

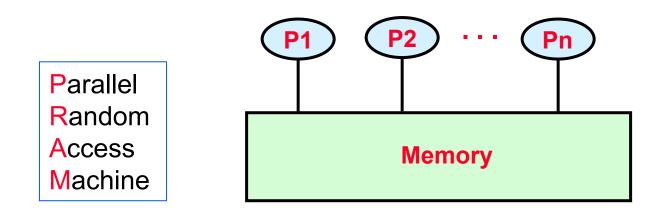
Parallel Prefix Algorithms

or

Tricks with Trees

Some slides from Jim Demmel, Kathy Yelick, Alan Edelman, and a cast of thousands ...

PRAM model of parallel computation

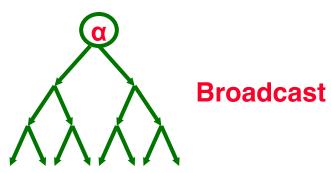


- Very simple theoretical model, used in 1970s and 1980s for lots of "paper designs" of parallel algorithms.
- Processors have unit-time access to any location in shared memory.
- Number of processors is allowed to grow with problem size.
- Goal is (usually) an algorithm with span O(log n) or O(log² n).
- Eg: Can you sort n numbers with $T_1 = O(n \log n)$ and $T_n = O(\log n)$?
 - Was a big open question until Cole solved it in 1988.
- Very unrealistic model but sometimes useful for thinking about a problem.

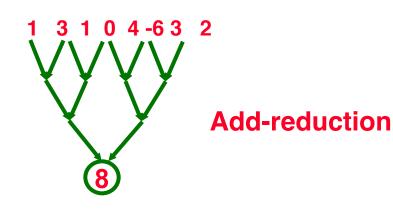
- Vector add: z = x + y
 - Embarrassingly parallel if vectors are aligned; span = 1
- DAXPY: v = α*v + β*w (vectors v, w; scalar α, β)
 Broadcast α & β, then pointwise vector +; span = log n
- DDOT: α = v^T*w (vectors v, w; scalar α)
 Pointwise vector *, then sum reduction; span = log n

Broadcast and reduction

• Broadcast of 1 value to p processors with log p span



- Reduction of p values to 1 with log p span
- Uses associativity of +, *, min, max, etc.



Parallel Prefix Algorithms

- A theoretical secret for turning serial into parallel
- Surprising parallel algorithms:

If "there is no way to parallelize this algorithm!" ...

... it's probably a variation on parallel prefix!

Example of a prefix (also called a scan)

Sum Prefix

Input
$$x = (x_1, x_2, ..., x_n)$$
Output $y = (y_1, y_2, ..., y_n)$

$$y_i = \sum_{j=1:i} x_j$$

Example

Prefix functions-- outputs depend upon an initial string

What do you think?

- Can we really parallelize this?
- It looks like this kind of code:

y(0) = 0;for i = 1:n y(i) = y(i-1) + x(i);

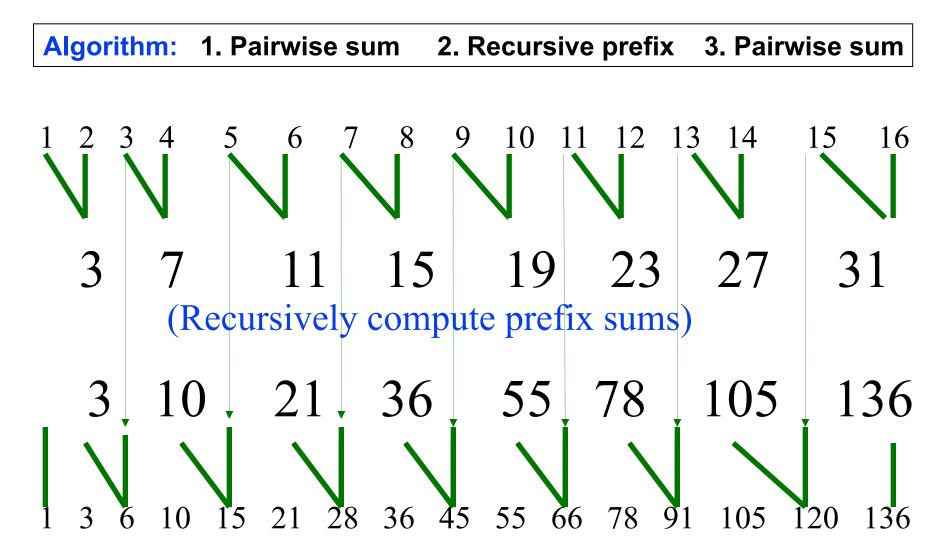
- The ith iteration of the loop depends completely on the (i-1)st iteration.
- Work = n, span = n, parallelism = 1.
- Impossible to parallelize, right?

Is there any value in adding, say, 4+5+6+7?

If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could we do?

Prefix sum in parallel



Parallel prefix cost: Work and Span

- What's the total work?
 - 1 2 3 4 5 6 7 8 3 7 11 15 I I I I 3 10 21 36 1 3 6 10 15 21 28 36

Pairwise sums

Recursive prefix

Update "odds"

Parallel prefix cost: Work and Span

• What's the total work?

Pairwise sums

Recursive prefix

Update "odds"

• $T_1(n) = n/2 + n/2 + T_1(n/2) = n + T_1(n/2) = 2n - 1$

Parallel prefix cost: Work and Span

What's the total work?

Pairwise sums

Recursive prefix

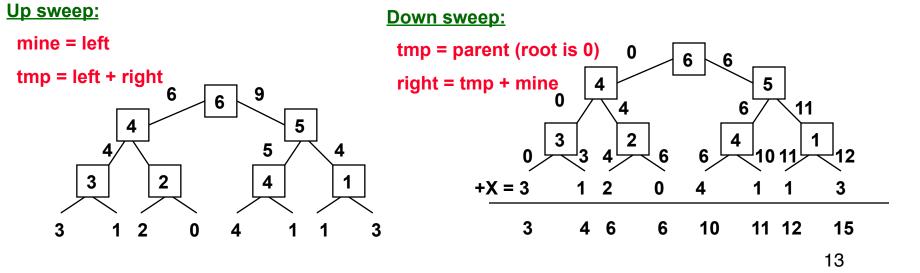
Update "odds"

• $T_1(n) = n/2 + n/2 + T_1(n/2) = n + T_1(n/2) = 2n - 1$

• $T_{\infty}(n) = 2 \log n$ Parallelism at the cost of twice the work! ¹²

Non-recursive view of parallel prefix scan

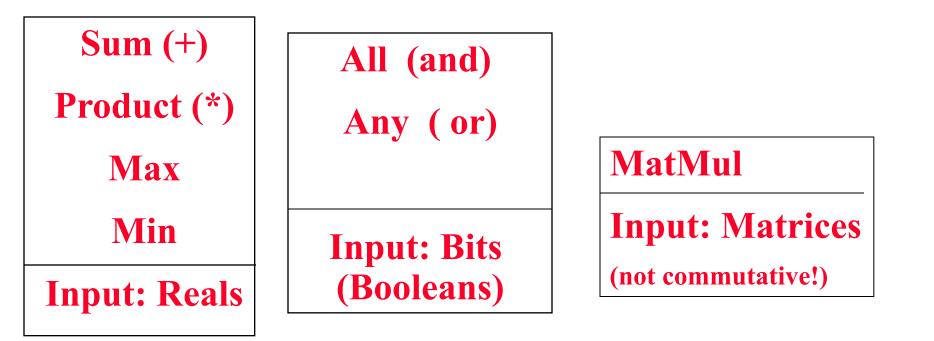
- Tree summation: two phases
 - up sweep
 - get values L and R from left and right child
 - save L in local variable Mine
 - compute Tmp = L + R and pass to parent
 - down sweep
 - get value Tmp from parent
 - send Tmp to left child
 - send Tmp+Mine to right child



Any associative operation works

```
Associative:

(a \oplus b) \oplus c = a \oplus (b \oplus c)
```



Scan (Parallel Prefix) Operations

• Definition: the parallel prefix operation takes a binary associative operator ⊕, and an array of n elements

 $[a_0, a_1, a_2, \dots a_{n-1}]$ and produces the array $[a_0, (a_0 \oplus a_1), \dots (a_0 \oplus a_1 \oplus \dots \oplus a_{n-1})]$

• Example: add scan of

[1, 2, 0, 4, 2, 1, 1, 3] is [1, 3, 3, 7, 9, 10, 11, 14]

Applications of scans

- Many applications, some more obvious than others
 - lexically compare strings of characters
 - add multi-precision numbers
 - add binary numbers fast in hardware
 - graph algorithms
 - evaluate polynomials
 - implement bucket sort, radix sort, and even quicksort
 - solve tridiagonal linear systems
 - solve recurrence relations
 - dynamically allocate processors
 - search for regular expression (grep)
 - image processing primitives

Using Scans for Array Compression

Given an array of n elements

[a₀, a₁, a₂, ... a_{n-1}]
and an array of flags
[1,0,1,1,0,0,1,...]

compress the flagged elements into

[a₀, a₂, a₃, a₆, ...]

- Compute an add scan of [0, flags] : [0,1,1,2,3,3,4,...]
- Gives the index of the ith element in the compressed array
 - If the flag for this element is 1, write it into the result array at the given position

Array compression: Keep only positives

Matlab code

- % Start with a vector of n random #s
- % normally distributed around 0.

```
A = randn(1,n);
flag = (A > 0);
addscan = cumsum(flag);
parfor i = 1:n
    if flag(i)
        B(addscan(i)) = A(i);
    end;
end;
```

Fibonacci via Matrix Multiply Prefix

$$\mathbf{F}_{\mathbf{n}+1} = \mathbf{F}_{\mathbf{n}} + \mathbf{F}_{\mathbf{n}-1}$$

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}$$

Can compute all F_n by matmul_prefix on $\begin{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1$

Carry-Look Ahead Addition (Babbage 1800's)

Example						
1	0	1	1	1		Carry
	1	0	1	1	1	First Int
	1	0	1	0	1	Second Int
1	0	1	1	0	0	Sum

Goal: Add Two n-bit Integers

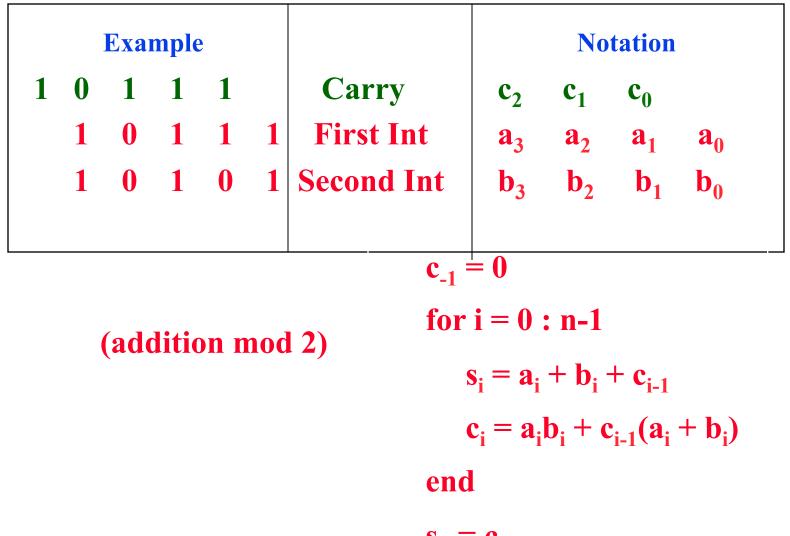
Carry-Look Ahead Addition (Babbage 1800's)

Goal: Add Two n-bit Integers

Example				•			Notation				
1		1 0			1	Carry First Int	c_2 a_3	c_1 a_2	c_0 a_1	a ₀	
						Second Int	b ₃	b ₂	1	-	

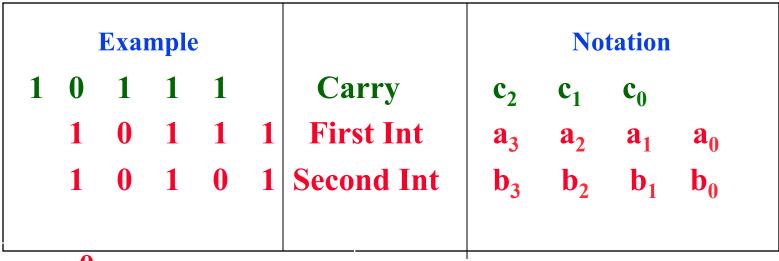
Carry-Look Ahead Addition (Babbage 1800's)

Goal: Add Two n-bit Integers



 $\mathbf{s}_{\mathbf{n}} = \mathbf{c}_{\mathbf{n}-1}$

Goal: Add Two n-bit Integers



 $c_{-1} = 0$

for i = 0 : n-1

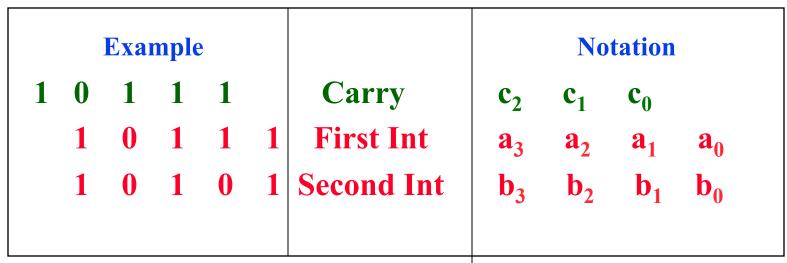
$$s_{i} = a_{i} + b_{i} + c_{i-1}$$
$$\begin{pmatrix} c_{i} \\ 1 \end{pmatrix} = \begin{bmatrix} a_{i} + b_{i} & a_{i}b_{i} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_{i-1} \\ 1 \end{bmatrix}$$

end

(addition mod 2)

 $\mathbf{s}_{\mathbf{n}} = \mathbf{c}_{\mathbf{n}-1}$

Goal: Add Two n-bit Integers



 $c_{-1} = 0$ for i = 0 : n-1 $s_i = a_i + b_i + c_{i-1}$ $c_i = a_i b_i + c_{i-1} (a_i + b_i)$ end

$$\begin{bmatrix} \mathbf{c}_i \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_i + \mathbf{b}_i & \mathbf{a}_i \mathbf{b}_i \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{i-1} \\ \mathbf{1} \end{bmatrix}$$

1. compute c_i by binary matmul prefix

2. compute
$$s_i = a_i + b_i + c_{i-1}$$
 in parallel

 $\mathbf{s}_{\mathbf{n}} = \mathbf{c}_{\mathbf{n}-1}$

Adding two n-bit integers in O(log n) time

- Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit binary numbers
- We want their sum s = a+b = s[n]s[n-1]...s[0] c[-1] = 0 ... rightmost carry bit for i = 0 to n-1

 $c[i] = ((a[i] \text{ xor } b[i]) \text{ and } c[i-1]) \text{ or } (a[i] \text{ and } b[i]) \dots \text{ next carry bit} \\ s[i] = a[i] \text{ xor } b[i] \text{ xor } c[i-1]$

 Challenge: compute all c[i] in O(log n) time via parallel prefix for all (0 <= i <= n-1) p[i] = a[i] xor b[i] ... propagate bit

for all ($0 \le i \le n-1$) g[i] = a[i] and b[i] ... generate bit

$$\begin{bmatrix} c[i] \\ 1 \end{bmatrix} = \begin{bmatrix} (p[i] \text{ and } c[i-1]) \text{ or } g[i] \\ 1 \end{bmatrix} = \begin{bmatrix} p[i] & g[i] \\ 0 & 1 \end{bmatrix}^* \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix} = M[i] * \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix}$$

... 2-by-2 Boolean matrix multiplication (associative)

= M[i] * M[i-1] * ... M[0] *
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

... evaluate each product M[i] * M[i-1] * ... * M[0] by parallel prefix

Used in all computers to implement addition - Carry look-ahead

Segmented Operations

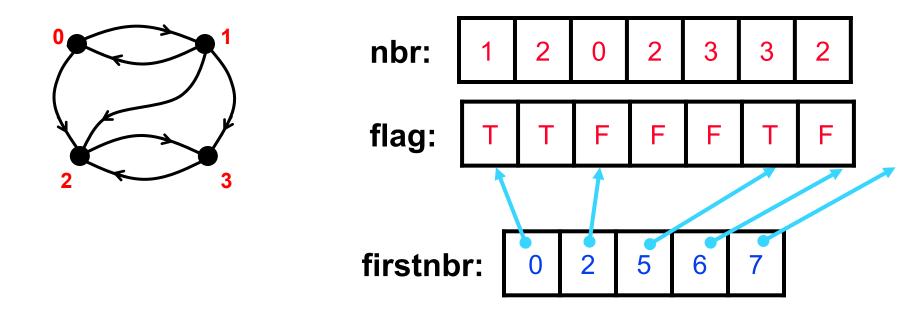
Inputs = ordered pairs (operand, boolean) e.g. (x, T) or (x, F) Change of segment indicated by switching T/F

\oplus_2	(y, T)	(y, F)
(x, T)	(x⊕y, T)	(y, F)
(x, F)	(y, T)	(x⊕y, F)

e. g.	1	2	3	4	5	6	7	8
	Т	Т	F	F	F	Т	F	Т
Result	1	3	3	7	12	6	7	8

Any Prefix **Operation May** Be Segmented!

Graph algorithms by segmented scans



The usual CSR data structure, plus segment flags!

Multiplying n-by-n matrices in O(log n) span

- For all $(1 \le i,j,k \le n)$ P(i,j,k) = A(i,k) * B(k,j)
 - span = 1, work = n^3

- For all $(1 \le i, j \le n)$ $C(i, j) = \sum P(i, j, k)$
 - span = $O(\log n)$, work = n^3 using a tree

Inverting dense n-by-n matrices in O(log² n) span

- Lemma 1: Cayley-Hamilton Theorem
 - expression for A⁻¹ via characteristic polynomial in A
- Lemma 2: Newton's Identities
 - Triangular system of equations for coefficients of characteristic polynomial
- Lemma 3: trace(A^k) = $\sum_{i=1}^{n} A^k [i,i] = \sum_{i=1}^{n} [\lambda_i (A)]^k$
- Csanky's Algorithm (1976)
 - Compute the powers A², A³, ..., Aⁿ⁻¹ by parallel prefix span = O(log² n)
 - 2) Compute the traces s_k = trace(A^k) span = O(log n)
 - 3) Solve Newton identities for coefficients of characteristic polynomial span = O(log² n)
 - 4) Evaluate A⁻¹ using Cayley-Hamilton Theorem span = O(log n)
- Completely numerically unstable

Evaluating arbitrary expressions

- Let E be an arbitrary expression formed from +, -, *, /, parentheses, and n variables, where each appearance of each variable is counted separately
- Can think of E as arbitrary expression tree with n leaves (the variables) and internal nodes labelled by +, -, * and /
- Theorem (Brent): E can be evaluated with O(log n) span, if we reorganize it using laws of commutativity, associativity and distributivity
- Sketch of (modern) proof: evaluate expression tree E greedily by
 - collapsing all leaves into their parents at each time step
 - evaluating all "chains" in E with parallel prefix

- The log₂ n span is not the main reason for the usefulness of parallel prefix.
- Say n = 1000000p (1000000 summands per processor)
 - Cost = (2000000 adds) + (log₂P message passings)

fast & embarassingly parallel (2000000 local adds are serial for each processor, of course)

Summary of tree algorithms

- Lots of problems can be done quickly in theory using trees
- Some algorithms are widely used
 - broadcasts, reductions, parallel prefix
 - carry look ahead addition
- Some are of theoretical interest only
 - Csanky's method for matrix inversion
 - Solving tridiagonal linear systems (without pivoting)
 - Both numerically unstable
 - Csanky does too much work
- Embedded in various systems
 - CM-5 hardware control network
 - MPI, UPC, Titanium, NESL, other languages