
CS240A: Computation on Graphs

Graphs and Sparse Matrices

1 1 1

2 1 1 1

3 1 1 1

4 1 1

5 1 1

6 1 1

 1 2 3 4 5 6

3

6

2

1

5

4

•  Sparse matrix is a representation of a (sparse) graph

•  Matrix entries can be just 1’s, or edge weights
•  Diagonal can represent self-loops or vertex weights
•  Nnz per row (off diagonal) is vertex out-degree

•  Full storage:
•  2-dimensional array of

real or complex numbers
•  (nrows*ncols) memory

31 0 53

0 59 0

41 26 0

31 53 59 41 26

1 3 2 1 2

•  Sparse storage:
•  compressed storage by

rows (CSR)
•  three 1-dimensional arrays
•  (2*nzs + ncols + 1) memory
•  similarly, CSC

1 3 4 6

value:

col:

rowstart:

Sparse matrix data structure (stored by rows, CSR)

1 2 0 2 3 3 2

CSR graph storage:
•  three 1-dimensional arrays
•  digraph: ne + nv + 1 memory
•  undirected graph: 2*ne + nv + 1 memory;

edge {v,w} appears once for v, once for w
•  firstnbr[0] = 0; for a digraph, firstnbr[nv] = ne

 0 2 5 6 7

nbr:

firstnbr:

Compressed graph data structure (CSR)

Like matrix CSR, but indices & vertex numbers start at 0

2

0 1

3

P0 �

P1 �

P2 �

Pn �

5941 532631

23 131

Row-wise decomposition
Each processor stores:

•  # of local edges (nonzeros)
•  range of local vertices (rows)
•  edges (nonzeros) in CSR form

Alternative: 2D decomposition

Graph (or sparse matrix) in distributed memory, CSR

Large graphs are everywhere…

WWW snapshot, courtesy Y. Hyun Yeast protein interaction network, courtesy H. Jeong

 Internet structure
 Social interactions

 Scientific datasets: biological, chemical,
cosmological, ecological, …

Node-to-node searches in graphs …

•  Who are my friends’ friends?
•  How many hops from A to B? (six degrees of Kevin Bacon)
•  What’s the shortest route to Las Vegas?
•  Am I related to Abraham Lincoln?
•  Who likes the same movies I do, and what other movies do

they like?
•  . . .

•  See breadth-first search example slides

Social Network Analysis in Matlab: 1993

Co-author graph
from 1993

Householder
symposium

Social network analysis

Betweenness Centrality (BC)
CB(v): Among all the shortest
paths, what fraction of them pass
through the node of interest?

Brandes’ algorithm

A typical software stack for an
application enabled with the
Combinatorial BLAS

A graph problem: Maximal Independent Set

1

8 7
6 5

4 3

2

•  Graph with vertices V = {1,2,…,n}

•  A set S of vertices is independent if no
 two vertices in S are neighbors.

•  An independent set S is maximal if it is
 impossible to add another vertex and
 stay independent

•  An independent set S is maximum
 if no other independent set has more
 vertices

•  Finding a maximum independent set is
 intractably difficult (NP-hard)

•  Finding a maximal independent set is
 easy, at least on one processor.

The set of red vertices
S = {4, 5} is independent

and is maximal
but not maximum

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1 }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1, 5 }

Sequential Maximal Independent Set Algorithm

1

8 7
6 5

4 3

2 1.  S = empty set;

2.  for vertex v = 1 to n {

3.  if (v has no neighbor in S) {

4.  add v to S

5.  }

6.  }

S = { 1, 5, 6 }

work ~ O(n), but span ~O(n) and
parallelism ~O(1)

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);*

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

 * (simplified version with some details omitted)

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { }

C = { 1, 2, 3, 4, 5, 6, 7, 8 }

2.6 4.1

5.9 3.1

1.2
5.8

9.3 9.7

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5 }

C = { 6, 8 }

2.6 4.1

5.9 3.1

1.2
5.8

9.3 9.7

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5 }

C = { 6, 8 }

2.7

1.8

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

S = { 1, 5, 8 }

C = { }

2.7

1.8

Parallel, Randomized MIS Algorithm [Luby]

1

8 7
6 5

4 3

2 1.  S = empty set; C = V;

2.  while C is not empty {

3.  label each v in C with a random r(v);

4.  for all v in C in parallel {

5.  if r(v) < min(r(neighbors of v)) {

6.  move v from C to S;

7.  remove neighbors of v from C;

8.  }

9.  }

10.  }

Theorem: This algorithm
“very probably” finishes
within O(log n) rounds.

work ~ O(n log n), but span ~O(log2 n),
so parallelism ~O(n/log n)

Connected components of undirected graph

•  Sequential: use any search (BFS, DFS, etc.); work O(nv+ne):

•  Parallel:
•  Various heuristics using BFS, e.g. “bully algorithm” (Berry et al.

paper); most with worst-case span O(n) but okay in practice.
•  Linking / pointer-jumping algorithms with theoretical span O(log n)

or O(log2 n) (Greiner paper).

1.  for vertex v = 1 to n

2.  if (v is not labeled)

3.  search from v to label a component

1 5 2 4 7 3 6
1

5

2
4
7

3
6

Strongly connected components

•  Symmetric permutation to block triangular form

•  Find P in linear time by depth-first search [Tarjan]

1 2

3

4 7

6

5

Strongly Connected Components

Strongly connected components of directed graph

•  Sequential: depth-first search (Tarjan paper); work O(nv+ne).

•  DFS seems to be inherently sequential.

•  Parallel: divide-and-conquer and BFS (Fleischer et al. paper);
worst-case span O(n) but good in practice on many graphs.

Laplacian Matrix
•  Definition: The Laplacian matrix L(G) of a graph G(N,E)

is an |N| by |N| symmetric matrix, with one row and
column for each node. It is defined by
•  L(G) (i,i) = degree of node I (number of incident edges)
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j)
•  L(G) (i,j) = 0 otherwise

2 -1 -1 0 0 	

-1 2 -1 0 0	

-1 -1 4 -1 -1	

0 0 -1 2 -1	

0 0 -1 -1 2	

1	

2	

 3	

4	

5	

G
=	

L(G) =	

Properties of Laplacian Matrix
•  Theorem: L(G) has the following properties

•  L(G) is symmetric.
•  This implies the eigenvalues of L(G) are real,

and its eigenvectors are real and orthogonal.

•  Rows of L sum to zero:
•  Let e = [1,…,1]T, i.e. the column vector of all ones.

Then L(G)*e=0.

•  The eigenvalues of L(G) are nonnegative:
•  0 = λ1 <= λ2 <= … <= λn

•  The number of connected components of G is equal
to the number of λi that are 0.

EXTRA SLIDES

Top 500 List (November 2010)

=	

 x P	

A L	

 U

Top500 Benchmark:
Solve a large system
of linear equations

by Gaussian elimination

Graph 500 List (November 2010)

Graph500
Benchmark:

Breadth-first search
in a large

power-law graph

1 2

3

4 7

6

5

Floating-Point vs. Graphs

=	

 x P	

 A L	

 U	

1 2

3

4 7

6

5

2.5 Peta / 6.6 Giga is about 380,000!

2.5 Petaflops 6.6 Gigateps

Betweenness centrality

•  BC example from Robinson slides

•  BC sequential algorithm from Brandes paper

•  BC demo

•  Several potential sources of parallelism in BC

Characteristics of graphs
•  Vertex degree histogram
•  Average shortest path length
•  Clustering coefficient

•  c = 3*(# triangles) / (# connected triples)
•  Separator size
•  Gaussian elimination fill (chordal completion size)

•  Finite element meshes
•  Circuit simulation graphs
•  Relationship network graphs
•  Erdos-Renyi random graphs
•  Small world graphs
•  Power law graphs
•  RMAT graph generator

RMAT Approximate Power-Law Graph

Strongly Connected Components

36

Graph partitioning

•  Assigns subgraphs to processors
•  Determines parallelism and locality.
•  Tries to make subgraphs all same size (load balance)
•  Tries to minimize edge crossings (communication).
•  Exact minimization is NP-complete.

edge crossings = 6 edge crossings = 10

Sparse Matrix-Vector Multiplication

Clustering benchmark graph

Example: Web graph and matrix

•  Web page = vertex

•  Link = directed edge

•  Link matrix: Aij = 1 if page i links to page j

1 2

3

4 7

6

5

1 5 2 3 4 6 7
1

5

2
3
4

6
7

Web graph: PageRank (Google) [Brin, Page]

•  Markov process: follow a random link most of the time;
otherwise, go to any page at random.

•  Importance = stationary distribution of Markov process.
•  Transition matrix is p*A + (1-p)*ones(size(A)),

scaled so each column sums to 1.
•  Importance of page i is the i-th entry in the principal

eigenvector of the transition matrix.
•  But the matrix is 1,000,000,000,000 by 1,000,000,000,000.

An important page is one that
many important pages point to.

A Page Rank Matrix

•  Importance ranking
 of web pages

• Stationary distribution
 of a Markov chain

• Power method: matvec
 and vector arithmetic

• Matlab*P page ranking
 demo (from SC’03) on
 a web crawl of mit.edu
 (170,000 pages)

Social Network Analysis in Matlab: 1993

Co-author graph
from 1993

Householder
symposium

Social Network Analysis in Matlab: 1993

 Which author has

the most collaborators?

>>[count,author] = max(sum(A))
 count = 32
 author = 1

>>name(author,:)
 ans = Golub

Sparse Adjacency Matrix

Social Network Analysis in Matlab: 1993

Have Gene Golub and Cleve Moler ever been coauthors?
 >> A(Golub,Moler)
 ans = 0
No.
But how many coauthors do they have in common?
 >> AA = A^2;
 >> AA(Golub,Moler)
 ans = 2
And who are those common coauthors?
 >> name(find (A(:,Golub) .* A(:,Moler)), :)
 ans =
 Wilkinson
 VanLoan

Breadth-First Search: Sparse mat * vec

x	

 ATx	

1 2

3

4 7

6

5

AT	

à

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

x	

 ATx	

1 2

3

4 7

6

5

AT	

à

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

Breadth-First Search: Sparse mat * vec

AT	

1 2

3

4 7

6

5

(AT)2x	

à à

x	

 ATx	

•  Multiply by adjacency matrix à step to neighbor vertices
•  Work-efficient implementation from sparse data structures

