Adam Lugowski

Knowledge
Discovery
Toolbox

kdt.sourceforge.net

Our users: Domain Experts

Input Interpret
relevant h Analyze
data 6P -aoh results
_datd L3 - grap)
\ j S .
q B |

Data
filtering
technologies

Graph
Viz
engine

KDT

Example workflow

Input Graph

Markov)
Clustering O N

O—o0
O—0
o9 g ©
g o}
Q
O ——0 »p (e} o) o
Q o o o
OO
OD
0
°)
o ©
e]
0
0
O——9o
o
0
O——0
g9
o}

Component

o]
0

How to target Domain Experts?

* Conceptually simple
e Customizable

* High Performance

Domain Experts

!

Algorithm Experts

!

HPC Experts

Complex methods

centrality(‘approxBC’)| |cluster(‘Markov’)
pageRank contract

Building blocks

DiGraph Mat Vec
.bfsTree,neighbor || -.SpMV -Mmax, norm,sort
.degree,subgraph || -SpGEMM .abs, any, ceil
.load,UFget .load, eye .range, ones
.+, -, sum, scale .reduce, scale ot,-, % [>,==&,[]

-+, []

Underlying infrastructure (Combinatorial BLAS)

*SpMV, SpMV_SemiRing Sparse-matrix classes/methods
*SPpGEMM, SpGEMM_SemiRing (e.g., Apply, EWiseApply, Reduce)

Why (sparse) adjacency matrices?

Traditional graph Graphs in the language of

computations linear algebra

Data driven, Fixed communication patterns
unpredictable communication

Irregular and unstructured, Operations on matrix blocks
poor locality of reference exploit memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

Example workflow

Input Graph

Markov)
Clustering O N

O—o0
O—0
o9 g ©
g o}
Q
O ——0 »p (e} o) o
Q o o o
OO
OD
0
°)
o ©
e]
0
0
O——9o
o
0
O——0
g9
o}

Component

o]
0

the variable bigG contains the input graph
find and select the giant component
comp = bigG.connComp()

1. Largest giantComp = comp.hist().argmax()
Component . . G = bigG.subgraph(comp==giantComp)

2. Markov

Clustering # cluster the graph

clus = G.cluster(’"Markov’)

3. Graph

of Clusters # contract the clusters

smallG = G.contract(clus)

[¢]

Example workflow KDT code

the variable bigG contains the input graph
find and select the giant component
comp = bigG.connComp()

giantComp = comp.hist().argmax()

G = bigG.subgraph(comp==giantComp)

cluster the graph
clus = G.cluster(’"Markov’)

contract the clusters
smallG = G.contract(clus)

GTEPS

BFS on a Scale 29 RMAT graph
(500M vertices, 8B edges)

M KDT
“ CombBLAS

1225 2500 5041

Number of cores

Machine: NERSC’s Hopper

Breadth-First Search

o @5

Breadth-First Search

" 1
® 1
1 E
1 1
@ L E
1 1
1 1
® 1

distance 1 from vertex 7

N

Breadth-First Search

distance 1 from vertex 7

out

Breadth-First Search

2 1
® 1
1 1)1
1 1
o ®s
1 1
1 1
.6 1

distance 2 from vertex 7

Breadth-First Search

distance 2 from vertex 7

in

X

out

KDT BFS routine

initialization

parents = Vec(self.nvert(), -1, sparse=False)

frontier = Vec(self.nvert(), sparse=True)

parents[root] = root

frontier[root] = root # 1°t frontier is just the root

the semiring mult and add ops simply return the 2°¢ arg
semiring = sr((lambda x,y: y), (lambda x,y: Vy))

loop over frontiers

while frontier.nnn() > O0:
frontier.spRange() # frontier[i] = 1
self.e.SpMV(frontier, semiring=semiring, inPlace=True)

remove already discovered vertices from the frontier.

frontier.eWiseApply(parents, op=(lambda f,p: f),
doOp=(lambda f,p: p == -1), inPlace=True)

update the parents

parents[frontier] = frontier

BFS comparison with PBGL

Core Count Problem Size
(Machine) Scale 19 Scale 22 Scale 24
4 PBGL 3.8 2.5 2.1
(Neumann) KDT 8.9 7.2 6.4
16 PBGL 8.9 6.3 5.9
(Neumann) KDT 33.8 27.8 25.1
128 PBGL 25.9 39.4
(Carver) KDT 237.5 262.0
256 PBGL 22.4 37.5
(Carver) KDT 327.6 473.4

Performance comparison of KDT and PBGL breadth-first search. The reported

numbers are in MegaTEPS, or 10° traversed edges per second. The graphs are
Graph500 RMAT graphs with 2s5¢@le vertices and 16*2s¢<le edges.

Plain graph

‘ ’ Connectivity only.

Edge Attributes (semantic graph)

(T, F, 0)
(F, T, 1) (T, F, 2) (T, F, 3)
(T, T, 3)
® .., @ @
(F, F, 0) (F, T, 1) (L.F.2)
class edge_attr:
ET 4 isText
‘ () ‘ 1sPhoneCall
weight

(T, T, 5)

Edge Attribute Filter

G.addEF11ter(
lTambda e: e.weight > 0)

(F, T, 1) (T, F, 2) (T, F, 3)
(T, T, 3)
e ... © @
(T, F, 2)
(F, T, 1)
class edge_attr:
ET 4 isText
‘ () ‘ 1sPhoneCall

(T. T, 5) weight

Edge Attribute Filter Stack

G.addEF11ter(
lTambda e: e.weight > 0)
G.addEF11ter(

lambda e: e.isPhonecCall)

(F, T, 1)
(T, T, 3)
® ... © ®
(F, T, 1)
class edge_attr:
ET 4 isText
‘ () ‘ 1sPhoneCall

(T. T, 5) weight

Filter implementation details

* Filter defined as a unary predicate
— operates on edge or vertex value

— written in Python
— predicates checked in order they were added

* Each KDT object maintains a stack of filter
predicates
— all operations respect filter

* enables filter-ignorant algorithm design
e enables algorithm designers to use filters

Two filter modes

* On-The-Fly filters
— predicate checked each time an operation touches
vertex or edge

 Materialized filters

— make copy of graph which excludes filtered
elements

» predicate checked only once for each element

Performance of On-The-Fly filter
vs. Materialized filter

* For restrictive filter
— OTF can be cheaper since fewer edges are touched

e corpus can be huge, but only traverse small pieces

* For non-restrictive filter
— OTF Saves space (no need to keep two large copies)

— OTF Makes each operation more computationally
expensive

texts and phone calls

draw graph
- draw(G)

Each edge has this attribute:

class edge_attr:
IsText
isPhoneCall
weight

Betweenness Centrality

bc = G.centrality(“approxBC”)
° # draw graph with node sizes
proportional to BC score
° draw(G, bc)

Betweenness Centrality on texts

O ol
(o]
(o]
90
o
0] 84 /X3
0 =)
0
(o)
© 0

BC only on text edges
G.addEFilter(

lambda e: e.isText)
bc = G.centrality(“approxBC”)
draw graph with node sizes

proportional to BC score
draw(G, bc)

Betweenness Centrality on calls

BC only on phone call edges
G.addEFilter(

lambda e: e.isPhonecCall)
bc = G.centrality(“approxBC”)
draw graph with node sizes

proportional to BC score
draw(G, bc)

SEJITS

The way to make Python fast is to not use Python.
-- Me

* Selective Embedded Just-In-Time Specialization
1. Take Python code
2. Translate it to equivalent C++ code
3. Compile with GCC
4. Call compiled version instead of Python version

BFS with SEJITS

=O=KDT ==SEJITS+KDT CombBLAS

64.00
32.00 -
16.00 -
8.00 -
4.00 -
2.00 -
1.00 -
0.50 -
0.25 . . ; . !
121 256 576 1024 2025

Number of MPI processes

Mean BFS time

Time (in seconds) for a single BFS iteration on Scale 25 RMAT (33M vertices, 500M
edges) with 10% of elements passing filter. Machine is NERSC’s Hopper.

BFS with SEJITS

eu(uoK DT e=0=SEJ|ITS+KDT CombBLAS

256 -
128 |
32 -
16 -

Mean BFS time

1 2 4 8 16 32 64
Number of MPI processes

Time (in seconds) for a single BFS iteration on Scale 23 RMAT (8M vertices, 130M
edges) with 10% of elements passing filter. Machine is Mirasol.

Roofline

* A way to find what your bottleneck is

* MEASURE and PLOT potential limiting factors
in your exact system and program

— compute power

— RAM stream speed

— RAM random access speed
— disk

— etc

* Your Roofline is the minimum of your plots

KDT + SEJITS Roofline

Mirasol (Xeon E7 8870, 36 cores)
100000

Good
CombBLAS Performance Bound (|imited by DRAI\/I)

10000
SEJITS+KDT Performance Bound
|

DRAM Performance Bound

1000

100

thhon KDT Performance Bound

10
Bad

(Compute limited)

Millions of Edges Processed per Second

1% 10% 100%

Filter Permeability

Is MapReduce any good for graphs?

The prospect of the entire graph
traversing the cloud fabric for each
MapReduce job is disturbing.

- Jonathan Cohen

M
apReduc@ b aseq

PageRank comparison with Pegasus

Core Task Problem Size

Count Count Code Scale 19 Scale 21
- 4 Pegasus 2h35m 10s 6h 06m 10s
4 - KDT 55s 7m 12s
- 16 Pegasus 33m09s 4h 40m 08s
16 - KDT 13s 1m 34s

Performance comparison of KDT and Pegasus PageRank (e = 1077). The graphs are
Graph500 RMAT graphs. The machine is Neumann, a 32-core shared memory
machine with HDFS mounted in a ramdisk.

A Scalability limit for matrix-matrix
multiplication: sqrt(p)

200 T ! ! ! T T

Scale-17 = .-":
1 75 I SCale—1 8 IIII*III\ :-: 7777777777777

|dea| Wownnn p
150 F b —

P ,,,——S—S—SaSG———_—————

.
.
.
.
.
S S S
D
.
.
.
.

MTEPS

75 b ;,5' ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
50 '

o5 Lo B

1 4 9 16 36 64 121 256
Number of Cores

Million Traversed Edges Per Second in Betweenness Centrality computation. BC algorithm

is composed of multiple BFS searches batched together into matrices and using Sp GEMM
for traversals.

