CS 240A:

Parallelism in
Physical Simulation

Partly based on slides from David Culler,
Jim Demmel, Kathy Yelick, et al., UCB CS267

Parallelism and Locality in Simulation

» Real world problems have parallelism and locality:
« Some objects may operate independently of others.
* Objects may depend more on nearby than distant objects.
« Dependence on distant objects can often be simplified.

 Scientific models may introduce more parallelism:

* When a continuous problem is discretized, time-domain
dependencies are generally limited to adjacent time steps.

 Far-field effects can sometimes be ignored or approximated.

* Many problems exhibit parallelism at multiple levels

« Example: circuits can be simulated at many levels, and within
each there may be parallelism within and between subcircuits.

Multilevel Modeling: Circuit Simulation

« Circuits are simulated at many different levels

Level Primitives Examples

Instruction level Instructions SimOS, SPIM
|
Cycle level Functional units 1 VIRAM-p
Register Transfer | Register, counter, | VHDL
Level (RTL) MUX
Gate Level Gate, flip-flop, Thor
memory cell

Switch level |deal transistor Cosmos
Circuit level Resistors, Spice

capacitors, etc.

Device level Electrons, silicon

Basic kinds of simulation

discrete
 Discrete event systems
* Time and space are discrete

 Particle systems
* Important special case of lumped systems

 Ordinary Differential Equations (ODESs)

* Lumped systems
* Location/entities are discrete, time is continuous

» Partial Different Equations (PDEs)

* Time and space are continuous

continuous

Basic Kinds of Simulation
Discrete event systems:
« Examples: “Game of Life,” logic level circuit

simulation.
Particle systems:

« Examples: billiard balls, semiconductor device
simulation, galaxies.
Lumped variables depending on continuous parameters:
* ODEs, e.g., circuit simulation (Spice), structural
mechanics, chemical kinetics.
Continuous variables depending on continuous parameters:

* PDEs, e.g., heat, elasticity, electrostatics.

* A given phenomenon can be modeled at multiple levels.
« Many simulations combine more than one of these techniques.

A Model Problem: Sharks and Fish

* [llustration of parallel programming
* Original version: WATOR, proposed by Geoffrey Fox
» Sharks and fish living in a 2D toroidal ocean

» Several variations to show different physical
phenomena

 Basic idea: sharks and fish living in an ocean
* rules for movement
* breeding, eating, and death
» forces in the ocean
» forces between sea creatures

« See link on course home page for details

Discrete Event
Systems

Discrete Event Systems

« Systems are represented as:
» finite set of variables.
* the set of all variable values at a given time is called the state.
 each variable is updated by computing a transition function
depending on the other variables.
« System may be:

» synchronous: at each discrete timestep evaluate all transition
functions:; also called a state machine.

 asynchronous: transition functions are evaluated only if the
inputs change, based on an “event” from another part of the
system; also called event driven simulation.
« Example: The “game of life:”

« Also known as Sharks and Fish #3:
« Space divided into cells, rules govern cell contents at each step

Sharks and Fish as Discrete Event System

« Ocean modeled as a 2D toroidal grid
» Each cell occupied by at most one sea creature

T T
O
& | *(

Fish-only: the Game of Life

* An new fish is born if
* a cell is empty
 exactly 3 (of 8) neighbors contain fish

* A fish dies (of overcrowding) if
» cell contains a fish
* 4 or more neighboring cells are full

* A fish dies (of loneliness) if
* cell contains a fish
* less than 2 neighboring cells are full

 Other configurations are stable

* The original Wator problem adds sharks that eat fish

10

Parallelism in Sharks and Fish

* The activities in this system are discrete events

e The simulation is synchronous
* use two copies of the grid (old and new)

* the value of each new grid cell in new depends only on the 9
cells (itself plus neighbors) in old grid (“stencil computation™)
« Each grid cell update is independent: reordering or parallelism OK
« simulation proceeds in timesteps, where (logically) each cell is
evaluated at every timestep

old ocean new ocean
11

Stencil computations

 Data lives at the vertices of a regular mesh

At each step, new values are computed from neighbors

« Examples:
« Game of Life (9-point stencil)
« Matvec in 2D model problem (5-point stencil)

» Matvec in 3D model problem (7-point stencil)

Examples of stencils

D
(x,y-1)

D P D
(x-Ly) | (xy) | (x+Ly)

D
(x,y+1)

5-point stencil in 2D
(temperature problem)

7-point stencil in 3D
(3D temperature problem)

9-point stencil in 2D
(game of Life)
<> 1

25-point stencil in 3D X
(seismic modeling)

... and many more

Parallelizing Stencil Computations

 Parallelism is simple

« Span t., = constant, so potential parallelism pp = size of problem!
* Even decomposition across processors gives load balance

« Communication volume
« v = total # of boundary cells between patches

« Spatial locality limits communication cost
« Communicate only boundary values from neighboring patches

14

Where’s the data (5-point stencil problem)?
Each of n stencil points has some fixed amount of data
Divide stencil points among processors, n/p points each
How do you divide up a sqrt(n) by sgrt(n) region of points?
Block row (or block col) layout: v =2*p * sqgrt(n)

2-dimensional block layout: v =4 *sqrt(p) * sqrt(n)

How do you partition the sqgrt(n) by sqgrt(n) stencil points?

First version: number the grid by rows
Leads to a block row decomposition of the region
v=2%p*sqgrt(n)

In this example
‘ ~ assumes a square
1 LR B I IR I BN B B L I T L I I N R B R B N B N BN L R B

boundary

—. @

4 4 0 0 4.4 5 0 4 % 00t

L L I L B B A O I O B B L B B L B B B I A A B B L B

LI L N I BN N L N BN N N N BN N BN BNL BN DN DN BN BEL DL DL N BN DL L IR BN N N I L N N B

L N I N B R RN A R E N AR RN N RN AN N NN NN,

LR B I IR B BN B O B L I N L R BB N R B B N B N B N BN L B N BN B E I d
L L I I B B B B B S B B B B B I I I L B B B B B B I L B R L A n arge

Q@ @ ¢ 4 B A EPEEE Al A e A A A

ettt et et et et et et et et et et e et et e ettt et ettt et St e S Sl
LI N A N IR IR N R IR T BB N B B N B R N BN B RN B Y
L L I N L N BN N B N N BN BN NN N BN B B L B B DL B B B L B B B

LR L I B B I B B O B B B B B B N B B B N R B O BB B N BN B B N
LR L B B L LR B B BB A B B I IR R B I RN B B B B B R B B B BB N
IR R R .
L L T I R I I I I R
L L I I B N B B B L B N B N B B B N BN B R N N B R BN B B O BN R B N BN B R N
LR L R B R B T I B LI B R B B B B B B 2 B R B B B B AR N
@ 8 2 2 4 B PP A B PP A B PP A B P EE S AS AR A

LR L I B B B B B L B B N B B N B B B N B B B N R B O B R B N BN B B N J
LR L R R B I B I B R B B B B B R I B B I B N
L I B I IR B I I I I I I I I B I I I I B

6.43

How do you partition the sqgrt(n) by sqgrt(n) stencil points?

« Second version: 2D block decomposition
* Numbering is a little more complicated

4 * sqrt(p) * sqrt(n)

V:

In this example
Enlarged

~ assumes a square
boundary

* ¢ & & a0
L B B B O B B B AN
A I I L N I
L L L L B B B J
...........
L B B B N BN B B N AN
LA L I R N I S R
® " FEeeEe e
* & 2 F a0
L B B O N B B N N
LA I I N N N I N N
L L L L B B B

L B B B N B B B N N
L I I L L I
L L L L I B B B J
* % 4 & % 4 0
L B B B N N B B AN
LA L I N N I L N
...........
* ¢ & 2 2 a0
L B B O N B B N N
LA I I N N I I A
L L L L B B B B
* ¢ & & 0 % a0

.........

* 4 &0 e a e s e
4 ¢ ¢ 0 4 40 0 4o
® * % ¢ 0 " PP e PETIIS
0000000000000

* * 4 & % 4 000
L B B O B B B N
LA B B A B I A N
L L L I I B
..........

L B B B N L B N A

LB B B N B el
L L L I I B
* & ¢ & & 0 0
L B B O B B I N
LA B AR 2 I I R
..........

*> * &

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb &
A I I N L B N N D L S BN I B L S L N L B B 2 B A
L L L L B L L I BN B B D L I I B B B BB L L B L L I B
L L L B B IR AAd L IR L L B N L B * * & & P % a0
L B B B O B B B N LR N B B N L L N N B L B B N L B N N
A L I B L L B B A B L B B B L B L LA B AR I I el
..................................
L I I I B B S LR B I I L L B N L B L L B I B A
L B B B B B B N D L S N N B N B B N BN B L B B N B B B N N
A I I N I I I L N N LR L BN BN B S B B B G L B L B B I I B
L L L I B B B A B D L B D B B B B L L L B
* 2 & 2 P &SP EE SN E NN * * 4 & 0 % 4 000

4 ¢ ¢ 8 4 4 0 0 4+ 00 L B B O BN B I N

* * & F " P S EF TP LA B B A I I A

L B B B N B B N
.Jﬂ A I I L L B

-

6.43

Where’s the data (temperature problem)?

The matrix A: Nowhere!!

The vectors x, b, r, d:
» Each vector is one value per stencil point
 Divide stencil points among processors, n/p points each

How do you divide up the sqgrt(n) by sqrt(n) region of points?
Block row (or block col) layout: v =2*p * sqrt(n)

2-dimensional block layout: v =4 *sqgrt(p) * sqrt(n)

Detailed complexity measures for data movement I:
Latency/Bandwidth Model

Moving data between processors by message-passing

* Machine parameters:
o latency (message startup time in seconds)
[Inverse bandwidth (in seconds per word)
« between nodes of Triton, o ~2.2 x 10°% and ~6.4 x 10-°

Time to send & recv or bcast a message of w words: o + w*f

* t.omm total commmunication time

* teomp total computation time

Total parallel time: t, = t. ., + toomm

Ghost Nodes in Stencil Computations

Comm cost = a * (#messages) + 3 * (total size of messages)

Green = my interior nodes

l—

Blue = my boundary nodes

Yellow
= neighbors’ boundary nodes
= my “ghost nodes”

« Keep a ghost copy of neighbors’ boundary nodes

« Communicate every second iteration, not every iteration
« Reduces #messages, not total size of messages

« Costs extra memory and computation

« Can also use more than one layer of ghost nodes 20

Synchronous Circuit Simulation

 Circuit is a graph made up of subcircuits connected by wires

« Component simulations need to interact if they share a wire.

 Data structure is irregular (graph) of subcircuits.

* Parallel algorithm is timing-driven or synchronous:

» Evaluate all components at every timestep (determined by known circuit delay)

» Graph partitioning assigns subgraphs to processors (NP-complete)

* Determines parallelism and locality.

» Attempts to evenly distribute subgraphs to nodes (load balance).

» Attempts to minimize edge crossing (minimize communication).

J .0

X

oo

[J @

edge crossings = 6 edge crossings = 10

X

b

21

Asynchronous Simulation

« Synchronous simulations may waste time:
« Simulate even when the inputs do not change.

» Asynchronous simulations update only when an event
arrives from another component:
* No global time steps, but individual events contain time stamp.
« Example: Game of life in loosely connected ponds (don’ t simulate
empty ponds).
« Example: Circuit simulation with delays (events are gates flipping).
« Example: Traffic simulation (events are cars changing lanes, etc.).

« Asynchronous is more efficient, but harder to parallelize

* In MPI, events can be messages ...
e ... but how do you know when to “receive”?

22

Particle Systems

Particle Systems

* A particle system has
* a finite number of particles.
« moving in space according to Newton’ s Laws (i.e. F = ma).
* time is continuous.

« Examples:
» stars in space: laws of gravity.
atoms in a molecule: electrostatic forces.
neutrons in a fission reactor.
electron beam and ion beam semiconductor manufacturing.
cars on a freeway: Newton’ s laws + models of driver & engine.

* Many simulations combine particle simulation techniques
with some discrete event techniques.

24

Forces in Particle Systems

* Force on each particle decomposed into near and far:

force = external_force + nearby_force + far_field force

« External force
« ocean current to sharks and fish world (S&F 1).
« externally imposed electric field in electron beam.

* Nearby force
 sharks attracted to eat nearby fish (S&F 5).
« balls on a billiard table bounce off of each other.
 Van der Waals forces in fluid (1/r®).

* Far-field force
« fish attract other fish by gravity-like (1/r?) force (S&F 2).
* gravity, electrostatics
 forces governed by elliptic PDEs. 25

Parallelism in External Forces

» External forces are the simplest to implement.
* Force on one particle is independent of other particles.
« “Embarrassingly parallel”.

* Evenly distribute particles on processors
* Any even distribution works.
* Locality is not an issue, since no communication.

 For each particle on processor, apply external force.

26

Parallelism in Nearby Forces

* Nearby forces require interaction => communication.
» Force depends on other particles nearby (e.g. collisions)
« Simple algorithm: check every pair for collision: O(n?)

 Parallelism by decomposition of physical domain:
« O(n/p) particles per processor if evenly distributed.

 Better algorithm: only check pairs near boundaries

o Need to check for
° | collisions between
regions

27

Parallelism in Nearby Forces

« Challenge 1: interactions of particles near boundaries:
« Communicate particles near boundary to neighboring processors.
 Surface to volume effect limits communication.

« Which communicates less: squares (as below) or slabs?

o Communicate particles in
boundary region to neighbors

28

Parallelism in Nearby Forces

« Challenge 2: load imbalance, if particles cluster together:
 Stars in galaxies, for example

* To reduce load imbalance, divide space unevenly.
« Each region contains roughly equal number of particles.
* Quad-tree in 2D, oct-tree in 3D.

o [*Po| © . ° °l e Example: each square
contains at most 3
° . particles

See: http://njord.umiacs.umd.edu:1601/users/brabec/quadtree/points/prquad.html
29

Parallelism in Far-Field Forces

 Far-field forces involve all-to-all interaction and communication.
* Force on one particle depends on all other particles.

« Examples: galaxies (gravity), protein folding (electrostatics)

« Simplest algorithm is O(n?) as in S&F 2, 4, 5.

« Decomposing space does not help total work or communication,
since every particle needs to “visit” every other particle.

Implement by rotating particle sets.

+> JE> 'JP Jﬁ P » Keeps processors busy

» All processors see all particles

* Just like MGR matrix multiply!

Use more clever algorithms to beat O(n?) ?
30

Far-field forces: Tree Decomposition

 “Fast multipole” algorithms
« Approximate the force from far-away particles
« Simplify a group of far-away particles into a single multipole.
Do this at every scale simultaneously (every quadtree level)
« Each quadtree node contains an approximation of descendants.

* O(n log n) or even O(n)
instead of O(n?). ° %

* “Top 10 Algorithms of the
20" Century” (resources page) ° °

 Tutorial on course web page.

31

Summary of Particle Methods

* Model contains discrete entities, namely, particles

force = external_force + nearby_force + far_field force

* Time Is continuous — is discretized to solve

« Simulation follows particles through timesteps

« All-pairs algorithm is simple, but inefficient, O(n?)
 Particle-mesh methods approximates by moving particles

» Tree-based algorithms approximate by treating set of particles
as a group, when far away

* This is a special case of a “lumped” system . . .

32

Lumped
Systems:
ODEs

System of Lumped Variables

* Finitely many variables
* Depending on a continuous parameter (usually time)

« Example 1 — System of chemical reactions:
» Each reaction consumes some “compounds” and produces others
« Stoichometric matrix S: rows for compounds, cols for reactions
« Compound concentrations x(i) in terms of reaction rates v(j):

dx/dt=S *v

« Example 2 — Electronic circuit:
« Circuit is a graph.
» wires are edges.
» each edge has resistor, capacitor, inductor or voltage source.
 Variables are voltage & current at endpoints of edges.

« Related by Ohm’ s Law, Kirchoff’ s Laws, etc.

« Forms a system of ordinary differential equations (ODEs).
« Differentiated with respect to time 34

Example: Stoichiometry in chemical reactions

reaction 1: CP =>PC
reaction 2: C+P=>CP
reaction 3: C+AP=>CP+A

* Matrix S : row = compound, column = reaction

 Linear ODE system: d/dt (concentration) = S * (reaction rate)

compound A: rdx,/dt 0 0 1)
compound C: dx,/dt o -1 -1 (vf
compound P: dx,/dt = 0O -1 0| *|v,
compound CP: dx,/dt -1 1 1 V3
compound AP: dx,/dt 0O 0 -1

compound PC: . dxg/dt) .1 0 O}

35

Example: Electronic circuit

 State of the system is represented by

\

y,

* v (t) node voltages
* iy(t) branch currents } all attime t
* v,(t) branch voltages)

« Equations include
- Kirchoff' s current | 0 M 0) (va] (0)
» Kirchoff’ s voltage | M’ 0 L A I T i
« Ohm’s law 0 R -1 v, 0
« Capacitance 0 -1 C*d/dt 0
 Inductance 0 L*d/dt 1 0

« Write as single large system of ODEs
(possibly with constraints).

36

Solving ODEs

* In most examples, the matrices are sparse:
 most array elements are 0.
* neither store nor compute on these 0’ s.

 Given a set of ODEs, two kinds of questions are:
« Compute the values of the variables at some time t
« Explicit methods
* Implicit methods
« Compute modes of vibration
« Eigenvalue problems

37

Solving ODEs: Explicit Methods

« Rearrange ODE into the form x’ (t) = f(x) = A*X,
where A is a sparse matrix

« Compute x(i*dt) = x[i] %’—— Use slope

ati=0,1,2,... at x][i]
« Approximate x’ (i*dt) /

x[i+1]=x][i] + dt*slope

ti) tedt(i+1)
 Explicit methods, e.g., (Forward) Euler’ s method.
« Approximate x’ (t)=A*x by (x[i+1] - x[i])/dt = A*x]i].
« X[i+1] = x[i]+dt*A*x[i], i.e. sparse matrix-vector multiplication.
* Tradeoffs:

« Simple algorithm: sparse matrix vector multiply.

« Stability problems: May need to take very small time steps,
especially if system is stiff.

38

Solving ODEs: Implicit Methods

« Assume ODE is x’ (t) = f(x) = A*x, where A is a sparse matrix

« Compute x(i*dt) = x[i]
at i=0,1,2,... |
) J) -/
« Approximate x’ (i*dt) /
X[i+1]=x[i] + dt*slope
t t+dt

 Implicit method, e.g., Backward Euler solve:

« Approximate x’ (t)=A*x by (x[i+1] - x[i])/dt = A*x[i+1].
(I - dt*A)*x[i+1] = x]i], i.e. we need to solve a sparse linear

system of equations.
 Trade-offs:

 Larger timestep possible: especially for stiff problems
« Harder algorithm: need to solve a sparse system at each step

Use slope
at x[i+1]

39

ODEs and Sparse Matrices

 All these reduce to sparse matrix problems
 Explicit: sparse matrix-vector multiplication.

* Implicit: solve a sparse linear system
 direct solvers (Gaussian elimination).
 iterative solvers (use sparse matrix-vector multiplication).

 Eigenvalue/eigenvector algorithms may also be
either explicit or implicit.

40

Partial Differential Equations
(PDEsSs)

41

Continuous Variables, Continuous Parameters

Examples:

« Parabolic (time-dependent) problems:
* Heat flow: Temperature(position, time)
e Diffusion: Concentration(position, time)

* Elliptic (steady state) problems:

* Electrostatic or Gravitational Potential:
Potential(position)

* Hyperbolic problems (waves):
* Quantum mechanics: Wave-function(position,time)

Many problems combine features of above
* Fluid flow: Velocity,Pressure,Density(position,time)
 Elasticity: Stress,Strain(position,time) 42

2D Implicit Method

(a4 1 \ Graph and “5 point stencil”
1 4 -1 1
1 4 1
1 4 1 1
A= 1 1 4 41 1
1 1 4 1
1 4 -1
1 141 4 -1 3D case is analogous
\ 1 1 4 (7 point stencil)

* Multiplying by this matrix is just nearest neighbor
computation on 2D grid.

* To solve this system, there are several techniques. 3

The (2-dimensional) model problem

n1/2

« Graph is a regular square grid with n = k*2 vertices.
« Corresponds to matrix for regular 2D finite difference mesh.

 Gives good intuition for behavior of sparse matrix algorithms
on many 2-dimensional physical problems.

« There’ s also a 3-dimensional model problem.

2D

N

NASA Airfoil

Irregular mesh

Finite Element Mesh of NASA Airfoil

;
MR, |
T
%.‘wgduw..am%%'_
A

A
=
Ve

A A PATA VAL T

03 0.4 0.5 0.6 0.7 0.8 (e =]

0.2

0.1

4253 grid points

Structure of Cholesky factor L of A

Structure of A

0

1000¢f

2000¢

3000}

4000

1000}"

2000¢

3000+

4000

2000 3000

1000
nnz{=214755 flops

2000 3000 4000

1000

4000

11533587

0

nnz{A)=28831

0

45

Composite Mesh from a Mechanical Structure

Mechanikcal Structure with Mesh

1.5 .

46

Adaptive Mesh Refinement (AMR)

- Adaptive mesh around an explosion
- Refinement done by calculating errors

« Parallelism

- Mostly between “patches,” dealt to processors for load balance
- May exploit some within a patch (SMP)

47

BOBe~05

Shock waves in a gas dynamics using AMR (Adaptive Mesh
Refinement) See: http://www.linl.gov/ICASC/SAMRAI/

Irregular mesh: Tapered Tube (Multigrid)

Example of Prometheus meshes

49

Converting the Mesh to a Matrix

Mesh numbered in natural order

288:329)

1407:447)

4

X

{330:370) (371:406)
R

':448;4_55)_

XX

N

DA

%

X

oW
Py

X

X

X
XK
N M
N

RARAEALS
X
B
|
A
0

TN

wﬁ@

1134:175)

{176:217)

0

1

2

50 'ZZ‘\-

100

150

200

250

300

350

400

450

Matrix A, in natural order

0 100 200 300 400

nz =256

50

The Landscape of Ax = b Algorithms

Any
matrix

Symmetric

positive
definite
matrix

More Robust

Gaussian .
elimination Iterative
Pivoting GMRES,
LU BiCGSTAB,
Cholesky | Conjugate
gradient
—

More General

More Robust

Less Storage

Conjugate gradient in general

* CG can be used to solve any system Ax = Db, if ...

Conjugate gradient in general

* CG can be used to solve any system Ax = Db, if ...
* The matrix A is symmetric (a; = a;) ...
* ... and positive definite (all eigenvalues > 0).

Conjugate gradient in general

CG can be used to solve any system Ax = Db, if ...
The matrix A is symmetric (a; = a;) ...
... and positive definite (all eigenvalues > 0).

Symmetric positive definite matrices occur a lot
in scientific computing & data analysis!

Conjugate gradient in general

CG can be used to solve any system Ax = Db, if ...
The matrix A is symmetric (a; = a;) ...
... and positive definite (all eigenvalues > 0).

Symmetric positive definite matrices occur a lot
in scientific computing & data analysis!

But usually the matrix isn’t just a stencil.
Now we do need to store the matrix A. Where's the data”

Conjugate gradient in general

CG can be used to solve any system Ax = Db, if ...
* The matrix A is symmetric (a; = a;) ...
* ... and positive definite (all eigenvalues > 0).

« Symmetric positive definite matrices occur a lot
in scientific computing & data analysis!

« But usually the matrix isn’t just a stencil.
* Now we do need to store the matrix A. Where’s the data?

* The key is to use graph data structures and algorithms.

Graphs and Sparse Matrices

« Sparse matrix is a representation of a (sparse) graph
1 2 3 4 5 6

1 1 1 2 [\>4

1 \

6 5

S N A W N =
[
[

Matrix entries are edge weights
Number of nonzeros per row is the vertex degree

Edges represent data dependencies in matrix-vector
multiplication

Data structure for sparse matrix A (stored by rows)

311 0 | 53
01591 O
411261 0

o Full matrix:

« 2-dimensional array of real or
complex numbers

* (nrows*ncols) memory

Sparse matrix:

- compressed row storage

« about (2*nzs + nrows) memory

Distributed-memory sparse matrix data structure

31141]59] 26| 53

p . 1 3123]1

e

| o1 &

o
&—1——p
\

Each processor stores:

* # of local nonzeros
* range of local rows
p * nonzeros in CSR form

Vector and matrix primitives for CG

« DAXPY: v=a* + [*w (vectors v, w; scalars a, B)
* Broadcast the scalars a and (3, then independent * and +
« comm volume = 2p, span = log n

- DDOT: a=vM™w =2 v[]*'w[j] (vectors v, w; scalar q)
* Independent *, then + reduction
 comm volume = p, span =log n

 Matvec: v =A%*w (matrix A, vectors v, w)
* The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don’ t need to store A (e.g. temperature problem)
« Usually you do need to store A, but it's sparse ...

Parallel Dense Matrix-Vector Product

y = A*X, where A is a dense matrix

Layout:

PO P1

P2

P3

| X

PO

- 1D by rows y

P1

Algorithm:

P2

Foreach processor |

Broadcast X(j) L]
Compute A(p)*x(j)

A(i) is the n by n/p block row that processor Pi owns

Algorithm uses the formula
Y(i) = A(i)*X = ZJ- A®)*X(j)

P3

Parallel sparse matrix-vector product

» Lay out matrix and vectors by rows

o y(i) = sum(A(i,j)*x(j)) PO P1 P2 P3

* Only compute terms with A(i,j) # O — —— —
* Algorithm PO
Each processor i: y P1
Broadcast x(i) P2
Compute y(i) = A(i,:)*x 53

* Optimizations
« Only send each proc the parts of x it needs, to reduce comm
« Reorder matrix for better locality by graph partitioning

« Worry about balancing number of nonzeros / processor,
if rows have very different nonzero counts

Sparse Matrix-Vector Multiplication

Partitioning a Sparse Symmetric Matrix

OO =1 O\ Ui da WV DD b

Graph partitioning_(topic of later lecture)

» Assigns subgraphs to processors

» Determines parallelism and locality.

* Tries to make subgraphs all same size (load balance)
* Tries to minimize edge crossings (communication).

« Exact minimization is NP-complete.

« See Matlab demo.

[

s

o

| :
[]

@
[] —@

edge crossings =6 edge crossings = 10

bd

X

bl

Scientific computation and data analysis

Continuous
physical modeling

|

Linear algebra

|

Scientific computation and data analysis

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

Scientific computation and data analysis

Continuous
physical modeling

Discrete
structure analysis

~N S

Linear algebra & graph theory

1

Other memory layouts for matrix-vector product

« Column layout of the matrix eliminates the broadcast
« But adds a reduction to update the destination — same total comm

 Blocked layout uses a broadcast and reduction, both on
only sqgrt(p) processors — less total comm

 Blocked layout has advantages in multicore / Cilk++ too

PO. P1! P2 P3

P1

0
N

P3

O
(o)
O
~J

P13, P14 P15

e e e e e ———————1———————1——————— -

Challenges of Irregular Meshes for PDE’ s

« How to generate them in the first place
» For example, Triangle, a 2D mesh generator (Shewchuk)
« 3D mesh generation is harder! For example, QMD (Vavasis)

* How to partition them into patches
* For example, ParMetis, a parallel graph partitioner (Karypis)

* How to design iterative solvers

« For example, PETSc, Aztec, Hypre (all from national labs)

* ... Prometheus, a multigrid solver for finite elements on irregular
meshes

* How to design direct solvers
* For example, SuperlLU, parallel sparse Gaussian elimination

* These are challenges to do sequentially, more so in par@@el

