
CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting (LU)
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Iterative methods – Conjugate gradient, etc.
•  Sparse matrix times dense vector

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

Matrix and Graph

•  Edge from row i to column j for nonzero A(i,j)
•  No edges for diagonal nonzeros

•  If A is symmetric, G(A) is an undirected graph

•  Symmetric permutation PAPT renumbers the vertices

1 2

3

4 7

6

5

A G(A)

Compressed Sparse Matrix Storage

•  Full storage:
•  2-dimensional array.
•  (nrows*ncols) memory.

31 0 53

0 59 0

41 26 0

31 41 59 26 53

1 3 2 3 1

•  Sparse storage:
•  Compressed storage by

columns (CSC).
•  Three 1-dimensional arrays.
•  (2*nzs + ncols + 1) memory.
•  Similarly, CSR.

1 3 5 6

value:

row:

colstart:

The Landscape of Ax=b Solvers

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Direct
A = LU

Iterative
y’ = Ay

Non-
symmetric

Symmetric
positive
definite

More Robust Less Storage (if sparse)

More Robust

More General

CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting (LU)
•  See April 15 slides
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Iterative methods – Conjugate gradient, etc.
•  Sparse matrix times dense vector

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

For a symmetric, positive definite matrix:

1.  Matrix factorization: A = LLT (Cholesky factorization)

2.  Forward triangular solve: Ly = b

3.  Backward triangular solve: LTx = y

For a nonsymmetric matrix:

1.  Matrix factorization: PA = LU (Partial pivoting)
2.  . . .

Gaussian elimination to solve Ax = b

Sparse Column Cholesky Factorization

for j = 1 : n

 L(j:n, j) = A(j:n, j);
 for k < j with L(j, k) nonzero
 % sparse cmod(j,k)
 L(j:n, j) = L(j:n, j) – L(j, k) * L(j:n, k);
 end;

 % sparse cdiv(j)
 L(j, j) = sqrt(L(j, j));
 L(j+1:n, j) = L(j+1:n, j) / L(j, j);

end;

•  Column j of A becomes column j of L

L

L
LT

A

j

8

Irregular mesh: NASA Airfoil in 2D

Graphs and Sparse Matrices: Cholesky factorization

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

G(A) G+(A)
[chordal]

Symmetric Gaussian elimination:
for j = 1 to n
 add edges between j’s
 higher-numbered neighbors

Fill: new nonzeros in factor

Permutations of the 2-D model problem

•  Theorem: With the natural permutation, the n-vertex model
problem has Θ(n3/2) fill. (“order exactly”)

•  Theorem: With any permutation, the n-vertex model
problem has Ω(n log n) fill. (“order at least”)

•  Theorem: With a nested dissection permutation, the
n-vertex model problem has O(n log n) fill. (“order at
most”)

Nested dissection ordering

•  A separator in a graph G is a set S of vertices whose
removal leaves at least two connected components.

•  A nested dissection ordering for an n-vertex graph G
numbers its vertices from 1 to n as follows:
•  Find a separator S, whose removal leaves connected

components T1, T2, …, Tk
•  Number the vertices of S from n-|S|+1 to n.
•  Recursively, number the vertices of each component:

T1 from 1 to |T1|, T2 from |T1|+1 to |T1|+|T2|, etc.
•  If a component is small enough, number it arbitrarily.

•  It all boils down to finding good separators!

Separators in theory

•  If G is a planar graph with n vertices, there exists a set
of at most sqrt(6n) vertices whose removal leaves no
connected component with more than 2n/3 vertices.
(“Planar graphs have sqrt(n)-separators.”)

•  “Well-shaped” finite element meshes in 3 dimensions
have n2/3 - separators.

•  Also some other classes of graphs – trees, graphs of
bounded genus, chordal graphs, bounded-excluded-
minor graphs, …

•  Mostly these theorems come with efficient algorithms,
but they aren’t used much.

Separators in practice

•  Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

•  Some techniques:
•  Spectral partitioning (uses eigenvectors of Laplacian matrix of graph)
•  Geometric partitioning (for meshes with specified vertex coordinates)
•  Iterative-swapping (Kernighan-Lin, Fiduccia-Matheysses)
•  Breadth-first search (fast but dated)

•  Many popular modern codes (e.g. Metis, Chaco) use
multilevel iterative swapping

•  Matlab graph partitioning toolbox: see course web page

Complexity of direct methods

n1/2 n1/3

2D 3D

Space (fill): O(n log n) O(n 4/3)

Time (flops): O(n 3/2) O(n 2)

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting (LU)
•  See April 15 slides
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Iterative methods – Conjugate gradient, etc.
•  Sparse matrix times dense vector

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

The Landscape of Ax=b Solvers

Pivoting

LU

GMRES,

BiCGSTAB,
…

Cholesky

Conjugate
gradient

Direct
A = LU

Iterative
y’ = Ay

Non-
symmetric

Symmetric
positive
definite

More Robust Less Storage (if sparse)

More Robust

More General

Conjugate gradient iteration

•  One matrix-vector multiplication per iteration
•  Two vector dot products per iteration
•  Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0	

for k = 1, 2, 3, . . .	

	

αk = (rT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 approx solution

	

 rk = rk-1 – αk Adk-1 residual	

	

βk = (rT

k rk) / (rT
k-1rk-1) improvement	

	

dk = rk + βk dk-1 search direction	

	

Sparse matrix data structure (stored by rows)

•  Full:

•  2-dimensional array of real or
complex numbers

•  (nrows*ncols) memory

31 0 53

0 59 0

41 26 0

31 53 59 41 26

1 3 2 1 2

•  Sparse:
•  compressed row storage

•  about (2*nzs + nrows) memory

P0 �

P1 �

P2 �

Pp-1 �

5941 532631

23 131

Each processor stores:

•  # of local nonzeros
•  range of local rows
•  nonzeros in CSR form

Distributed row sparse matrix data structure

•  Lay out matrix and vectors by rows

•  y(i) = sum(A(i,j)*x(j))
•  Skip terms with A(i,j) = 0

•  Algorithm
Each processor i:
 Broadcast x(i)
 Compute y(i) = A(i,:)*x

•  Optimizations: reduce communication by
•  Only send as much of x as necessary to each proc
•  Reorder matrix for better locality by graph partitioning

x

y

P0

P1

P2

P3

P0 P1 P2 P3

Matrix-vector product: Parallel implementation

Sparse Matrix-Vector Multiplication

CS 240A: Solving Ax = b in parallel

•  Dense A: Gaussian elimination with partial pivoting (LU)
•  See April 15 slides
•  Same flavor as matrix * matrix, but more complicated

•  Sparse A: Gaussian elimination – Cholesky, LU, etc.
•  Graph algorithms

•  Sparse A: Iterative methods – Conjugate gradient, etc.
•  Sparse matrix times dense vector

•  Sparse A: Preconditioned iterative methods and multigrid
•  Mixture of lots of things

Conjugate gradient: Convergence

•  In exact arithmetic, CG converges in n steps
 (completely unrealistic!!)

•  Accuracy after k steps of CG is related to:
•  consider polynomials of degree k that are equal to 1 at 0.
•  how small can such a polynomial be at all the eigenvalues of A?

•  Thus, eigenvalues close together are good.

•  Condition number: κ(A) = ||A||2 ||A-1||2 = λmax(A) / λmin(A)

•  Residual is reduced by a constant factor by
 O(sqrt(κ(A))) iterations of CG.

Preconditioners

•  Suppose you had a matrix B such that:
1.  condition number κ(B-1A) is small
2. By = z is easy to solve

•  Then you could solve (B-1A)x = B-1b instead of Ax = b

•  Each iteration of CG multiplies a vector by B-1A:
•  First multiply by A
•  Then solve a system with B

Preconditioned conjugate gradient iteration

x0 = 0, r0 = b, d0 = B-1 r0, y0 = B-1 r0	

for k = 1, 2, 3, . . .	

	

αk = (yT

k-1rk-1) / (dT
k-1Adk-1) step length

	

xk = xk-1 + αk dk-1 approx solution

	

 rk = rk-1 – αk Adk-1 residual

	

 yk = B-1 rk preconditioning solve	

	

βk = (yT

k rk) / (yT
k-1rk-1) improvement	

	

dk = yk + βk dk-1 search direction	

	

•  One matrix-vector multiplication per iteration
•  One solve with preconditioner per iteration

Choosing a good preconditioner

•  Suppose you had a matrix B such that:
1.  condition number κ(B-1A) is small
2. By = z is easy to solve

•  Then you could solve (B-1A)x = B-1b instead of Ax = b

•  B = A is great for (1), not for (2)
•  B = I is great for (2), not for (1)
•  Domain-specific approximations sometimes work
•  B = diagonal of A sometimes works

•  Better: blend in some direct-methods ideas. . .

Incomplete Cholesky factorization (IC, ILU)

•  Compute factors of A by Gaussian elimination,
but ignore fill

•  Preconditioner B = RTR ≈ A, not formed explicitly

•  Compute B-1z by triangular solves (in time nnz(A))

•  Total storage is O(nnz(A)), static data structure

•  Either symmetric (IC) or nonsymmetric (ILU)

x

A	

 RT	

 R	

Incomplete Cholesky and ILU: Variants

•  Allow one or more “levels of fill”
•  unpredictable storage requirements

•  Allow fill whose magnitude exceeds a “drop tolerance”
•  may get better approximate factors than levels of fill
•  unpredictable storage requirements
•  choice of tolerance is ad hoc

•  Partial pivoting (for nonsymmetric A)

•  “Modified ILU” (MIC): Add dropped fill to diagonal of U or R
•  A and RTR have same row sums
•  good in some PDE contexts

2 3

1 4

2 3

1 4

Incomplete Cholesky and ILU: Issues

•  Choice of parameters
•  good: smooth transition from iterative to direct methods
•  bad: very ad hoc, problem-dependent
•  tradeoff: time per iteration (more fill => more time)

 vs # of iterations (more fill => fewer iters)

•  Effectiveness
•  condition number usually improves (only) by constant factor

(except MIC for some problems from PDEs)
•  still, often good when tuned for a particular class of problems

•  Parallelism
•  Triangular solves are not very parallel
•  Reordering for parallel triangular solve by graph coloring

Coloring for parallel nonsymmetric preconditioning
[Aggarwal, Gibou, G]

•  Level set method for multiphase
interface problems in 3D

•  Nonsymmetric-structure,
second-order-accurate octree discretization.

•  BiCGSTAB preconditioned by parallel triangular solves.

263 million DOF

Sparse approximate inverses

•  Compute B-1 ≈ A explicitly

•  Minimize || B-1A – I ||F (in parallel, by columns)

•  Variants: factored form of B-1, more fill, . .

•  Good: very parallel

•  Bad: effectiveness varies widely

A	

 B-1	

Other Krylov subspace methods

•  Nonsymmetric linear systems:
•  GMRES:

for i = 1, 2, 3, . . .
 find xi ∈ Ki (A, b) such that ri = (Axi – b) ⊥ Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space
 (Usually “restarted” every k iterations to use less space.)

•  BiCGStab, QMR, etc.:
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases
Short recurrences => O(n) space, but less robust

•  Convergence and preconditioning more delicate than CG
•  Active area of current research

•  Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

Multigrid

•  For a PDE on a fine mesh, precondition using a solution on
a coarser mesh

•  Use idea recursively on hierarchy of meshes
•  Solves the model problem (Poisson’s eqn) in linear time!
•  Often useful when hierarchy of meshes can be built
•  Hard to parallelize coarse meshes well

•  This is just the intuition – lots of theory and technology

Complexity of linear solvers

2D 3D
Sparse Cholesky: O(n1.5) O(n2)

CG, exact arithmetic: O(n2) O(n2)

CG, no precond: O(n1.5) O(n1.33)
CG, modified IC: O(n1.25) O(n1.17)
CG, support trees: O(n1.20) -> O(n1+) O(n1.75) -> O(n1+)

Multigrid: O(n) O(n)

n1/2 n1/3

Time to solve
model problem
(Poisson’s
equation) on
regular mesh

Complexity of direct methods

n1/2 n1/3

2D 3D

Space (fill): O(n log n) O(n 4/3)

Time (flops): O(n 3/2) O(n 2)

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

