CS 240A:

Parallelism in Physical Simulation

Partly based on slides from David Culler, Jim Demmel, Kathy Yelick, et al., UCB CS267

Parallelism and Locality in Simulation

- Real world problems have parallelism and locality:
 - Some objects may operate independently of others.
 - Objects may depend more on nearby than distant objects.
 - Dependence on distant objects can often be simplified.
- Scientific models may introduce more parallelism:
 - When a continuous problem is discretized, time-domain dependencies are generally limited to adjacent time steps.
 - Far-field effects can sometimes be ignored or approximated.
- Many problems exhibit parallelism at multiple levels
 - Example: circuits can be simulated at many levels, and within each there may be parallelism within and between subcircuits.

Multilevel Modeling: Circuit Simulation

• Circuits are simulated at many different levels

Level	Primitives	Examples	
Instruction level	Instructions	Sim	OS, SPIM
Cycle level	Functional units		[↓] VIRAM-p
Register Transfer Level (RTL)	Register, counter, MUX)L
Gate Level	Gate, flip-flop, memory cell		Thor
Switch level	Ideal transistor	Cosmos	
Circuit level	Resistors, capacitors, etc.	Spice	
Device level	Electrons, silicon		

Basic kinds of simulation

- Discrete event systems
 - Time and space are discrete
- Particle systems
 - Important special case of lumped systems
- Ordinary Differential Equations (ODEs)
 - Lumped systems
 - Location/entities are discrete, time is continuous
- Partial Different Equations (PDEs)
 - Time and space are continuous

continuous

Basic Kinds of Simulation

- Discrete event systems:
 - Examples: "Game of Life," logic level circuit simulation.
- Particle systems:
 - Examples: billiard balls, semiconductor device simulation, galaxies.
- Lumped variables depending on continuous parameters:
 - ODEs, e.g., circuit simulation (Spice), structural mechanics, chemical kinetics.
- Continuous variables depending on continuous parameters:
 - PDEs, e.g., heat, elasticity, electrostatics.
- A given phenomenon can be modeled at multiple levels.
- Many simulations combine more than one of these techniques.

A Model Problem: Sharks and Fish

- Illustration of parallel programming
 - Original version: WATOR, proposed by Geoffrey Fox
 - Sharks and fish living in a 2D toroidal ocean
- Several variations to show different physical phenomena
- Basic idea: sharks and fish living in an ocean
 - rules for movement
 - breeding, eating, and death
 - forces in the ocean
 - forces between sea creatures
- See link on course home page for details

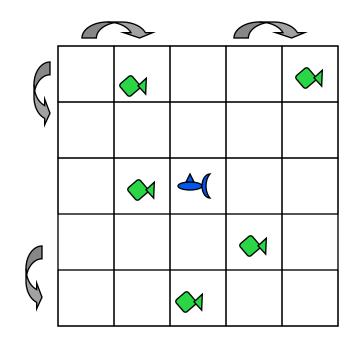
Discrete Event Systems

Discrete Event Systems

- Systems are represented as:
 - finite set of variables.
 - the set of all variable values at a given time is called the state.
 - each variable is updated by computing a transition function depending on the other variables.
- System may be:
 - synchronous: at each discrete timestep evaluate all transition functions; also called a state machine.
 - asynchronous: transition functions are evaluated only if the inputs change, based on an "event" from another part of the system; also called event driven simulation.
- Example: The "game of life:"
 - Also known as Sharks and Fish #3:
 - Space divided into cells, rules govern cell contents at each step

Sharks and Fish as Discrete Event System

- Ocean modeled as a 2D toroidal grid
- Each cell occupied by at most one sea creature

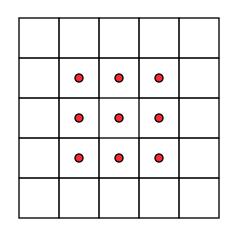


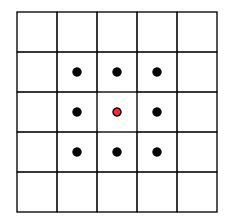
Fish-only: the Game of Life

- An new fish is born if
 - a cell is empty
 - exactly 3 (of 8) neighbors contain fish
- A fish dies (of overcrowding) if
 - cell contains a fish
 - 4 or more neighboring cells are full
- A fish dies (of loneliness) if
 - cell contains a fish
 - less than 2 neighboring cells are full
- Other configurations are stable
- The original Wator problem adds sharks that eat fish

Parallelism in Sharks and Fish

- The activities in this system are discrete events
- The simulation is synchronous
 - use two copies of the grid (old and new)
 - the value of each new grid cell in new depends only on the 9 cells (itself plus neighbors) in old grid ("stencil computation")
 - Each grid cell update is independent: reordering or parallelism OK
 - simulation proceeds in timesteps, where (logically) each cell is evaluated at every timestep





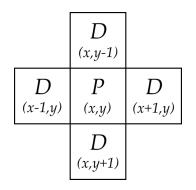
old ocean

new ocean

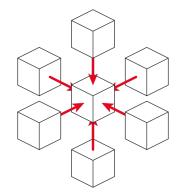
Stencil computations

- Data lives at the vertices of a regular mesh
- At each step, new values are computed from neighbors
- Examples:
 - Game of Life (9-point stencil)
 - Matvec in 2D model problem (5-point stencil)
 - Matvec in 3D model problem (7-point stencil)

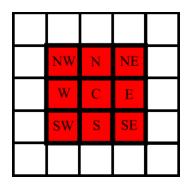
Examples of stencils

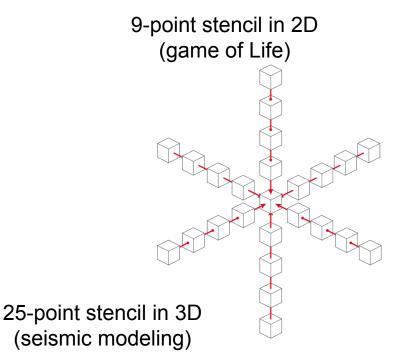


5-point stencil in 2D (temperature problem)



7-point stencil in 3D (3D temperature problem)

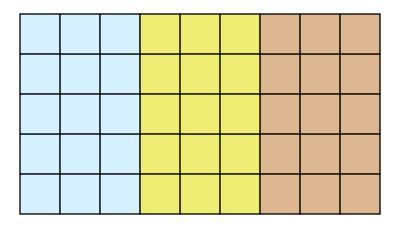




... and many more

Parallelizing Stencil Computations

- <u>Parallelism</u> is simple
 - Span t_{∞} = constant, so potential parallelism pp = size of problem!
 - Even decomposition across processors gives load balance
- Communication volume
 - v = total # of boundary cells between patches



- Spatial locality limits communication cost
 - Communicate only boundary values from neighboring patches

Where's the data (5-point stencil problem)?

- Each of n stencil points has some fixed amount of data
- Divide stencil points among processors, n/p points each
- How do you divide up a sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

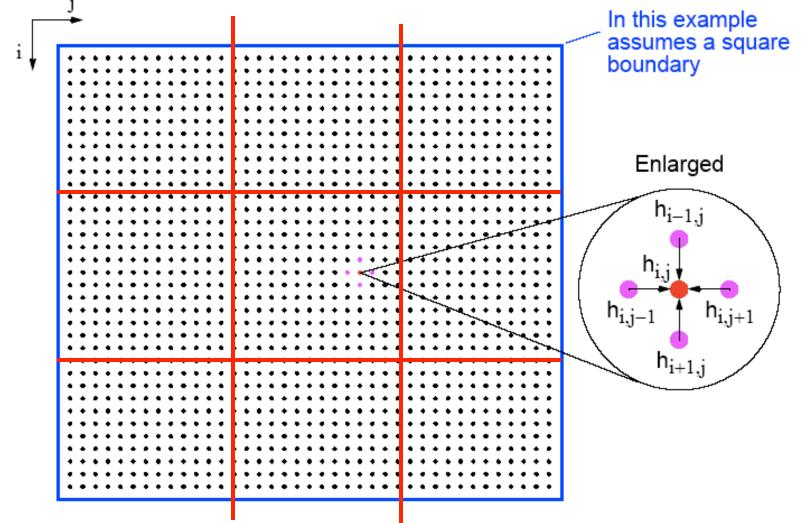
How do you partition the sqrt(n) by sqrt(n) stencil points?

- First version: number the grid by rows
- Leads to a block row decomposition of the region

```
v = 2 * p * sqrt(n)
                                                                                       In this example
                                                                                       assumes a square
i
                                                                                       boundary
                                                                                           Enlarged
                                                                                              h_{i-1,j}
                                                                                           h<sub>i,j</sub>.
                                                                                      h<sub>i,j-1</sub>
                                                                                                     h<sub>i,j+1</sub>
                                                                                             \mathsf{h}_{i+1,j}
```

How do you partition the sqrt(n) by sqrt(n) stencil points?

- Second version: 2D block decomposition
- Numbering is a little more complicated
- v = 4 * sqrt(p) * sqrt(n)



Where's the data (temperature problem)?

- The matrix A: Nowhere!!
- The vectors x, b, r, d:
 - Each vector is one value per stencil point
 - Divide stencil points among processors, n/p points each
- How do you divide up the sqrt(n) by sqrt(n) region of points?
- Block row (or block col) layout: v = 2 * p * sqrt(n)
- 2-dimensional block layout: v = 4 * sqrt(p) * sqrt(n)

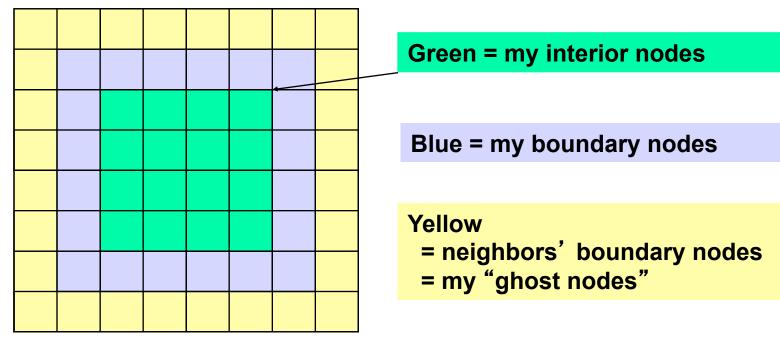
Detailed complexity measures for data movement I: Latency/Bandwidth Model

Moving data between processors by message-passing

- Machine parameters:
 - α latency (message startup time in seconds)
 - β inverse bandwidth (in seconds per word)
 - between nodes of Triton, $\alpha \sim 2.2 \times 10^{-6}$ and $\beta \sim 6.4 \times 10^{-9}$
- Time to send & recv or bcast a message of w words: $\alpha + w^*\beta$
- t_{comm} total communication time
- t_{comp} total computation time
- Total parallel time: $t_p = t_{comp} + t_{comm}$

Ghost Nodes in Stencil Computations

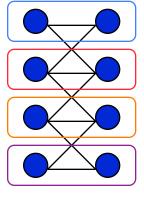
Comm cost = α * (#messages) + β * (total size of messages)



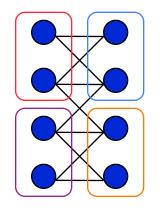
- Keep a ghost copy of neighbors' boundary nodes
- Communicate every second iteration, not every iteration
- Reduces #messages, not total size of messages
- Costs extra memory and computation
- Can also use more than one layer of ghost nodes 20

Synchronous Circuit Simulation

- Circuit is a graph made up of subcircuits connected by wires
 - Component simulations need to interact if they share a wire.
 - Data structure is irregular (graph) of subcircuits.
 - Parallel algorithm is timing-driven or synchronous:
 - Evaluate all components at every timestep (determined by known circuit delay)
- Graph partitioning assigns subgraphs to processors (NP-complete)
 - Determines parallelism and locality.
 - Attempts to evenly distribute subgraphs to nodes (load balance).
 - Attempts to minimize edge crossing (minimize communication).



edge crossings = 6



edge crossings = 10

Asynchronous Simulation

- Synchronous simulations may waste time:
 - Simulate even when the inputs do not change.
- Asynchronous simulations update only when an event arrives from another component:
 - No global time steps, but individual events contain time stamp.
 - Example: Game of life in loosely connected ponds (don't simulate empty ponds).
 - Example: Circuit simulation with delays (events are gates flipping).
 - Example: Traffic simulation (events are cars changing lanes, etc.).
- Asynchronous is more efficient, but harder to parallelize
 - In MPI, events can be messages ...
 - ... but how do you know when to "receive"?

Particle Systems

Particle Systems

- A particle system has
 - a finite number of particles.
 - moving in space according to Newton's Laws (i.e. F = ma).
 - time is continuous.
- Examples:
 - stars in space: laws of gravity.
 - atoms in a molecule: electrostatic forces.
 - neutrons in a fission reactor.
 - electron beam and ion beam semiconductor manufacturing.
 - cars on a freeway: Newton's laws + models of driver & engine.
- Many simulations combine particle simulation techniques with some discrete event techniques.

Forces in Particle Systems

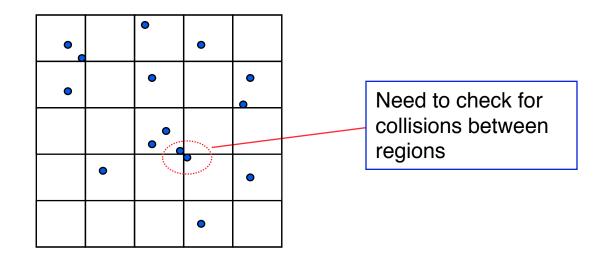
- Force on each particle decomposed into near and far: force = external_force + nearby_force + far_field_force
- External force
 - ocean current to sharks and fish world (S&F 1).
 - externally imposed electric field in electron beam.
- Nearby force
 - sharks attracted to eat nearby fish (S&F 5).
 - balls on a billiard table bounce off of each other.
 - Van der Waals forces in fluid (1/r⁶).
- Far-field force
 - fish attract other fish by gravity-like $(1/r^2)$ force (S&F 2).
 - gravity, electrostatics
 - forces governed by elliptic PDEs.

Parallelism in External Forces

- External forces are the simplest to implement.
 - Force on one particle is independent of other particles.
 - "Embarrassingly parallel".
- Evenly distribute particles on processors
 - Any even distribution works.
 - Locality is not an issue, since no communication.
- For each particle on processor, apply external force.

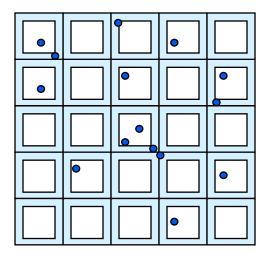
Parallelism in Nearby Forces

- Nearby forces require interaction => communication.
- Force depends on other particles nearby (e.g. collisions)
- Simple algorithm: check every pair for collision: O(n²)
- Parallelism by decomposition of physical domain:
 - O(n/p) particles per processor if evenly distributed.
- Better algorithm: only check pairs near boundaries



Parallelism in Nearby Forces

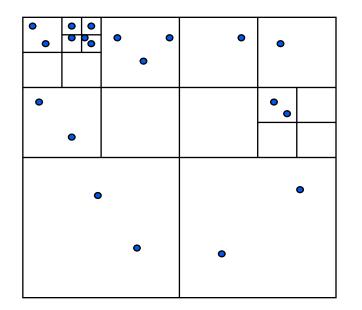
- Challenge 1: interactions of particles near boundaries:
 - Communicate particles near boundary to neighboring processors.
 - Surface to volume effect limits communication.
 - Which communicates less: squares (as below) or slabs?



Communicate particles in boundary region to neighbors

Parallelism in Nearby Forces

- Challenge 2: load imbalance, if particles cluster together:
 - Stars in galaxies, for example
- To reduce load imbalance, divide space unevenly.
 - Each region contains roughly equal number of particles.
 - Quad-tree in 2D, oct-tree in 3D.

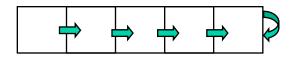


Example: each square contains at most 3 particles

See: http://njord.umiacs.umd.edu:1601/users/brabec/quadtree/points/prquad.html

Parallelism in Far-Field Forces

- Far-field forces involve all-to-all interaction and communication.
- Force on one particle depends on all other particles.
 - Examples: galaxies (gravity), protein folding (electrostatics)
 - Simplest algorithm is O(n²) as in S&F 2, 4, 5.
 - Decomposing space does not help total work or communication, since every particle needs to "visit" every other particle.



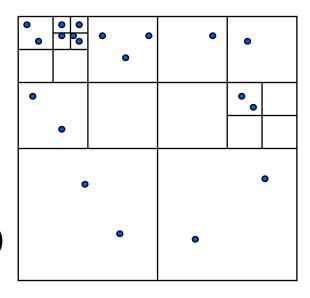
Implement by rotating particle sets.

- Keeps processors busy
- All processors see all particles
- Just like MGR matrix multiply!

Use more clever algorithms to beat $O(n^2)$?

Far-field forces: Tree Decomposition

- "Fast multipole" algorithms
 - Approximate the force from far-away particles
 - Simplify a group of far-away particles into a single multipole.
 - Do this at every scale simultaneously (every quadtree level)
 - Each quadtree node contains an approximation of descendants.
- O(n log n) or even O(n) instead of O(n²).
- "Top 10 Algorithms of the 20th Century" (resources page)
- Tutorial on course web page.



Summary of Particle Methods

- Model contains discrete entities, namely, particles
 force = external_force + nearby_force + far_field_force
- Time is continuous is discretized to solve
- Simulation follows particles through timesteps
 - All-pairs algorithm is simple, but inefficient, $O(n^2)$
 - Particle-mesh methods approximates by moving particles
 - Tree-based algorithms approximate by treating set of particles as a group, when far away

• This is a special case of a "lumped" system . . .

Lumped Systems: ODEs

System of Lumped Variables

- Finitely many variables
- Depending on a continuous parameter (usually time)
- Example 1 System of chemical reactions:
 - Each reaction consumes some "compounds" and produces others
 - Stoichometric matrix S: rows for compounds, cols for reactions
 - Compound <u>concentrations</u> x(i) in terms of <u>reaction rates</u> v(j): dx/dt = S * v
- Example 2 Electronic circuit:
 - Circuit is a graph.
 - wires are edges.
 - each edge has resistor, capacitor, inductor or voltage source.
 - Variables are voltage & current at endpoints of edges.
 - Related by Ohm's Law, Kirchoff's Laws, etc.

• Forms a system of ordinary differential equations (ODEs).

34

• Differentiated with respect to time

Example: Stoichiometry in chemical reactions

reaction 1:	CP => PC
reaction 2:	C + P => CP
reaction 3:	C + AP => CP + A

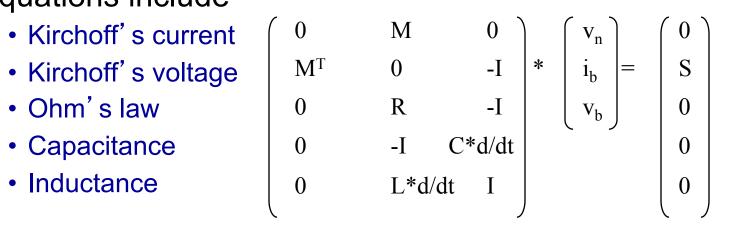
- Matrix S : row = compound, column = reaction
- Linear ODE system: d/dt (concentration) = S * (reaction rate)

compound A: compound C: compound P: compound CP: compound AP: compound PC:

$\left(\frac{dx_1}{dt} \right)$		(0	0	1	
dx ₂ /dt		0	-1	-1	V ₁
dx ₃ /dt	=	0	-1	0	* V ₂
dx ₄ /dt		-1	1	1	v_3
dx ₅ /dt		0	0	-1	
(dx ₆ /dt)		1	0	0	

Example: Electronic circuit

- State of the system is represented by
 - v_n(t) node voltages
 - $i_{b}(t)$ branch currents \Rightarrow all at time t
 - v_b(t) branch voltages
- Equations include



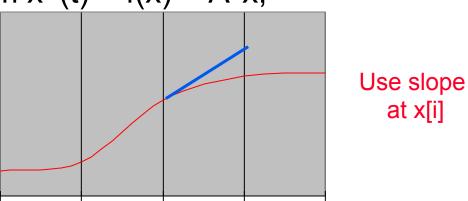
 Write as single large system of ODEs (possibly with constraints).

Solving ODEs

- In most examples, the matrices are sparse:
 - most array elements are 0.
 - neither store nor compute on these 0's.
- Given a set of ODEs, two kinds of questions are:
 - Compute the values of the variables at some time t
 - Explicit methods
 - Implicit methods
 - Compute modes of vibration
 - Eigenvalue problems

Solving ODEs: Explicit Methods

- Rearrange ODE into the form $x'(t) = f(x) = A^*x$, where A is a sparse matrix
 - Compute x(i*dt) = x[i] at i=0,1,2,...
 - Approximate x' (i*dt) x[i+1]=x[i] + dt*slope

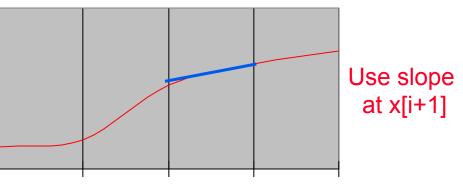


t (i) t+dt (i+1)

- Explicit methods, e.g., (Forward) Euler's method.
 - Approximate x' (t)=A*x by (x[i+1] x[i])/dt = A*x[i].
 - x[i+1] = x[i]+dt*A*x[i], i.e. sparse matrix-vector multiplication.
- Tradeoffs:
 - Simple algorithm: sparse matrix vector multiply.
 - Stability problems: May need to take very small time steps, especially if system is stiff.

Solving ODEs: Implicit Methods

- Assume ODE is x'(t) = $f(x) = A^*x$, where A is a sparse matrix
 - Compute x(i*dt) = x[i] at i=0,1,2,...
 - Approximate x' (i*dt) x[i+1]=x[i] + dt*slope



t+dt

- Implicit method, e.g., Backward Euler solve:
 - Approximate x' (t)=A*x by (x[i+1] x[i])/dt = A*x[i+1].
 - (I dt*A)*x[i+1] = x[i], i.e. we need to solve a sparse linear system of equations.
- Trade-offs:
 - Larger timestep possible: especially for stiff problems
 - Harder algorithm: need to solve a sparse system at each step

ODEs and Sparse Matrices

- All these reduce to sparse matrix problems
 - Explicit: sparse matrix-vector multiplication.
 - Implicit: solve a sparse linear system
 - direct solvers (Gaussian elimination).
 - iterative solvers (use sparse matrix-vector multiplication).
 - Eigenvalue/eigenvector algorithms may also be either explicit or implicit.

Partial Differential Equations (PDEs)

Continuous Variables, Continuous Parameters

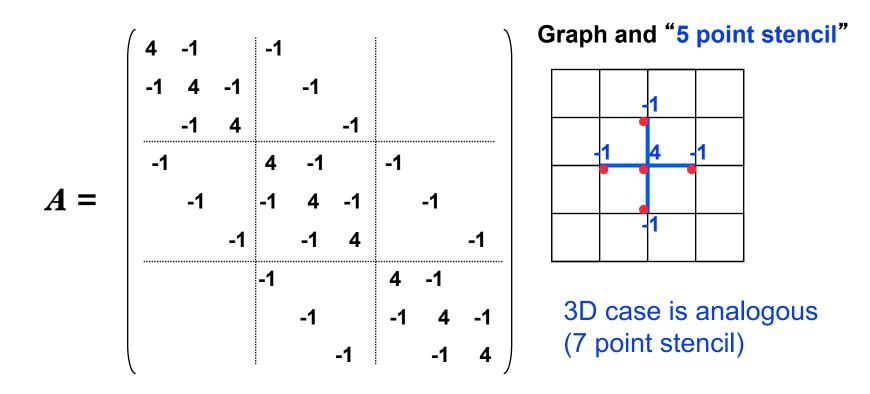
Examples:

- Parabolic (time-dependent) problems:
 - Heat flow: Temperature(position, time)
 - Diffusion: Concentration(position, time)
- Elliptic (steady state) problems:
 - Electrostatic or Gravitational Potential: Potential(position)
- Hyperbolic problems (waves):
 - Quantum mechanics: Wave-function(position,time)

Many problems combine features of above

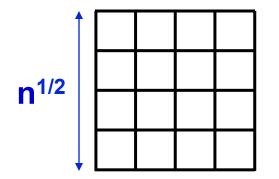
- Fluid flow: Velocity, Pressure, Density (position, time)
- Elasticity: Stress, Strain(position, time)

2D Implicit Method



- Multiplying by this matrix is just nearest neighbor computation on 2D grid.
- To solve this system, there are several techniques. ⁴³

The (2-dimensional) model problem

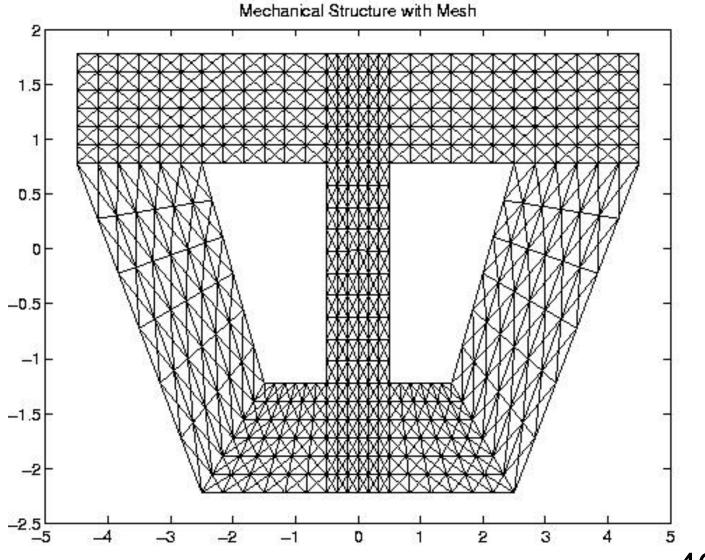


- Graph is a regular square grid with $n = k^2$ vertices.
- Corresponds to matrix for regular 2D finite difference mesh.
- Gives good intuition for behavior of sparse matrix algorithms on many 2-dimensional physical problems.
- There's also a 3-dimensional model problem.

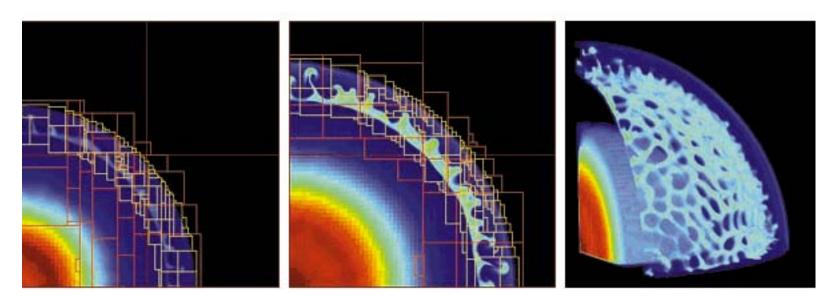
Irregular mesh: NASA Airfoil in 2D

Finite Element Mesh of NASA Airfoil 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 DL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4253 grid points Structure of A Structure of Cholesky factor L of A · 1000 1000 2000 2000 3000 3000 4000 4000 2000 3000 4000 1000 2000 3000 4000 D 1000 D nnz(A)=28831 nnz(L)=214755 ,flops=11533587

Composite Mesh from a Mechanical Structure

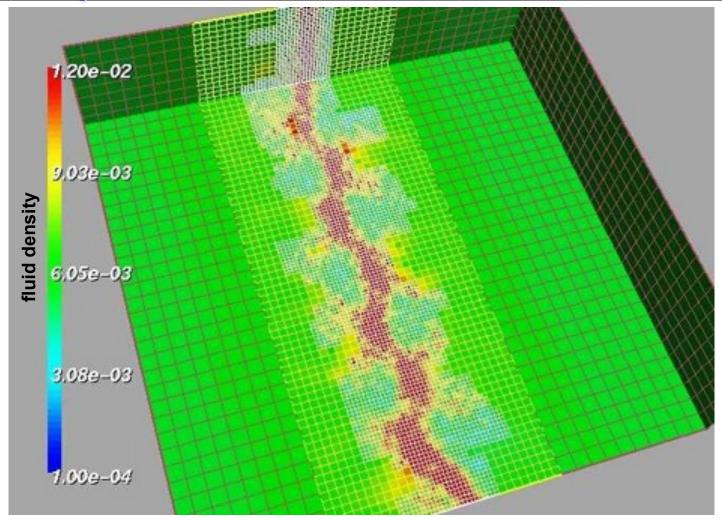


Adaptive Mesh Refinement (AMR)



- Adaptive mesh around an explosion
 - Refinement done by calculating errors
- Parallelism
 - Mostly between "patches," dealt to processors for load balance
 - May exploit some within a patch (SMP)

Adaptive Mesh



Shock waves in a gas dynamics using AMR (Adaptive Mesh Refinement) See: <u>http://www.llnl.gov/CASC/SAMRAI/</u>

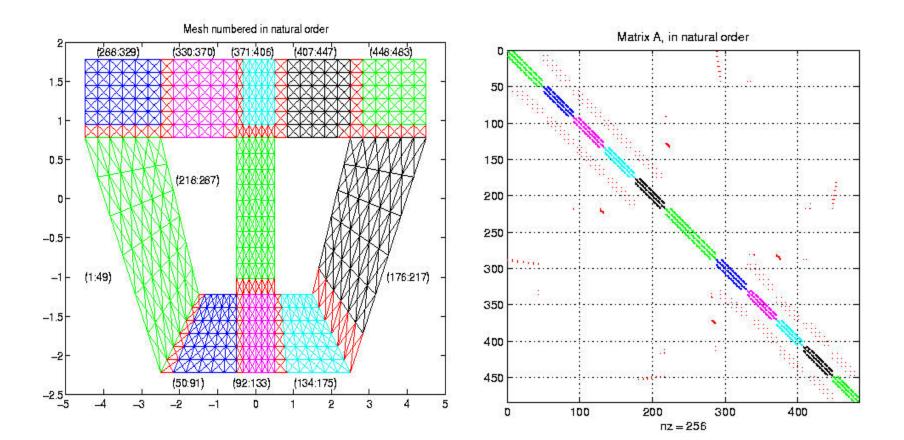
Irregular mesh: Tapered Tube (Multigrid)

Example of Prometheus meshes

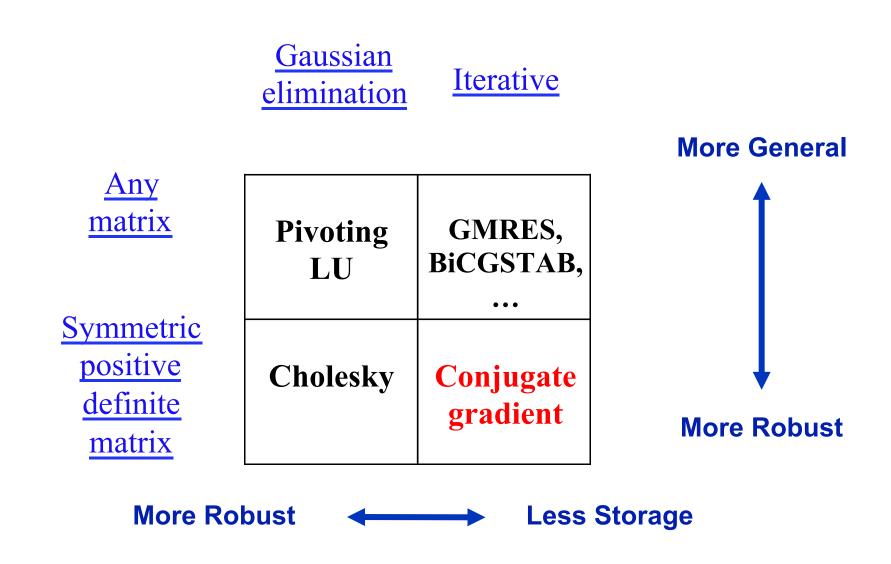


Figure 6 Sample input grid and coarse grids

Converting the Mesh to a Matrix



The Landscape of Ax = b Algorithms



• CG can be used to solve *any* system Ax = b, if ...

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ij} = a_{ji}) ...
- ... and *positive definite* (all eigenvalues > 0).

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and *positive definite* (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?

- CG can be used to solve any system Ax = b, if ...
- The matrix A is symmetric (a_{ii} = a_{ii}) ...
- ... and positive definite (all eigenvalues > 0).
- Symmetric positive definite matrices occur a lot in scientific computing & data analysis!
- But usually the matrix isn't just a stencil.
- Now we do need to store the matrix A. Where's the data?
- The key is to use graph data structures and algorithms.

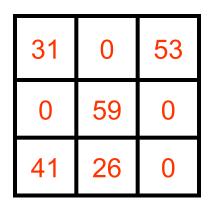
Graphs and Sparse Matrices

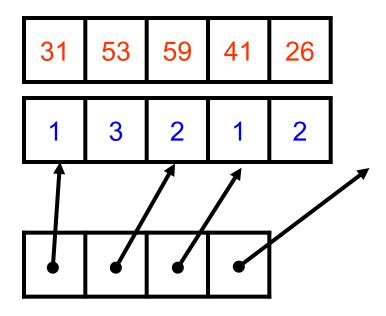
• Sparse matrix is a representation of a (sparse) graph



- Matrix entries are edge weights
- Number of nonzeros per row is the vertex degree
- Edges represent data dependencies in matrix-vector multiplication

Data structure for sparse matrix A (stored by rows)



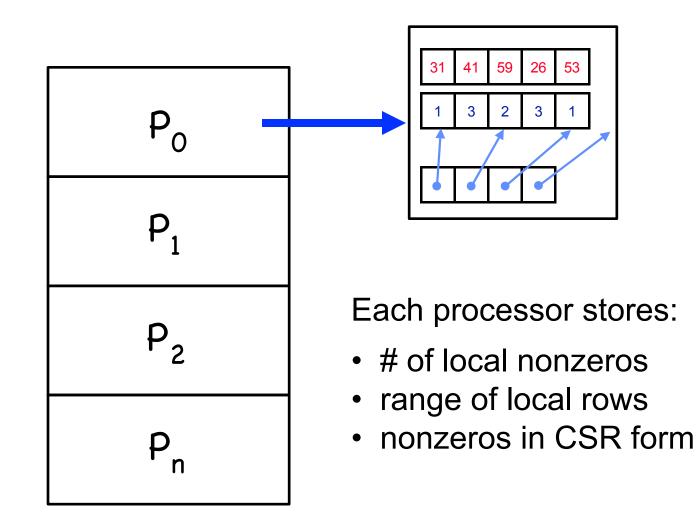


• Full matrix:

- 2-dimensional array of real or complex numbers
- (nrows*ncols) memory

- Sparse matrix:
 - compressed row storage
 - about (2*nzs + nrows) memory

Distributed-memory sparse matrix data structure



Vector and matrix primitives for CG

• DAXPY: $v = \alpha^* v + \beta^* w$ (vectors v, w; scalars α , β)

- Broadcast the scalars α and β , then independent * and +
- comm volume = 2p, span = log n
- DDOT: $\alpha = v^{T*}w = \sum_{j} v[j]^*w[j]$ (vectors v, w; scalar α)
 - Independent *, then + reduction
 - comm volume = p, span = log n
- Matvec: v = A*w

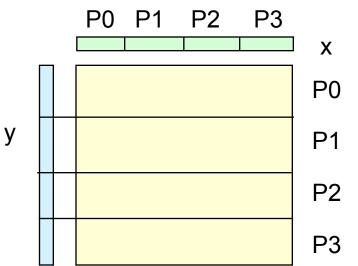
(matrix A, vectors v, w)

- The hard part
- But all you need is a subroutine to compute v from w
- Sometimes you don't need to store A (e.g. temperature problem)
- Usually you do need to store A, but it's sparse ...

Parallel Dense Matrix-Vector Product

• $y = A^*x$, where A is a dense matrix

- Layout:
 - 1D by rows
- Algorithm: Foreach processor j Broadcast X(j) Compute A(p)*x(j)

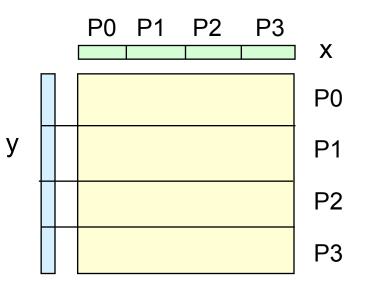


- A(i) is the n by n/p block row that processor Pi owns
- Algorithm uses the formula

 $Y(i) = A(i)^*X = \sum_j A(i)^*X(j)$

Parallel sparse matrix-vector product

- Lay out matrix and vectors by rows
- y(i) = sum(A(i,j)*x(j))
- Only compute terms with A(i,j) ≠ 0
- <u>Algorithm</u>
 Each processor i:
 Broadcast x(i)
 Compute y(i) = A(i,:)*x

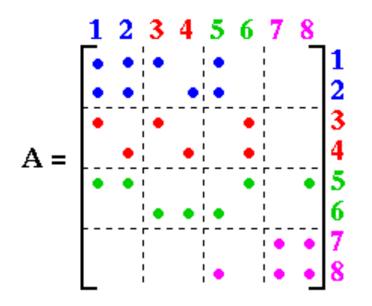


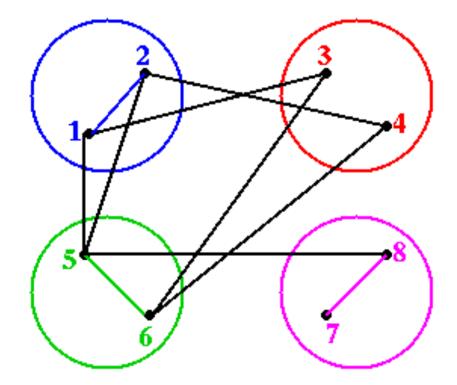
Optimizations

- Only send each proc the parts of x it needs, to reduce comm
- Reorder matrix for better locality by graph partitioning
- Worry about balancing number of nonzeros / processor, if rows have very different nonzero counts

Sparse Matrix-Vector Multiplication

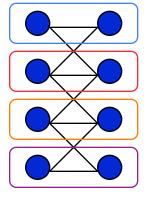
Partitioning a Sparse Symmetric Matrix



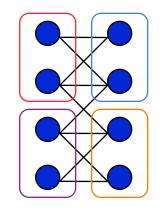


Graph partitioning (topic of later lecture)

- Assigns subgraphs to processors
- Determines parallelism and locality.
- Tries to make subgraphs all same size (load balance)
- Tries to minimize edge crossings (communication).
- Exact minimization is NP-complete.
- See Matlab demo.

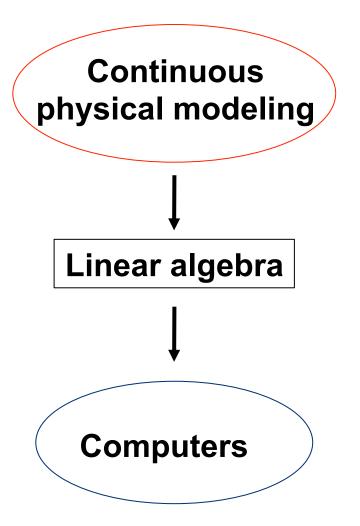


edge crossings = 6

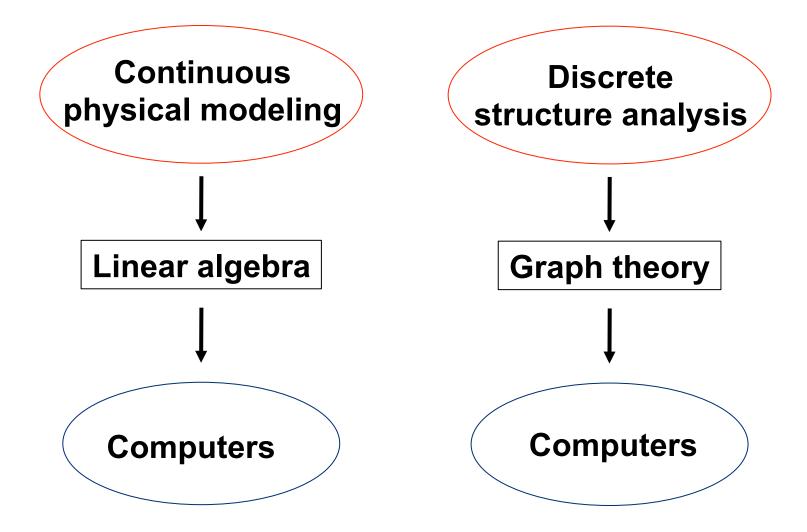


edge crossings = 10

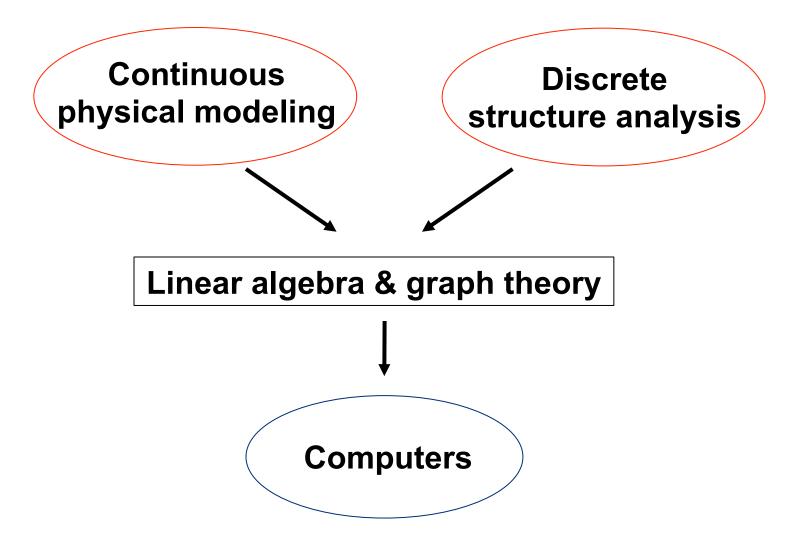
Scientific computation and data analysis



Scientific computation and data analysis

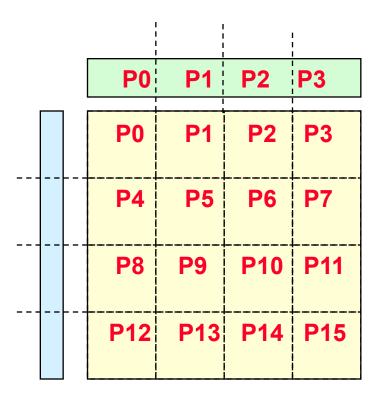


Scientific computation and data analysis



Other memory layouts for matrix-vector product

- Column layout of the matrix eliminates the broadcast
 - But adds a reduction to update the destination same total comm
- Blocked layout uses a broadcast and reduction, both on only sqrt(p) processors – less total comm
- Blocked layout has advantages in multicore / Cilk++ too



Challenges of Irregular Meshes for PDE's

- How to generate them in the first place
 - For example, Triangle, a 2D mesh generator (Shewchuk)
 - 3D mesh generation is harder! For example, QMD (Vavasis)
- How to partition them into patches
 - For example, ParMetis, a parallel graph partitioner (Karypis)
- How to design iterative solvers
 - For example, PETSc, Aztec, Hypre (all from national labs)
 - ... Prometheus, a multigrid solver for finite elements on irregular meshes
- How to design direct solvers
 - For example, SuperLU, parallel sparse Gaussian elimination
- These are challenges to do sequentially, more so in parallel