#### Adam Lugowski

Knowledge Discovery Toolbox

kdt.sourceforge.net

## Our users: Domain Experts



# Example workflow



## How to target Domain Experts?

Conceptually simple

Customizable

High Performance

## **Domain Experts**



# Algorithm Experts



**HPC** Experts

#### **Complex methods**

centrality('approxBC')
pageRank

cluster('Markov')
contract

...

#### **Building blocks**

#### **DiGraph**

- bfsTree,neighbor
- degree, subgraph
- load,UFget
- •+, -, sum, scale

#### Mat

- SpMV
- SpGEMM
- load, eye
- reduce, scale
- •+,[]

#### Vec

- max, norm,sort
- abs, any, ceil
- range, ones
- •+,-,\*,/,>,==,&,[]

#### **Underlying infrastructure (Combinatorial BLAS)**

- SpMV, SpMV\_SemiRing
- SpGEMM, SpGEMM\_SemiRing

Sparse-matrix classes/methods (e.g., Apply, EWiseApply, Reduce)

# Why (sparse) adjacency matrices?

| Traditional graph computations                         | Graphs in the language of linear algebra             |
|--------------------------------------------------------|------------------------------------------------------|
| Data driven, unpredictable communication               | Fixed communication patterns                         |
| Irregular and unstructured, poor locality of reference | Operations on matrix blocks exploit memory hierarchy |
| Fine grained data accesses, dominated by latency       | Coarse grained parallelism, bandwidth limited        |

# Example workflow





# the variable bigG contains the input graph
# find and select the giant component
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)



# cluster the graph
clus = G.cluster('Markov')



# contract the clusters
smallG = G.contract(clus)

## Example workflow KDT code

```
# the variable bigG contains the input graph
# find and select the giant component
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)
# cluster the graph
clus = G.cluster('Markov')
# contract the clusters
smallG = G.contract(clus)
```

## BFS on a Scale 29 RMAT graph

(500M vertices, 8B edges)



Machine: NERSC's Hopper





distance 1 from vertex 7



distance 1 from vertex 7



distance 2 from vertex 7



distance 2 from vertex 7

#### **KDT BFS routine**

```
# initialization
parents = Vec(self.nvert(), -1, sparse=False)
frontier = Vec(self.nvert(), sparse=True)
parents[root] = root
frontier[root] = root \# 1^{st} frontier is just the root
# the semiring mult and add ops simply return the 2<sup>nd</sup> arg
semiring = sr((lambda x, y: y), (lambda x, y: y))
# loop over frontiers
while frontier.nnn() > 0:
    frontier.spRange() # frontier[i] = i
    self.e.SpMV(frontier, semiring=semiring, inPlace=True)
    # remove already discovered vertices from the frontier.
    frontier.eWiseApply(parents, op=(lambda f,p: f),
                doOp=(lambda f,p: p == -1), inPlace=True)
    # update the parents
    parents[frontier] = frontier
```

## BFS comparison with PBGL

| Core Count      | Code |          | Problem Size |          |  |
|-----------------|------|----------|--------------|----------|--|
| (Machine)       |      | Scale 19 | Scale 22     | Scale 24 |  |
| 4<br>(Neumann)  | PBGL | 3.8      | 2.5          | 2.1      |  |
|                 | KDT  | 8.9      | 7.2          | 6.4      |  |
| 16<br>(Neumann) | PBGL | 8.9      | 6.3          | 5.9      |  |
|                 | KDT  | 33.8     | 27.8         | 25.1     |  |
| 128<br>(Carver) | PBGL |          | 25.9         | 39.4     |  |
|                 | KDT  |          | 237.5        | 262.0    |  |
| 256<br>(Carver) | PBGL |          | 22.4         | 37.5     |  |
|                 | KDT  |          | 327.6        | 473.4    |  |

Performance comparison of KDT and PBGL breadth-first search. The reported numbers are in MegaTEPS, or 10<sup>6</sup> traversed edges per second. The graphs are Graph500 RMAT graphs with 2<sup>scale</sup> vertices and 16\*2<sup>scale</sup> edges.

## Plain graph



Connectivity only.

## Edge Attributes (semantic graph)



## Edge Attribute Filter

```
G.addEFilter(
lambda e: e.weight > 0)
```



## Edge Attribute Filter Stack

```
(F, T, 1)

(T, T, 1)

(F, T, 1)

(F, T, 4)
```

```
G.addEFilter(
lambda e: e.weight > 0)
G.addEFilter(
lambda e: e.isPhoneCall)
```

class edge\_attr:
 isText
 isPhoneCall
 weight

## Filter implementation details

- Filter defined as a unary predicate
  - operates on edge or vertex <u>value</u>
  - written in Python
  - predicates checked in order they were added
- Each KDT object maintains a stack of filter predicates
  - all operations respect filter
    - enables filter-ignorant algorithm design
    - enables algorithm designers to use filters

#### Two filter modes

- On-The-Fly filters
  - predicate checked each time an operation touches vertex or edge
- Materialized filters
  - make copy of graph which excludes filtered elements
    - predicate checked only once for each element

# Performance of On-The-Fly filter vs. Materialized filter

- For restrictive filter
  - OTF can be cheaper since fewer edges are touched
    - corpus can be huge, but only traverse small pieces
- For non-restrictive filter
  - OTF Saves space (no need to keep two large copies)
  - OTF Makes each operation more computationally expensive

## texts and phone calls



# draw graph draw(G)

# Each edge has this attribute:
class edge\_attr:
 isText
 isPhoneCall
 weight

## **Betweenness Centrality**



bc = G.centrality("approxBC")
# draw graph with node sizes
# proportional to BC score
draw(G, bc)

## Betweenness Centrality on texts



## Betweenness Centrality on calls



# BC only on phone call edges G.addEFilter(

lambda e: e.isPhoneCall)
bc = G.centrality("approxBC")
# draw graph with node sizes
# proportional to BC score
draw(G, bc)

#### **SEJITS**

The way to make Python fast is to not use Python.

-- Me

- Selective Embedded Just-In-Time Specialization
  - 1. Take Python code
  - 2. Translate it to equivalent C++ code
  - 3. Compile with GCC
  - 4. Call compiled version instead of Python version

#### **BFS** with SEJITS



Time (in seconds) for a single BFS iteration on Scale 25 RMAT (33M vertices, 500M edges) with 10% of elements passing filter. Machine is NERSC's Hopper.

#### BFS with SEJITS



Time (in seconds) for a single BFS iteration on Scale 23 RMAT (8M vertices, 130M edges) with 10% of elements passing filter. Machine is Mirasol.

#### Roofline

- A way to find what your bottleneck is
- MEASURE and PLOT potential limiting factors in your exact system and program
  - compute power
  - RAM stream speed
  - RAM random access speed
  - disk
  - etc
- Your Roofline is the minimum of your plots

#### KDT + SEJITS Roofline





## Is MapReduce any good for graphs?

The prospect of the entire graph traversing the cloud fabric for each MapReduce job is disturbing.

- Jonathan Cohen

# MapReduce-based PageRank comparison with Pegasus

| Core  |             |         | Probler    | lem Size   |  |
|-------|-------------|---------|------------|------------|--|
| Count | Count Count | Code    | Scale 19   | Scale 21   |  |
| -     | 4           | Pegasus | 2h 35m 10s | 6h 06m 10s |  |
| 4     | -           | KDT     | 55s        | 7m 12s     |  |
| -     | 16          | Pegasus | 33m 09s    | 4h 40m 08s |  |
| 16    | -           | KDT     | 13s        | 1m 34s     |  |

Performance comparison of KDT and Pegasus PageRank ( $\epsilon = 10^{-7}$ ). The graphs are Graph500 RMAT graphs. The machine is Neumann, a 32-core shared memory machine with HDFS mounted in a ramdisk.

# A Scalability limit for matrix-matrix multiplication: sqrt(p)



Million Traversed Edges Per Second in Betweenness Centrality computation. BC algorithm is composed of multiple BFS searches batched together into matrices and using SpGEMM for traversals.