" (Berry et al. paper); most with worst-case span O(n) but okay in practice.
 - Linking / pointer-jumping algorithms with theoretical span O(log n) or O(log² n) (Greiner paper).

Strongly connected components

- Symmetric permutation to block triangular form
- Find P in linear time by depth-first search [Tarjan]

Strongly Connected Components

Strongly connected components of directed graph

- Sequential: depth-first search (Tarjan paper); work O(nv+ne).
- DFS seems to be inherently sequential.
- Parallel: divide-and-conquer and BFS (Fleischer et al. paper); worst-case span O(n) but good in practice on many graphs.

Laplacian Matrix

- Definition: The Laplacian matrix L(G) of a graph G(N,E) is an |N| by |N| symmetric matrix, with one row and column for each node. It is defined by
 - L(G) (i,i) = degree of node I (number of incident edges)
 - L(G) (i,j) = -1 if i != j and there is an edge (i,j)
 - L(G) (i,j) = 0 otherwise

$$\mathbf{G} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \mathbf{L}(\mathbf{G}) = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Properties of Laplacian Matrix

- *Theorem:* L(G) has the following properties
 - L(G) is symmetric.
 - This implies the eigenvalues of L(G) are real, and its eigenvectors are real and orthogonal.
 - Rows of L sum to zero:
 - Let e = [1,...,1]^T, i.e. the column vector of all ones. Then L(G)*e=0.
 - The eigenvalues of L(G) are nonnegative:
 - $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$
 - The number of connected components of G is equal to the number of λ_i that are 0.

EXTRA SLIDES

Top 500 List (November 2010)

Top500 Benchmark:

Solve a large system of linear equations by Gaussian elimination

Rank	Site	Vendor	Cores	Rmax
1	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT TH MPP, X5870 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C / 2010 NUDT	186368	2566.00
2	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz / 2009 Cray Inc.	224162	1759.00
3	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00
4	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows / 2010 NEC/HP	73278	1192.00
5	DOE/SC /LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz / 2010 Cray Inc.	153408	1054.00

Computer/Year

Graph 500 List (November 2010)

<u>Graph500</u> Benchmark:

Breadth-first search in a large power-law graph

Rank	Machine	Owner	Problem Size	TEPS
1	DOE/SC/ANL Intrepid (IBM BlueGene/P, 8192 of 40960 nodes / 32k of 163840 cores)	Argonne National Laboratory	Scale 36 (Medium)	6.6 GE/s
2	Franklin (Cray XT4, 500 of 9544 nodes)	NERSC	Scale 32 (Small)	5.22 GE/s
3	cougarxmt (128 node Cray XMT)	Pacific Northwest National Laboratory	Scale 29 (Mini)	1.22 GE/s
4	graphstorm (128 node Cray XMT)	Sandia National Laboratories	Scale 29 (Mini)	1.17 GE/s
5	Endeavor (256 node, 512 core Westmere X5670 2.93, IB network)	Intel Corporation	Scale 29 (Mini)	533 ME/s
6	Erdos (64 node Cray XMT)	Oak Ridge National Laboratory	Scale 29 (Mini)	50.5 ME/s
7	Red Sky (Nehalem X5570 @2.93 GHz, IB Torus, 512 processors)	Sandia National Laboratories	Scale 28 (Toy++)	477.5 ME/s
8	Jaguar (Cray XT5-HE, 512 node subset)	Oak Ridge National Laboratory	Scale 27 (Toy+)	800 ME/s
9	Endeavor (128 node, 256 core Westmere X5670 2.93, IB network)	Intel Corporation	Scale 26 (Toy)	615.8 ME/s

Floating-Point vs. Graphs

2.5 Peta / 6.6 Giga is about 380,000!

Betweenness centrality

- BC example from Robinson slides
- BC sequential algorithm from Brandes paper
- BC demo
- Several potential sources of parallelism in BC

Characteristics of graphs

- Vertex degree histogram
- Average shortest path length
- Clustering coefficient
 - c = 3*(# triangles) / (# connected triples)
- Separator size
- Gaussian elimination fill (chordal completion size)
- Finite element meshes
- Circuit simulation graphs
- Relationship network graphs
- Erdos-Renyi random graphs
- Small world graphs
- Power law graphs
- RMAT graph generator

RMAT Approximate Power-Law Graph

Strongly Connected Components

Graph partitioning

- Assigns subgraphs to processors
- Determines parallelism and locality.
- Tries to make subgraphs all same size (load balance)
- Tries to minimize edge crossings (communication).
- Exact minimization is NP-complete.

edge crossings = 6

edge crossings = 10

Sparse Matrix-Vector Multiplication

Partitioning a Sparse Symmetric Matrix

Clustering benchmark graph

Example: Web graph and matrix

- Web page = vertex
- Link = directed edge
- Link matrix: A_{ii} = 1 if page i links to page j

Web graph: PageRank (Google)

[Brin, Page]

An important page is one that many important pages point to.

- Markov process: follow a random link most of the time; otherwise, go to any page at random.
- Importance = stationary distribution of Markov process.
- Transition matrix is p*A + (1-p)*ones(size(A)), scaled so each column sums to 1.
- Importance of page i is the i-th entry in the principal eigenvector of the transition matrix.
- But the matrix is 1,000,000,000,000 by 1,000,000,000,000.

A Page Rank Matrix

- Importance ranking of web pages
- •Stationary distribution of a Markov chain
- Power method: matvec and vector arithmetic
- Matlab*P page ranking demo (from SC' 03) on a web crawl of mit.edu (170,000 pages)

Co-author graph from 1993 Householder symposium

Sparse Adjacency Matrix

Which author has the most collaborators?

>>[count,author] = max(sum(A))
count = 32
author = 1

>>name(author,:)
ans = Golub

Have Gene Golub and Cleve Moler ever been coauthors?

```
>> A(Golub,Moler)
```

ans = 0

No.

But how many coauthors do they have in common?

>> AA = A^2;
>> AA(Golub,Moler)
ans = 2
And who are those common coauthors?

```
>> name( find ( A(:,Golub) .* A(:,Moler) ), :)
ans =
Wilkinson
VanLoan
```

Breadth-First Search: Sparse mat * vec

- Multiply by adjacency matrix \rightarrow step to neighbor vertices
- Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

- Multiply by adjacency matrix \rightarrow step to neighbor vertices
- Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

- Multiply by adjacency matrix \rightarrow step to neighbor vertices
- Work-efficient implementation from sparse data structures