
CS 240A: 
Parallel Prefix Algorithms  

or  
Tricks with Trees"

Some slides from Jim Demmel,  
Kathy Yelick, Alan Edelman,  
and a cast of thousands …"

"
"

PRAM model of parallel computation

•  Very simple theoretical model, used in 1970s and 1980s for lots of
“paper designs” of parallel algorithms.

•  Processors have unit-time access to any location in shared memory.

•  Number of processors is allowed to grow with problem size.

•  Goal is (usually) an algorithm with span O(log n) or O(log2 n).

•  Eg: Can you sort n numbers with T1 = O(n log n) and Tn = O(log n)?
•  Was a big open question until Cole solved it in 1988.

•  Very unrealistic model but sometimes useful for thinking about a problem.

Memory

P1 P2 Pn . . .

Parallel
Random
Access
Machine

Parallel Vector Operations

• Vector add: z = x + y
• Embarrassingly parallel if vectors are aligned; span = 1

• DAXPY: v = α*v + β*w (vectors v, w; scalar α, β)

• Broadcast α & β, then pointwise vector +; span = log n

• DDOT: α = vT*w (vectors v, w; scalar α)
• Pointwise vector *, then sum reduction; span = log n

Broadcast and reduction
• Broadcast of 1 value to p processors with log p span

• Reduction of p values to 1 with log p span
• Uses associativity of +, *, min, max, etc.

α

8

 1 3 1 0 4 -6 3 2"

Add-reduction"

Broadcast"

•  A theoretical secret for turning serial into parallel

•  Surprising parallel algorithms:

 If “there is no way to parallelize this algorithm!” …

•  … it’s probably a variation on parallel prefix!

Parallel Prefix Algorithms

Example of a prefix (also called a scan)

Sum Prefix

 Input x = (x1, x2, . . ., xn)
 Output y = (y1, y2, . . ., yn)

 yi = Σj=1:i xj

Example
 x = (1, 2, 3, 4, 5, 6, 7, 8)
 y = (1, 3, 6, 10, 15, 21, 28, 36)

Prefix functions-- outputs depend upon an initial string

What do you think?
• Can we really parallelize this?

•  It looks like this kind of code:

 y(0) = 0;
 for i = 1:n

 y(i) = y(i-1) + x(i);

• The ith iteration of the loop depends completely on the
(i-1)st iteration.

• Work = n, span = n, parallelism = 1.

•  Impossible to parallelize, right?

A clue?

 x = (1, 2, 3, 4, 5, 6, 7, 8)
 y = (1, 3, 6, 10, 15, 21, 28, 36)

Is there any value in adding, say, 4+5+6+7?

If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could

we do?

9"

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 3 7 11 15 19 23 27 31
 (Recursively compute prefix sums)

 3 10 21 36 55 78 105 136

 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136

Prefix sum in parallel

Algorithm: 1. Pairwise sum 2. Recursive prefix 3. Pairwise sum

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36

• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1

at the cost of more work! 10"

Parallel prefix cost: Work and Span

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36

• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1

 Parallelism at the cost of more work! 11"

Parallel prefix cost: Work and Span

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36

• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1
• T∞(n) = 2 log n
 Parallelism at the cost of twice the work! 12"

Parallel prefix cost: Work and Span

13"

Non-recursive view of parallel prefix scan

•  Tree summation: two phases
•  up sweep

•  get values L and R from left and right child
•  save L in local variable Mine
•  compute Tmp = L + R and pass to parent

•  down sweep
•  get value Tmp from parent
•  send Tmp to left child
•  send Tmp+Mine to right child

6
5 4

3 2 4 1

Up sweep:

 mine = left

 tmp = left + right

4

6 9

5 4

3 1 2 0 4 1 1 3

6
5 4

3 2 4 1

0 6

0

0 3

3 4 6 6 10 11 12 15

+X = 3 1 2 0 4 1 1 3

4

4 6 6 10 11

6 11

12

Down sweep:

 tmp = parent (root is 0)

 right = tmp + mine

All (and)

Any (or)

Input: Bits
(Booleans)

Sum (+)

Product (*)

Max

Min

Input: Reals

Any associative operation works

Associative:

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

MatMul

Input: Matrices
(not commutative!)

15"

Scan (Parallel Prefix) Operations

• Definition: the parallel prefix operation takes a binary
associative operator ⊕, and an array of n elements

 [a0, a1, a2, … an-1]
 and produces the array
 [a0, (a0 ⊕ a1), … (a0 ⊕ a1 ⊕ ... ⊕ an-1)]

• Example: add scan of

 [1, 2, 0, 4, 2, 1, 1, 3] is [1, 3, 3, 7, 9, 10, 11, 14]

16"

Applications of scans
• Many applications, some more obvious than others

•  lexically compare strings of characters
• add multi-precision numbers
• add binary numbers fast in hardware
• graph algorithms
• evaluate polynomials
•  implement bucket sort, radix sort, and even quicksort
• solve tridiagonal linear systems
• solve recurrence relations
• dynamically allocate processors
• search for regular expression (grep)
•  image processing primitives

17"

Using Scans for Array Compression

• Given an array of n elements
 [a0, a1, a2, … an-1]
 and an array of flags
 [1,0,1,1,0,0,1,…]
 compress the flagged elements into
 [a0, a2, a3, a6, …]

• Compute an add scan of [0, flags] :
 [0,1,1,2,3,3,4,…]

• Gives the index of the ith element in the compressed array

•  If the flag for this element is 1, write it into the result
array at the given position

Matlab code

% Start with a vector of n random #s
% normally distributed around 0.

A = randn(1,n);
flag = (A > 0);
addscan = cumsum(flag);
parfor i = 1:n
 if flag(i)
 B(addscan(i)) = A(i);
 end;
end;

Array compression: Keep only positives

18"

19"

Fibonacci via Matrix Multiply Prefix

Fn+1 = Fn + Fn-1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

1-n

n

n

1n

F
F

01
11

F
F

Can compute all Fn by matmul_prefix on

[, , , , , , , ,]
then select the upper left entry

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

01
11

Carry-Look Ahead Addition (Babbage 1800’s)

Goal: Add Two n-bit Integers

 Example

 1 0 1 1 1 Carry
 1 0 1 1 1 First Int

 1 0 1 0 1 Second Int
 1 0 1 1 0 0 Sum

Carry-Look Ahead Addition (Babbage 1800’s)

Goal: Add Two n-bit Integers
 Example Notation

 1 0 1 1 1 Carry c2 c1 c0
 1 0 1 1 1 First Int a3 a2 a1 a0
 1 0 1 0 1 Second Int b3 b2 b1 b0
 1 0 1 1 0 0 Sum s3 s2 s1 s0

Carry-Look Ahead Addition (Babbage 1800’s)

Goal: Add Two n-bit Integers
 Example Notation

 1 0 1 1 1 Carry c2 c1 c0
 1 0 1 1 1 First Int a3 a2 a1 a0
 1 0 1 0 1 Second Int b3 b2 b1 b0
 1 0 1 1 0 0 Sum s3 s2 s1 s0

 c-1 = 0
 for i = 0 : n-1

 si = ai + bi + ci-1

 ci = aibi + ci-1(ai + bi)

end

sn = cn-1

(addition mod 2)

Carry-Look Ahead Addition (Babbage 18)
Goal: Add Two n-bit Integers

 Example Notation

 1 0 1 1 1 Carry c2 c1 c0
 1 0 1 1 1 First Int a3 a2 a1 a0
 1 0 1 0 1 Second Int b3 b2 b1 b0
 1 0 1 1 0 0 Sum s3 s2 s1 s0

 c-1 = 0
 for i = 0 : n-1

 si = ai + bi + ci-1

 ci = aibi + ci-1(ai + bi)

end

sn = cn-1

ci ai + bi aibi ci-1
1 0 1 1

=

(addition mod 2)

Carry-Look Ahead Addition (Babbage 1s)
Goal: Add Two n-bit Integers

 Example Notation

 1 0 1 1 1 Carry c2 c1 c0
 1 0 1 1 1 First Int a3 a2 a1 a0
 1 0 1 0 1 Second Int b3 b2 b1 b0
 1 0 1 1 0 0 Sum s3 s2 s1 s0

 c-1 = 0
 for i = 0 : n-1

 si = ai + bi + ci-1

 ci = aibi + ci-1(ai + bi)

end

sn = cn-1

ci ai + bi aibi ci-1
1 0 1 1

=

1. compute ci by binary matmul prefix

2. compute si = ai + bi +ci-1 in parallel

25"

Adding two n-bit integers in O(log n) time
•  Let a = a[n-1]a[n-2]…a[0] and b = b[n-1]b[n-2]…b[0] be two n-bit

binary numbers
•  We want their sum s = a+b = s[n]s[n-1]…s[0]

•  Challenge: compute all c[i] in O(log n) time via parallel prefix

•  Used in all computers to implement addition - Carry look-ahead

c[-1] = 0 … rightmost carry bit
for i = 0 to n-1
 c[i] = ((a[i] xor b[i]) and c[i-1]) or (a[i] and b[i]) ... next carry bit
 s[i] = a[i] xor b[i] xor c[i-1]

 for all (0 <= i <= n-1) p[i] = a[i] xor b[i] … propagate bit
 for all (0 <= i <= n-1) g[i] = a[i] and b[i] … generate bit

 c[i] = (p[i] and c[i-1]) or g[i] = p[i] g[i] * c[i-1] = M[i] * c[i-1]
 1 1 0 1 1 1
 … 2-by-2 Boolean matrix multiplication (associative)

 = M[i] * M[i-1] * … M[0] * 0
 1
 … evaluate each product M[i] * M[i-1] * … * M[0] by parallel prefix

26"

Segmented Operations

⊕2 (y, T) (y, F)

 (x, T) (x⊕y, T) (y, F)

 (x, F) (y, T) (x⊕y, F)

e. g. 1 2 3 4 5 6 7 8

T T F F F T F T

1 3 3 7 12 6 7 8 Result

Inputs = ordered pairs
 (operand, boolean)
e.g. (x, T) or (x, F)

Change of
segment indicated
by switching T/F

Any Prefix
Operation May

Be
Segmented!

Graph algorithms by segmented scans

1 2 0 2 3 3 2

 0 2 5 6 7

nbr:

firstnbr:

2

0 1

3

T T F F F T F flag:

The usual CSR data structure, plus segment flags!

29"

Multiplying n-by-n matrices in O(log n) span

• For all (1 <= i,j,k <= n) P(i,j,k) = A(i,k) * B(k,j)
• span = 1, work = n3

• For all (1 <= i,j <= n) C(i,j) = Σ P(i,j,k)
• span = O(log n), work = n3 using a tree

30"

Inverting dense n-by-n matrices in O(log2 n) span

•  Lemma 1: Cayley-Hamilton Theorem
• expression for A-1 via characteristic polynomial in A

•  Lemma 2: Newton’s Identities
• Triangular system of equations for coefficients of

characteristic polynomial
•  Lemma 3: trace(Ak) = Σ Ak [i,i] = Σ [λi (A)]k

• Csanky’s Algorithm (1976)

• Completely numerically unstable

i=1
n

i=1

n

1) Compute the powers A2, A3, …,An-1 by parallel prefix
 span = O(log2 n)
2) Compute the traces sk = trace(Ak)
 span = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
 span = O(log2 n)
4) Evaluate A-1 using Cayley-Hamilton Theorem
 span = O(log n)

31"

Evaluating arbitrary expressions

•  Let E be an arbitrary expression formed from +, -, *, /,
parentheses, and n variables, where each appearance of
each variable is counted separately

• Can think of E as arbitrary expression tree with n leaves
(the variables) and internal nodes labelled by +, -, * and /

• Theorem (Brent): E can be evaluated with O(log n) span,
if we reorganize it using laws of commutativity, associativity
and distributivity

• Sketch of (modern) proof: evaluate expression tree E
greedily by

• collapsing all leaves into their parents at each time step
• evaluating all “chains” in E with parallel prefix

32"

•  The log2 n span is not the main reason for the
usefulness of parallel prefix.

•  Say n = 1000000p (1000000 summands per
processor)

•  Cost = (2000000 adds) + (log2P message passings)

 fast & embarassingly parallel
 (2000000 local adds are serial for each processor, of course)

The myth of log n

33"

Summary of tree algorithms

•  Lots of problems can be done quickly - in theory - using trees
• Some algorithms are widely used

• broadcasts, reductions, parallel prefix
• carry look ahead addition

• Some are of theoretical interest only
• Csanky’s method for matrix inversion
• Solving tridiagonal linear systems (without pivoting)
• Both numerically unstable
• Csanky does too much work

• Embedded in various systems
• CM-5 hardware control network
• MPI, UPC, Titanium, NESL, other languages

