CS 240A.:
Parallel Prefix Algorithms
or
Tricks with Trees

Some slides from Jim Demmel,
Kathy Yelick, Alan Edelman,
and a cast of thousands ...

PRAM model of parallel computation

Parallel
Random
Access
Machine

@@...

@

Memory

* Very simple theoretical model, used in 1970s and 1980s for lots of
“paper designs” of parallel algorithms.

Processors have unit-time access to any location in shared memory.
Number of processors is allowed to grow with problem size.
Goal is (usually) an algorithm with span O(log n) or O(log? n).

Eg: Can you sort n numbers with T, = O(n log n)and T, = O(log n)?

» Was a big open question until Cole solved it in 1988.

* Very unrealistic model but sometimes useful for thinking about a problem.

Parallel Vector Operations

*Vectoradd: z=x+y
 Embarrassingly parallel if vectors are aligned; span = 1

 DAXPY: v =a* + [3*w (vectorsv, w; scalar a, B)
 Broadcast a & [3, then pointwise vector +; span = log n

«DDOT: a=vMrw (vectors v, w; scalar a)
 Pointwise vector *, then sum reduction; span =log n

Broadcast and reduction

« Broadcast of 1 value to p processors with log p span

Broadcast

A

« Reduction of p values to 1 with log p span
« Uses associativity of +, *, min, max, etc.

1 3104-63 2

Add-reduction

Parallel Prefix Algorithms

* A theoretical secret for turning serial into parallel

« Surprising parallel algorithms:

If “there is no way to parallelize this algorithm!” ...

« ... it s probably a variation on parallel prefix!

Example of a prefix (also called a scan)

Sum Prefix
Input X = (Xq, Xp, « + «y Xp)
Output Y=Y - Yn)
Yi= =14 X
Example

x=(1,2,3, 4, 5 6, 7, 8)
y=(1,3,6, 10, 15, 21, 28, 36)

Prefix functions-- outputs depend upon an initial string

What do you think?

« Can we really parallelize this?

* |t looks like this kind of code:

y(0) = 0;
fori=1:n
y(i) = y(i-1) + x(i);

* The ith iteration of the loop depends completely on the
(i-1)st iteration.

 Work = n, span = n, parallelism = 1.

 Impossible to parallelize, right?

Is there any value in adding, say, 4+5+6+77
If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could
we do?

Prefix sum in parallel

Algorithm: 1. Pairwise sum 2. Recursive prefix 3. Pairwise sum

1234 5 6 7 8 9 1011 12 13 14 15 16
NN NN N N N\
3 7 11 15 19 23 27 31

(Recursively compute prefix sums)

3 10, 21, 36 55 78 105 136

\ N6 10 15 21 28 3N5 55&6 7&1 105 120 13‘6

9

Parallel prefix cost: Work and Span

. What’s the total work?
34 56 78
\/ \/ \/ \/ Pairwise sums
3 11 15
| | | Recursive prefix
3 10 21 36
N ANV ANA Update “odds”
1 3 610152128 36

10

Parallel prefix cost: Work and Span

. What’ s the total work?

34 56 7 8
\/ \/ \/ \/ Pairwise sums

3 11 15

| | | Recursive prefix
3 10 21 36

N ANV ANA Update “odds”
1 3 610152128 36

N T1(n) =n/2 +n/2+ T1 (n/2) = n+ '|'1 (n/2) =2n — 1

11

Parallel prefix cost: Work and Span

. What’s the total work?
34 56 7 8
\/ \/ \/ \/ Pairwise sums
3 11 15
| | | Recursive prefix
3 10 21 36
N ANV ANA Update “odds”
1 3610152128 36

N T1(n) =n/2 +n/2+ T1 (n/2) = n+ '|'1 (n/2) =2n — 1
T.(n)=2logn
Parallelism at the cost of twice the work! ™

Non-recursive view of parallel prefix scan

 Tree summation: two phases

* Up sweep
« get values L and R from left and right child
 save L in local variable Mine
« compute Tmp =L + R and pass to parent

« down sweep
« get value Tmp from parent
« send Tmp to left child
* send Tmp+Mine to right child

Up sweep: Down sweep:
mine = left = i
| tmp = parent (rootis 0) 0 6 &
tmp = left + rlght6 o right = tmp + mine | 4 5
6 0 4 6 / \11
p / \ 5 3 . p 1
4 5 4 0 3 4 6 6 10 11 12
3 2 1 +X=3 12 0 4 1 1 3
3 1 2 0 4 1 1 3 3 4 6 6 10 1112 15

13

Any associative operation works

Associative:

A®b)@c=a® (D c)

Sum (+) All (and)
Product (*) Any (or)
Max MatMul
Min Input: Bits Input: Mafrlces
Input: Reals (Booleans) (not commutative!)

Scan (Parallel Prefix) Operations

« Definition: the parallel prefix operation takes a binary
associative operator @, and an array of n elements

Ay, 24, Ay, ... A 4]
and produces the array
[Ay, (g @ ay), ... (a,Pa @ ... da,)]

« Example: add scan of

1,2,0,4,2,1,1,3] is [1,3,3,7,9 10, 11, 14]

15

Applications of scans

* Many applications, some more obvious than others

* lexically compare strings of characters

e add multi-precision numbers

« add binary numbers fast in hardware

* graph algorithms

* evaluate polynomials

* iImplement bucket sort, radix sort, and even quicksort
* solve tridiagonal linear systems

* solve recurrence relations

» dynamically allocate processors

* search for regular expression (grep)

* Image processing primitives
16

Using Scans for Array Compression

» Given an array of n elements
[@p, @4, @y, ... @]
and an array of flags
[1,0,1,1,0,0,1,...]
compress the flagged elements into
[a,, a,, a3, 8, ...]

« Compute an add scan of [0, flags] :
[0,1,1,2,3,3,4,...]

* Gives the index of the it" element in the compressed array

* If the flag for this element is 1, write it into the result

array at the given position
17

Array compression: Keep only positives

Matlab code

% Start with a vector of n random #s
% normally distributed around O.

A randn (1,n) ;
flag = (A > 0);
addscan = cumsum(flag) ;

parfor 1 = 1:n
if flag(1i)
B(addscan(i)) = A(1);
end;
end;

18

Fibonacci via Matrix Multiply Prefix

Fn—l—l — Fn T Fn—l

(F.\ (1 1
CF)L o)

F o\

(Fn-l /

Can compute all F, by matmul prefix on

[G (a6 o oo 6ol

then select the upper left entry

)

11
1 0

)|

11
1 0

)|

11
1 0

/]

19

Carry-Look Ahead Addition (Babbage 1800’ s)

Example
1 0 1 1 1 Carry
1 0 1 1 1| Firstlnt
1 0 1 0 1SecondInt
1 01 1 0 0f Sum

Goal: Add Two n-bit Integers

Carry-Look Ahead Addition (Babbage 1800’ s)

Goal: Add Two n-bit Integers

Example Notation

10 1 11 Carry ¢, ¢ ¢
1 0 1 1 1| FirstlInt a, a, a;, a,
1 01 0 1

SecondInt | b; b, b, b,

Carry-Look Ahead Addition (Babbage 1800’ s)
Goal: Add Two n-bit Integers

Example Notation

10 1 11 Carry ¢, ¢ ¢
1 0 1 1 1| FirstlInt a, a, a;, a,
1 01 0 1

SecondInt | b; b, b, b,

c,=0
o fori=0:n-1
(addition mod 2)
s; =a;+b;+¢
¢;=ab; + ¢ (a; +b)
end

Sn = cn-l

Goal: Add Two n-bit Integers

Example Notation
10 1 11 Carry ¢, ¢ ¢
1 0 1 1 1| FirstlInt a, a, a;, a,
1 0 1 0 1/SecondInt | b; b, b, b,
c,=0

fori=0:n-1

s.=a.+b. +c¢ [ci] B [ai + b, aibi [ci-l]
¢;=ab; + ¢ ,(a; + b)) 1 0 1 1

end

(addition mod 2)

Sn = cn-l

Goal: Add Two n-bit Integers

Example Notation
10 1 11 Carry ¢, ¢ ¢
1 0 1 1 1| FirstlInt a, a, a;, a,
1 0 1 0 1/SecondInt | b; b, b, b,
¢, =0 C; a.+b. abl] [¢
fori=0:n-1 [J:[0 11 [1]

s;=a; T b; + ¢
1. compute ¢, by binary matmul prefix
¢;=ab; + ¢ (a;+by)

end 2. compute s, = a,+ b, +c, , in parallel

Sn = cn-l

Adding two n-bit integers in O(log n) time

* Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit
binary numbers

 We want their sum s = a+b = s[n]s[n-1]...s[0]
c[-1]1=0 ... rightmost carry bit
fori=0ton-1
c[i] = ((a[i] xor b[i]) and cJ[i-1]) or (a[i] and b[i]) ... next carry bit
s[i] = a[i] xor bl[i] xor cf[i-1]

» Challenge: compute all c[i] in O(log n) time via parallel prefix
for all (0 <=1i<=n-1) p[i] = ali] xor bJ[i] ... propagate bit
forall (0 <=i<=n-1) g[i]=aliland b[i] ... generate bit

[c[i]} = {(o[i] and c[i-1]) or g[i]}= {pm g[i]} * {C[i-ﬂ} = M[i] { c[i—ﬂ]
1 1 0 1 1 1

... 2-by-2 Boolean matrix multiplication (associative)

= MIi] * M[i-1] * ... M[0O] *{ 0 }
1
... evaluate each product MJi] * M[i-1] * ... * M[O] by parallel prefix

» Used in all computers to implement addition - Carry look-ahead

Segmented Operations

Inputs = ordered pairs

(operand, boolean)

e.d. (x,T)or (x,F)

Change of
segment indicated
by switching T/F

D, (y, T) (y, F)
(x, T) (x®y, T) (¥, F)
(%, F) (¥, T) (x®y, F)
e.g.| 1 2 4 6 3
T T F F T F T
Result 1 3 12 6 3

26

Any Prefix
Operation May
Be

Segmented!

Graph algorithms by segmented scans

or: [1]2]0]2]2]]2]

fIag:‘T‘T‘F‘F‘F‘T‘F‘

firstnbr:|-0‘2‘5‘6‘7‘

The usual CSR data structure, plus segment flags!

Multiplying n-by-n matrices in O(log n) span

e Forall (1 <=ij,k<=n) P(,j,k) = A(i,k) * B(k,j)
e span = 1, work = n3

« Forall (1 <=ij<=n) C(ij)=Z P(i,j,k)
 span = O(log n), work = n3 using a tree

29

Inverting dense n-by-n matrices in O(log? n) span

 Lemma 1: Cayley-Hamilton Theorem
« expression for A-! via characteristic polynomial in A
« Lemma 2: Newton’ s Identities

* Triangular system of equations for coefficients of
characteristic polynomial

n
+ Lemma 3: trace(A") = 3_ A*[i,i] = = [y (AN
« Csanky’ s Algorithm (1976))

1) Compute the powers A2, A3, ..., A™1 by parallel prefix
span = O(log? n)
2) Compute the traces s, = trace(A¥)
span = O(log n)
3) Solve Newton identities for coefficients of characteristic polynomial
span = O(log? n)
4) Evaluate A1 using Cayley-Hamilton Theorem
span = O(log n)

« Completely numerically unstable "

Evaluating arbitrary expressions

 Let E be an arbitrary expression formed from +, -, *, /,
parentheses, and n variables, where each appearance of
each variable is counted separately

« Can think of E as arbitrary expression tree with n leaves
(the variables) and internal nodes labelled by +, -, * and /

* Theorem (Brent): E can be evaluated with O(log n) span,
if we reorganize it using laws of commutativity, associativity
and distributivity

« Sketch of (modern) proof: evaluate expression tree E
greedily by
» collapsing all leaves into their parents at each time step
« evaluating all “chains” in E with parallel prefix

31

The myth of log n

* The log, n span is not the main reason for the
usefulness of parallel prefix.

« Say n =1000000p (1000000 summands per
processor)
« Cost =‘(2000000 adds) lk (log,P message passings)

I

fast & embarassingly parallel
(2000000 local adds are serial for each processor, of course)

32

Summary of tree algorithms

* Lots of problems can be done quickly - in theory - using trees
« Some algorithms are widely used
 broadcasts, reductions, parallel prefix
e carry look ahead addition
« Some are of theoretical interest only
« Csanky’ s method for matrix inversion
 Solving tridiagonal linear systems (without pivoting)
« Both numerically unstable
« Csanky does too much work
 Embedded in various systems
* CM-5 hardware control network
* MPI, UPC, Titanium, NESL, other languages

33

