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Parallelism and Locality in Simulation 
• Real world problems have parallelism and locality: 

•  Some objects may operate independently of others. 
•  Objects may depend more on nearby than distant objects. 
•  Dependence on distant objects can often be simplified. 

• Scientific models may introduce more parallelism: 
•  When a continuous problem is discretized, time-domain 

dependencies are generally limited to adjacent time steps. 
•  Far-field effects can sometimes be ignored or approximated. 

• Many problems exhibit parallelism at multiple levels 
•  Example: circuits can be simulated at many levels, and within 

each there may be parallelism within and between subcircuits. 
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Multilevel Modeling: Circuit Simulation  
• Circuits are simulated at many different levels 

Level Primitives Examples 
Instruction level Instructions SimOS, SPIM 

Cycle level Functional units           VIRAM-p 

Register Transfer 
Level (RTL) 

Register, counter, 
MUX 

VHDL 

Gate Level Gate, flip-flop, 
memory cell 

          Thor 

Switch level Ideal transistor Cosmos 

Circuit level Resistors, 
capacitors, etc. 

Spice 

Device level Electrons, silicon 
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Basic kinds of simulation 

• Discrete event systems 
•  Time and space are discrete 

• Particle systems 
•  Important special case of lumped systems 

• Ordinary Differential Equations (ODEs) 
•  Lumped systems 
•  Location/entities are discrete, time is continuous 

• Partial Different Equations (PDEs) 
•  Time and space are continuous 

discrete 

continuous 
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Basic Kinds of Simulation 
•  Discrete event systems: 

• Examples: “Game of Life,” logic level circuit 
simulation.  

•  Particle systems: 
• Examples: billiard balls, semiconductor device 

simulation, galaxies. 
•  Lumped variables depending on continuous parameters: 

• ODEs, e.g., circuit simulation (Spice), structural 
mechanics, chemical kinetics. 

•  Continuous variables depending on continuous parameters: 
• PDEs, e.g., heat, elasticity, electrostatics. 

•  A given phenomenon can be modeled at multiple levels. 
•  Many simulations combine more than one of these techniques. 
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A Model Problem: Sharks and Fish 

• Illustration of parallel programming 
• Original version: WATOR, proposed by Geoffrey Fox 
• Sharks and fish living in a 2D toroidal ocean 

• Several variations to show different physical 
phenomena 

• Basic idea: sharks and fish living in an ocean 
•  rules for movement 
• breeding, eating, and death 
•  forces in the ocean 
•  forces between sea creatures 

• See link on course home page for details 
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Discrete Event 
Systems"
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Discrete Event Systems 
• Systems are represented as: 

•  finite set of variables. 
•  the set of all variable values at a given time is called the state. 
•  each variable is updated by computing a transition function 

depending on the other variables. 
• System may be: 

•  synchronous: at each discrete timestep evaluate all transition 
functions; also called a state machine. 

•  asynchronous: transition functions are evaluated only if the 
inputs change, based on an “event” from another part of the 
system; also called event driven simulation. 

• Example: The “game of life:” 
•  Also known as Sharks and Fish #3:  
•  Space divided into cells, rules govern cell contents at each step 



9"

Sharks and Fish as Discrete Event System 

• Ocean modeled as a 2D toroidal grid 
• Each cell occupied by at most one sea creature 
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Fish-only: the Game of Life 

• An new fish is born if 
• a cell is empty 
• exactly 3 (of 8) neighbors contain fish 

• A fish dies (of overcrowding) if 
• cell contains a fish 
• 4 or more neighboring cells are full 

• A fish dies (of loneliness) if 
• cell contains a fish 
•  less than 2 neighboring cells are full 

• Other configurations are stable 

• The original Wator problem adds sharks that eat fish 
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Parallelism in Sharks and Fish 
• The activities in this system are discrete events 
• The simulation is synchronous 

•  use two copies of the grid (old and new) 
•  the value of each new grid cell in new depends only on the 9 

cells (itself plus neighbors) in old grid (“stencil computation”) 
•  Each grid cell update is independent: reordering or parallelism OK 

•  simulation proceeds in timesteps, where (logically) each cell is 
evaluated at every timestep 

old ocean new ocean 



Stencil computations 

• Data lives at the vertices of a regular mesh 

• At each step, new values are computed from neighbors 

• Examples:  

• Game of Life   (9-point stencil) 

• Matvec in 2D model problem (5-point stencil) 

• Matvec in 3D model problem (7-point stencil) 



            Examples of stencils 

 
 

5-point stencil in 2D 
 (temperature problem) 

9-point stencil in 2D 
(game of Life)  

7-point stencil in 3D 
(3D temperature problem)  

25-point stencil in 3D 
(seismic modeling)  

… and many more 
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Parallelizing Stencil Computations 

• Parallelism is simple 
•  Span t∞ = constant, so potential parallelism pp = size of problem!  
•  Even decomposition across processors gives load balance 

• Communication volume     
•  v = total # of boundary cells between patches 

• Spatial locality limits communication cost 
•  Communicate only boundary values from neighboring patches 



Where’s the data (5-point stencil problem)? 
 

•  Each of n stencil points has some fixed amount of data 

•  Divide stencil points among processors, n/p points each 

•  How do you divide up a sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 
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How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  First version: number the grid by rows 
•  Leads to a block row decomposition of the region 
•  v = 2 * p * sqrt(n) 
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How do you partition the sqrt(n) by sqrt(n) stencil points? 
•  Second version: 2D block decomposition 
•  Numbering is a little more complicated 
•  v = 4 * sqrt(p) * sqrt(n) 



Where’s the data (temperature problem)? 

•  The matrix A:  Nowhere!! 

•  The vectors x, b, r, d: 
•  Each vector is one value per stencil point 
•  Divide stencil points among processors, n/p points each 

•  How do you divide up the sqrt(n) by sqrt(n) region of points? 

•  Block row (or block col) layout:     v = 2 * p * sqrt(n) 

•  2-dimensional block layout:          v = 4 * sqrt(p) * sqrt(n) 



Detailed complexity measures for data movement I:     
                   Latency/Bandwidth Model 
 
 

Moving data between processors by message-passing 
 

•  Machine parameters: 
•   α      latency (message startup time in seconds)  
•   β     inverse bandwidth (in seconds per word) 

•  between nodes of Triton,  α ∼ 2.2 × 10-6  and  β ∼ 6.4 × 10-9 

•  Time to send & recv or bcast a message of w words:    α + w*β 

•  tcomm    total commmunication time 

•  tcomp     total computation time 

•  Total parallel time:  tp   =   tcomp  +  tcomm  
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Ghost Nodes in Stencil Computations 

Comm cost = α * (#messages) + β * (total size of messages) 

•  Keep a ghost copy of neighbors’ boundary nodes 
•  Communicate every second iteration, not every iteration 
•  Reduces #messages, not total size of messages 
•  Costs extra memory and computation 
•  Can also use more than one layer of ghost nodes 

Green = my interior nodes 

Yellow  
  = neighbors’ boundary nodes  
  = my “ghost nodes”  

Blue = my boundary nodes 
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Synchronous Circuit Simulation 
•  Circuit is a graph made up of subcircuits connected by wires 

• Component simulations need to interact if they share a wire. 
• Data structure is irregular (graph) of subcircuits. 
• Parallel algorithm is timing-driven or synchronous: 

•  Evaluate all components at every timestep (determined by known circuit delay) 

•  Graph partitioning assigns subgraphs to processors (NP-complete) 
• Determines parallelism and locality. 
• Attempts to evenly distribute subgraphs to nodes  (load balance). 
• Attempts to minimize edge crossing (minimize communication). 

edge crossings = 6 edge crossings = 10 
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Asynchronous Simulation 
• Synchronous simulations may waste time: 

•  Simulate even when the inputs do not change. 

• Asynchronous simulations update only when an event 
arrives from another component: 

•  No global time steps, but individual events contain time stamp. 
•  Example: Game of life in loosely connected ponds (don’t simulate 

empty ponds). 
•  Example: Circuit simulation with delays (events are gates flipping). 
•  Example: Traffic simulation (events are cars changing lanes, etc.). 

• Asynchronous is more efficient, but harder to parallelize 
•  In MPI, events can be messages … 
•  … but how do you know when to “receive”? 
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Particle Systems"
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Particle Systems 
• A particle system has  

•  a finite number of particles. 
•  moving in space according to Newton’s Laws (i.e. F = ma). 
•  time is continuous. 

• Examples: 
•  stars in space: laws of gravity. 
•  atoms in a molecule: electrostatic forces. 
•  neutrons in a fission reactor. 
•  electron beam and ion beam semiconductor manufacturing. 
•  cars on a freeway: Newton’s laws + models of driver & engine. 

• Many simulations combine particle simulation techniques 
with some discrete event techniques. 
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Forces in Particle Systems 
• Force on each particle decomposed into near and far: 

force = external_force + nearby_force + far_field_force 

• External force 
•  ocean current to sharks and fish world (S&F 1). 
•  externally imposed electric field in electron beam. 

• Nearby force 
•  sharks attracted to eat nearby fish (S&F 5). 
•  balls on a billiard table bounce off of each other. 
•  Van der Waals forces in fluid (1/r6). 

• Far-field force 
•  fish attract other fish by gravity-like (1/r2 ) force (S&F 2). 
•  gravity, electrostatics 
•  forces governed by elliptic PDEs. 
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Parallelism in External Forces 

• External forces are the simplest to implement. 
• Force on one particle is independent of other particles. 
• “Embarrassingly parallel”. 

• Evenly distribute particles on processors 
• Any even distribution works. 
• Locality is not an issue, since no communication. 

• For each particle on processor, apply external force. 
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Parallelism in Nearby Forces 
• Nearby forces require interaction => communication. 
• Force depends on other particles nearby (e.g. collisions) 
• Simple algorithm: check every pair for collision:  O(n2) 
• Parallelism by decomposition of physical domain: 

•   O(n/p) particles per processor if evenly distributed. 
• Better algorithm: only check pairs near boundaries 

Need to check for 
collisions between 
regions"
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Parallelism in Nearby Forces 
• Challenge 1: interactions of particles near boundaries: 

•  Communicate particles near boundary to neighboring processors. 

•  Surface to volume effect limits communication. 

•  Which communicates less: squares (as below) or slabs? 

Communicate particles in 
boundary region to neighbors"
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Parallelism in Nearby Forces 
• Challenge 2: load imbalance, if particles cluster together: 

•  Stars in galaxies, for example 

• To reduce load imbalance, divide space unevenly. 
•  Each region contains roughly equal number of particles. 
•  Quad-tree in 2D, oct-tree in 3D. 

Example: each square 
contains at most 3 
particles"

See: http://njord.umiacs.umd.edu:1601/users/brabec/quadtree/points/prquad.html 
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Parallelism in Far-Field Forces 
• Far-field forces involve all-to-all interaction and communication. 
• Force on one particle depends on all other particles. 

•  Examples: galaxies (gravity), protein folding (electrostatics) 
•  Simplest algorithm is O(n2) as in S&F 2, 4, 5. 
•  Decomposing space does not help total work or communication,  

since every particle needs to “visit” every other particle. 

Use more clever algorithms to beat O(n2) ? 

Implement by rotating particle sets. 

•  Keeps processors busy 

•  All processors see all particles 

•  Just like MGR matrix multiply! 
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Far-field forces: Tree Decomposition 
•  “Fast multipole” algorithms 

•  Approximate the force from far-away particles 
•  Simplify a group of far-away particles into a single multipole. 
•  Do this at every scale simultaneously (every quadtree level) 
•  Each quadtree node contains an approximation of descendants. 

• O(n log n) or even O(n)  
instead of O(n2). 

      
•  “Top 10 Algorithms of the 

  20th Century” (resources page) 
• Tutorial on course web page. 
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Summary of Particle Methods 
• Model contains discrete entities, namely, particles 

force = external_force + nearby_force + far_field_force 

• Time is continuous – is discretized to solve 

• Simulation follows particles through timesteps 

•  All-pairs algorithm is simple, but inefficient, O(n2) 
•  Particle-mesh methods approximates by moving particles 
•  Tree-based algorithms approximate by treating set of particles 

as a group, when far away 

• This is a special case of a “lumped” system . . . 
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Lumped 
Systems: 

ODEs"
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System of Lumped Variables 
• Finitely many variables  
• Depending on a continuous parameter (usually time) 

• Example 1 – System of chemical reactions: 
•  Each reaction consumes some “compounds” and produces others 
•  Stoichometric matrix S: rows for compounds, cols for reactions 
•  Compound concentrations x(i) in terms of reaction rates v(j): 
         dx/dt = S * v 
 

• Example 2 – Electronic circuit: 
•  Circuit is a graph. 

•  wires are edges. 
•  each edge has resistor, capacitor, inductor or voltage source. 

•  Variables are voltage & current at endpoints of edges. 
•  Related by Ohm’s Law, Kirchoff’s Laws, etc. 

• Forms a system of ordinary differential equations (ODEs). 
•  Differentiated with respect to time 
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Example: Stoichiometry in chemical reactions 
 reaction 1:                  CP => PC 
 reaction 2:              C + P => CP 
 reaction 3:            C + AP => CP + A 

• Matrix S : row = compound, column = reaction 

•  Linear ODE system: d/dt (concentration) = S * (reaction rate) 
 
compound A:                  dx1/dt                   0    0    1 
compound C:                  dx2/dt                   0   -1   -1          v1 

compound P:                  dx3/dt         =        0   -1    0     *    v2 
compound CP:                dx4/dt                  -1   1    1           v3 
compound AP:                dx5/dt                   0    0   -1 
compound PC:                dx6/dt                   1    0    0 
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Example:  Electronic circuit 
• State of the system is represented by 

•  vn(t)  node voltages 
•  ib(t) branch currents  all at time t 
•  vb(t) branch voltages 

• Equations include 
•  Kirchoff’s current 
•  Kirchoff’s voltage 
•  Ohm’s law 
•  Capacitance 
•  Inductance 

 
• Write as single large system of ODEs 

(possibly with constraints). 

0  M  0  vn  0 
MT  0  -I     *  ib    =  S 
0  R  -I  vb  0 
0  -I       C*d/dt   0 

0  L*d/dt  I   0 
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Solving ODEs 
•  In most examples, the matrices are sparse: 

•  most array elements are 0. 
•  neither store nor compute on these 0’s. 

• Given a set of ODEs, two kinds of questions are: 
•  Compute the values of the variables at some time t 

•  Explicit methods 
•  Implicit methods 

•  Compute modes of vibration 
•  Eigenvalue problems 
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Solving ODEs: Explicit Methods 
• Rearrange ODE into the form x’(t) = f(x) = A*x,  

where A is a sparse matrix 
•  Compute x(i*dt) = x[i]  
         at i=0,1,2,… 
•  Approximate x’(i*dt)  
      x[i+1]=x[i] + dt*slope  

• Explicit methods, e.g., (Forward) Euler’s method. 
•  Approximate x’(t)=A*x by (x[i+1] - x[i] )/dt = A*x[i]. 
•  x[i+1] = x[i]+dt*A*x[i],  i.e. sparse matrix-vector multiplication. 

• Tradeoffs: 
•  Simple algorithm: sparse matrix vector multiply. 
•  Stability problems: May need to take very small time steps, 

especially if system is stiff. 

t (i) t+dt (i+1)

Use slope  
at x[i] 
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Solving ODEs: Implicit Methods 
•  Assume ODE is x’(t) = f(x) = A*x, where A is a sparse matrix 

•  Compute x(i*dt) = x[i]  
         at i=0,1,2,… 
•  Approximate x’(i*dt)  
       x[i+1]=x[i] + dt*slope 

•  Implicit method, e.g., Backward Euler solve: 
•  Approximate x’(t)=A*x by (x[i+1] - x[i] )/dt = A*x[i+1]. 
•  (I - dt*A)*x[i+1] = x[i],  i.e. we need to solve a sparse linear 

system of equations. 
• Trade-offs: 

•  Larger timestep possible: especially for stiff problems 
•  Harder algorithm: need to solve a sparse system at each step 

t t+dt

Use slope  
at x[i+1] 
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ODEs and Sparse Matrices 
• All these reduce to sparse matrix problems 

• Explicit: sparse matrix-vector multiplication. 

•  Implicit: solve a sparse linear system 
•  direct solvers (Gaussian elimination). 
•  iterative solvers (use sparse matrix-vector multiplication). 

• Eigenvalue/eigenvector algorithms may also be 
either explicit or implicit. 
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Partial Differential Equations"
(PDEs)"
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Continuous Variables, Continuous Parameters 

Examples: 
 

• Parabolic (time-dependent) problems: 
• Heat flow:  Temperature(position, time) 
• Diffusion:  Concentration(position, time) 

• Elliptic (steady state) problems: 
• Electrostatic or Gravitational Potential: 

Potential(position) 

• Hyperbolic problems (waves): 
• Quantum mechanics: Wave-function(position,time) 

 

Many problems combine features of above 
• Fluid flow: Velocity,Pressure,Density(position,time) 
• Elasticity:   Stress,Strain(position,time) 
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2D Implicit Method  

• Multiplying by this matrix is just nearest neighbor 
computation on 2D grid. 

• To solve this system, there are several techniques. 

4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

A =

4 

-1 

-1 

-1 

-1 

Graph and “5 point stencil” 

3D case is analogous 
(7 point stencil) 



The (2-dimensional) model problem 

• Graph is a regular square grid with n = k^2 vertices. 

• Corresponds to matrix for regular 2D finite difference mesh. 

• Gives good intuition for behavior of sparse matrix algorithms 
on many 2-dimensional physical problems. 

• There’s also a 3-dimensional model problem. 

n1/2 
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Irregular mesh: NASA Airfoil in 2D 
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Composite Mesh from a Mechanical Structure 
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Adaptive Mesh Refinement (AMR) 

• Adaptive mesh around an explosion"
• Refinement done by calculating errors"

• Parallelism "
• Mostly between “patches,” dealt to processors for load balance"
• May exploit some within a patch (SMP) "
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Adaptive Mesh 

Shock waves in a gas dynamics using AMR (Adaptive Mesh 
Refinement) See: http://www.llnl.gov/CASC/SAMRAI/   

flu
id

 d
en

si
ty
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Irregular mesh: Tapered Tube (Multigrid) 
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Converting the Mesh to a Matrix 



The Landscape of Ax = b Algorithms 

 

 
Pivoting 

LU 

 
GMRES, 

BiCGSTAB, 
… 

 
Cholesky 

 
Conjugate 
gradient 

 

 

Gaussian 
elimination Iterative 

Any 
matrix 

Symmetric 
positive 
definite 
matrix 

More Robust Less Storage 

More Robust 

More General 



Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
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Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
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Conjugate gradient in general 

•  CG can be used to solve any system Ax = b, if … 
•  The matrix A is symmetric (aij = aji) … 
•  … and positive definite (all eigenvalues > 0). 

•  Symmetric positive definite matrices occur a lot 
 in scientific computing & data analysis! 

•  But usually the matrix isn’t just a stencil. 
•  Now we do need to store the matrix A.  Where’s the data? 

•  The key is to use graph data structures and algorithms. 



Graphs and Sparse Matrices  

1    1                            1 

2    1     1                              1 

3                   1     1               1 

4           1             1          

5                          1       1        

6                                   1      1 

  1     2      3      4      5      6 

3

6

2

1

5

4

•  Sparse matrix is a representation of a (sparse) graph 

•  Matrix entries are edge weights 
•  Number of nonzeros per row is the vertex degree 

•  Edges represent data dependencies in matrix-vector 
multiplication 



Data structure for sparse matrix A (stored by rows) 

•  Full matrix:    
•  2-dimensional array of real or 

complex numbers 

•  (nrows*ncols) memory 

31 0 53 

0 59 0 

41 26 0 

31 53 59 41 26 

1 3 2 1 2 

•  Sparse matrix:  
•  compressed row storage 

•  about (2*nzs + nrows) memory 



P0�

P1 �

P2�

Pn �

5941 532631

23 131

Each processor stores: 
 

•   # of local nonzeros 
•   range of local rows 
•   nonzeros in CSR form 

Distributed-memory sparse matrix data structure 



Vector and matrix primitives for CG 
 
•  DAXPY:   v = α*v + β*w         (vectors v, w; scalars α, β) 

•  Broadcast  the scalars α and β, then independent  *  and  + 
•  comm volume = 2p, span = log n 

•  DDOT:     α = vT*w  = Σj v[j]*w[j]   (vectors v, w; scalar α) 
•  Independent  *,  then  +  reduction 
•  comm volume = p, span = log n 

•  Matvec:     v = A*w                      (matrix A, vectors v, w) 
•  The hard part 
•  But all you need is a subroutine to compute v from w 
•  Sometimes you don’t need to store A (e.g. temperature problem) 
•  Usually you do need to store A, but it’s sparse ... 



Parallel Dense Matrix-Vector Product 
•  y = A*x, where A is a dense  matrix 

•  Layout:  
•  1D by rows 

•  Algorithm: 
Foreach processor j 
   Broadcast X(j) 
   Compute A(p)*x(j) 

•  A(i) is the n by n/p block row that processor Pi owns 
•  Algorithm uses the formula 

Y(i) = A(i)*X =  Σj A(i)*X(j) 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 



•  Lay out matrix and vectors by rows 
•  y(i) = sum(A(i,j)*x(j)) 
•  Only compute terms with A(i,j) ≠ 0 

•  Algorithm 
Each processor i: 
   Broadcast x(i) 
   Compute y(i) = A(i,:)*x 

•  Optimizations 
•  Only send each proc the parts of x it needs, to reduce comm  
•  Reorder matrix for better locality by graph partitioning 
•  Worry about balancing number of nonzeros / processor,  

  if rows have very different nonzero counts 

x 

y 

P0 

P1 

P2 

P3 

P0   P1    P2     P3 

Parallel sparse matrix-vector product 



Sparse Matrix-Vector Multiplication 



Graph partitioning (topic of later lecture) 

• Assigns subgraphs to processors 
• Determines parallelism and locality. 
• Tries to make subgraphs all same size (load balance) 
• Tries to minimize edge crossings (communication). 
• Exact minimization is NP-complete. 
• See Matlab demo. 

edge crossings = 6 edge crossings = 10 



Scientific computation and data analysis 

Computers 

Continuous 
physical modeling 

Linear algebra 



Scientific computation and data analysis 

Computers 

Continuous 
physical modeling 

Linear algebra 

Discrete 
structure analysis 

Graph theory 

Computers 



Scientific computation and data analysis 

Continuous 
physical modeling 

Linear algebra & graph theory 

Discrete 
structure analysis 

Computers 



Other memory layouts for matrix-vector product 

• Column layout of the matrix eliminates the broadcast 
•  But adds a reduction to update the destination – same total comm 

• Blocked layout uses a broadcast and reduction, both on 
 only sqrt(p) processors – less total comm 

• Blocked layout has advantages in multicore / Cilk++ too 

P0     P1    P2    P3 

P0      P1     P2    P3 

P4      P5     P6    P7 

P8     P9     P10   P11 

P12    P13   P14   P15 
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Challenges of Irregular Meshes for PDE’s 
• How to generate them in the first place 

•  For example, Triangle, a 2D mesh generator (Shewchuk) 
•  3D mesh generation is harder!  For example, QMD  (Vavasis) 

• How to partition them into patches 
•  For example, ParMetis, a parallel graph partitioner (Karypis) 

• How to design iterative solvers 
•  For example, PETSc, Aztec, Hypre   (all from national labs) 
•  … Prometheus, a multigrid solver for finite elements on irregular 

meshes 

• How to design direct solvers 
•  For example, SuperLU, parallel sparse Gaussian elimination 

• These are challenges to do sequentially, more so in parallel 


