
CS240A: Computation on Graphs 



Graphs and Sparse Matrices  
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•  Sparse matrix is a representation of a (sparse) graph 

•  Matrix entries can be just 1’s, or edge weights 
•  Diagonal can represent self-loops or vertex weights 
•  Nnz per row (off diagonal) is vertex out-degree 



•  Full storage:    
•  2-dimensional array of 

real or complex numbers 
•  (nrows*ncols) memory 
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•  Sparse storage:  
•  compressed storage by 

rows (CSR) 
•  three 1-dimensional arrays 
•  (2*nzs + ncols + 1) memory 
•  similarly, CSC 
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Sparse matrix data structure (stored by rows, CSR) 
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CSR graph storage:  
•  three 1-dimensional arrays 
•  digraph:  ne + nv + 1 memory  
•  undirected graph: 2*ne + nv + 1 memory;  

edge {v,w} appears once for v, once for w 
•  firstnbr[0] = 0; for a digraph, firstnbr[nv] = ne 
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Compressed graph data structure (CSR) 

Like matrix CSR, but indices & vertex numbers start at 0 
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Row-wise decomposition 
Each processor stores: 
 

•   # of local edges (nonzeros) 
•   range of local vertices (rows) 
•   edges (nonzeros) in CSR form 

Alternative:  2D decomposition  

Graph (or sparse matrix) in distributed memory, CSR 



Large graphs are everywhere… 

WWW snapshot, courtesy Y. Hyun Yeast protein interaction network, courtesy H. Jeong 

 Internet structure 
 Social interactions 

 Scientific datasets: biological, chemical, 
cosmological, ecological, … 
 



Node-to-node searches in graphs … 
 
 
•  Who are my friends’ friends? 
•  How many hops from A to B? (six degrees of Kevin Bacon) 
•  What’s the shortest route to Las Vegas? 
•  Am I related to Abraham Lincoln? 
•  Who likes the same movies I do, and what other movies do 

they like? 
•  . . .  

•  See breadth-first search example slides 



Social Network Analysis in Matlab: 1993 

Co-author graph  
from 1993  

Householder 
symposium 



Social network analysis 

Betweenness Centrality (BC) 
CB(v): Among all the shortest 
paths, what fraction of them pass 
through the node of interest? 

Brandes’ algorithm 

A typical software stack for an 
application enabled with the 
Combinatorial BLAS 



A graph problem:  Maximal Independent Set 
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•    Graph with vertices V = {1,2,…,n} 

•    A set S of vertices is independent if no 
    two vertices in S are neighbors. 

•    An independent set S is maximal if it is 
    impossible to add another vertex and 
    stay independent 

•    An independent set S is maximum  
    if no other independent set has more 
    vertices 

•    Finding a maximum independent set is 
    intractably difficult (NP-hard) 

•    Finding a maximal independent set is 
    easy, at least on one processor. 

  

The set of red vertices  
S = {4, 5} is independent 

and is maximal 
but not maximum 



Sequential Maximal Independent Set Algorithm 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { } 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1 } 



Sequential Maximal Independent Set Algorithm 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5 } 



Sequential Maximal Independent Set Algorithm 
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2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5, 6 } 

work ~ O(n),  but  span ~O(n) and 
parallelism ~O(1) 



Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v);* 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  }                           

        * (simplified version with some details omitted) 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 
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S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 
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Parallel, Randomized MIS Algorithm   [Luby] 
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2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 
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S = { 1, 5, 8 } 

C = { } 
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Parallel, Randomized MIS Algorithm   [Luby] 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

Theorem:  This algorithm 
“very probably” finishes 
within O(log n) rounds. 

work ~ O(n log n),  but  span ~O(log2 n), 
so parallelism ~O(n/log n) 



Connected components of undirected graph 
 
•  Sequential:  use any search (BFS, DFS, etc.); work O(nv+ne): 

•  Parallel:   
•  Various heuristics using BFS, e.g. “bully algorithm” (Berry et al. 

paper); most with worst-case span O(n) but okay in practice. 
•  Linking / pointer-jumping algorithms with theoretical span O(log n) 

or O(log2 n)   (Greiner paper). 

 

1.  for  vertex v = 1 to n  

2.      if (v is not labeled)  

3.          search from v to label a component 
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Strongly connected components 

•  Symmetric permutation to block triangular form 

•  Find P in linear time by depth-first search  [Tarjan] 
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Strongly Connected Components 



Strongly connected components of directed graph 
 
•  Sequential:  depth-first search (Tarjan paper); work O(nv+ne). 
 
•  DFS seems to be inherently sequential. 

•  Parallel: divide-and-conquer and BFS (Fleischer et al. paper); 
worst-case span O(n) but good in practice on many graphs. 



Laplacian Matrix 
•  Definition: The Laplacian matrix L(G) of a graph G(N,E) 

is an |N| by |N| symmetric matrix, with one row and 
column for each node. It is defined by 
•  L(G) (i,i) = degree of node I (number of incident edges) 
•  L(G) (i,j) = -1 if i != j and there is an edge (i,j) 
•  L(G) (i,j) = 0 otherwise 
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Properties of Laplacian Matrix 
•  Theorem: L(G) has the following properties  

•  L(G) is symmetric.  
•  This implies the eigenvalues of L(G) are real,  

and its eigenvectors are real and orthogonal. 

•  Rows of L sum to zero: 
•  Let e = [1,…,1]T, i.e. the column vector of all ones.  

Then L(G)*e=0. 

•  The eigenvalues of L(G) are nonnegative: 
•  0 = λ1 <= λ2 <= … <= λn 

•  The number of connected components of G is equal 
to the number of λi that are 0.  



 
 

EXTRA SLIDES 



Top 500 List (November 2010) 

=	

 x P	

A L	

 U

Top500  Benchmark: 
Solve a large system  
of linear equations  

by Gaussian elimination 



Graph 500 List (November 2010) 

Graph500  
Benchmark: 

Breadth-first search 
in a large  

power-law graph 
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Floating-Point  vs.  Graphs 
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2.5 Peta / 6.6 Giga  is about  380,000!  

2.5 Petaflops 6.6 Gigateps 



Betweenness centrality 
 
 
•  BC example from Robinson slides 

•  BC sequential algorithm from Brandes paper 

•  BC demo 

•  Several potential sources of parallelism in BC 



Characteristics of graphs 
•  Vertex degree histogram 
•  Average shortest path length 
•  Clustering coefficient  

•  c  =  3*(# triangles) / (# connected triples) 
•  Separator size 
•  Gaussian elimination fill (chordal completion size) 

•  Finite element meshes 
•  Circuit simulation graphs 
•  Relationship network graphs 
•  Erdos-Renyi random graphs 
•  Small world graphs 
•  Power law graphs 
•  RMAT graph generator 



RMAT Approximate Power-Law Graph 



Strongly Connected Components 
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Graph partitioning 

•  Assigns subgraphs to processors 
•  Determines parallelism and locality. 
•  Tries to make subgraphs all same size (load balance) 
•  Tries to minimize edge crossings (communication). 
•  Exact minimization is NP-complete. 

edge crossings = 6 edge crossings = 10 



Sparse Matrix-Vector Multiplication 



Clustering benchmark graph 



Example:  Web graph and matrix 

•  Web page  =  vertex 

•  Link  =  directed edge 

•  Link matrix:  Aij = 1 if page i links to page j 
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Web graph:  PageRank (Google)              [Brin, Page]  

•  Markov process:  follow a random link most of the time;  
otherwise, go to any page at random. 

•  Importance = stationary distribution of Markov process. 
•  Transition matrix is p*A + (1-p)*ones(size(A)),  

scaled so each column sums to 1. 
•  Importance of page i is the i-th entry in the principal 

eigenvector of the transition matrix. 
•  But the matrix is 1,000,000,000,000 by 1,000,000,000,000. 

An important page is one that 
many important pages point to. 



A Page Rank Matrix 

•  Importance ranking  
   of web pages 

• Stationary distribution  
   of a Markov chain 

• Power method: matvec 
   and vector arithmetic 
 
• Matlab*P page ranking 
   demo (from SC’03) on  
   a web crawl of mit.edu 
   (170,000 pages) 



Social Network Analysis in Matlab: 1993 

Co-author graph  
from 1993  

Householder 
symposium 



Social Network Analysis in Matlab: 1993 

       Which author has 
 

the most collaborators? 
 
>>[count,author] = max(sum(A)) 
  count = 32 
  author = 1 
 
>>name(author,:) 
  ans = Golub  

Sparse Adjacency Matrix 



Social Network Analysis in Matlab: 1993 

Have Gene Golub and Cleve Moler ever been coauthors? 
  >> A(Golub,Moler) 
  ans = 0 
No. 
But how many coauthors do they have in common? 
  >> AA = A^2; 
  >> AA(Golub,Moler) 
  ans = 2 
And who are those common coauthors?  
  >> name( find ( A(:,Golub) .* A(:,Moler) ), :) 
  ans = 
  Wilkinson            
  VanLoan              



Breadth-First Search: Sparse mat * vec 
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à 

•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 
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à 

•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 



Breadth-First Search: Sparse mat * vec 
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•  Multiply by adjacency matrix à step to neighbor vertices 
•  Work-efficient implementation from sparse data structures 


