CS 240A: Solving Ax = b in parallel

* Dense A: Gaussian elimination with partial pivoting (LU)
« Same flavor as matrix * matrix, but more complicated

« Sparse A: Gaussian elimination — Cholesky, LU, etc.
* Graph algorithms

« Sparse A: lterative methods — Conjugate gradient, etc.
e Sparse matrix times dense vector

« Sparse A: Preconditioned iterative methods and multigrid
« Mixture of lots of things

Matrix and Graph

Edge from row i to column j for nonzero A(i,))

No edges for diagonal nonzeros

If A is symmetric, G(A) is an undirected graph

Symmetric permutation PAPT renumbers the vertices

Compressed Sparse Matrix Storage

Va|ue:‘ 31 ‘ 41 ‘ 59 ‘ 20 ‘ 53 ‘

3110 |53 — T
o[

O 159] 0

411261 0O

cotstart:| ' | 2 5 ¢]

« Sparse storage:

« Compressed storage by
columns (CSC).

* Three 1-dimensional arrays.
* (2*nzs + ncols + 1) memory.
« Similarly, CSR.

* Full storage:
« 2-dimensional array.

* (nrows*ncols) memory.

The Landscape of Ax=b Solvers

Direct Iterative
A=LU y =Ay

More General

Non- Pivoting | GMRES,
Symmetric LU BiCGSTAB,

Symmetric Cholesky | Conjugate

32;1:11;: gradient

More Robust

More Robust <P | ess Storage (if sparse)

CS 240A: Solving Ax = b in parallel

 Dense A: Gaussian elimination with partial pivoting (LU)
o See April 15 slides
« Same flavor as matrix * matrix, but more complicated

« Sparse A: Gaussian elimination — Cholesky, LU, etc.
« Graph algorithms

« Sparse A: lterative methods — Conjugate gradient, etc.
e Sparse matrix times dense vector

 Sparse A: Preconditioned iterative methods and multigrid
* Mixture of lots of things

Gaussian elimination to solve Ax =b

For a symmetric, positive definite matrix:

1. Matrix factorization: A = LLT (Cholesky factorization)

2. Forward triangular solve: Ly = b

3. Backward triangular solve: L'x = y

For a nonsymmetric matrix:

1. Matrix factorization: PA = LU (Partial pivoting)
2. . ..

Sparse Column Cholesky Factorization

forj=1:n

L(:n, j) = AG:n, j);
for k < j with L(j, k) nonzero
% sparse cmod(j,k)
L(:n, j) = L(j:n,j)—L(, k) * L(j:n, k);
end:;
% sparse cdiv(j)
LG, J) = sart(L(, J));
L(j+1:n, j) = L(+1:n, j) / L(, j);

end:

* Column j of Abecomes column j of L

in 2D

%%mv

3000

Ve

(e =]

<MK
TR R
iy, AN sipiv AN g)Y

q»“

0.8
2000

4000
11533587

NASA Airfoil

Irregular mesh

Finite Element Mesh of NASA Airfoil

0.7

Structure of Cholesky factor L of A

«Q =) o o o) =)
o o o o o
£ o o o o
0o
Or
vz}
N
< <
o
< |
3. -~—
o o]
L
u 3
y 3
w
& %
o {
o o o o o
| o o o o o
o o o o
N o - N “ -t
o

1000
nnz{=214755 flops

2000 3000 4000

1000

0

0

nnz{A)=28831

Graphs and Sparse Matrices: Cholesky factorization

([J .] . ([J . ([J o
[] [(] [] [
(] { N (] _ i
® C%eee’ * . Fill: new nonzeros in factor
[] (N [] (N
[] [] (N N [] [] o000
(N) { N) { N { N)
1 3 7 1 3 7
Symmetric Gaussian elimination:
8 6 8 6 .
forj=1ton
4 10 4 10 add edges betweenj' s
higher-numbered neighbors
9 5 2 9 5 2
G(A) G*(A)

[chordal]

Permutations of the 2-D model problem

 Theorem: With the natural permutation, the n-vertex model
problem has ®(n?*2) fill. (“order exactly”)

* Theorem: With any permutation, the n-vertex model
problem has Q(n log n) fill. (“order at least”)

« Theorem: With a nested dissection permutation, the
n-vertex model problem has O(n log n) fill. (“order at
most”)

Nested dissection ordering

» A separator in a graph G is a set S of vertices whose
removal leaves at least two connected components.

* A nested dissection ordering for an n-vertex graph G
numbers its vertices from 1 to n as follows:

* Find a separator S, whose removal leaves connected
components T4, T,, ..., Ty

* Number the vertices of S from n-|S|+1 to n.

* Recursively, number the vertices of each component:
T,from1to [T4|, T,from|T4+1to|T4|+|T,|, etc.

* If a component is small enough, number it arbitrarily.

« It all boils down to finding good separators!

Separators in theory

- If Gis a planar graph with n vertices, there exists a set
of at most sqrt(6n) vertices whose removal leaves no
connected component with more than 2n/3 vertices.
(“Planar graphs have sqrt(n)-separators.”)

« “Well-shaped” finite element meshes in 3 dimensions
have n?/3 - separators.

« Also some other classes of graphs — trees, graphs of
bounded genus, chordal graphs, bounded-excluded-
minor graphs, ...

* Mostly these theorems come with efficient algorithms,
but they aren’ t used much.

Separators in practice

Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

Some techniques:

« Spectral partitioning (uses eigenvectors of Laplacian matrix of graph)
« Geometric partitioning (for meshes with specified vertex coordinates)
* lterative-swapping (Kernighan-Lin, Fiduccia-Matheysses)

« Breadth-first search (fast but dated)

Many popular modern codes (e.g. Metis, Chaco) use
multilevel iterative swapping

Matlab graph partitioning toolbox: see course web page

Complexity of direct methods

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

n1/2

2D

n1/3

3D

Space (fill):

O(n log n)

O(n 43)

Time (flops):

O(n 3/2)

O(n ?)

CS 240A: Solving Ax = b in parallel

 Dense A: Gaussian elimination with partial pivoting (LU)
o See April 15 slides
« Same flavor as matrix * matrix, but more complicated

« Sparse A: Gaussian elimination — Cholesky, LU, etc.
* Graph algorithms

« Sparse A: lterative methods — Conjugate gradient, etc.
« Sparse matrix times dense vector

 Sparse A: Preconditioned iterative methods and multigrid
* Mixture of lots of things

The Landscape of Ax=b Solvers

Direct Iterative
A=LU y =Ay

More General

Non- Pivoting | GMRES,
Symmetric LU BiCGSTAB,

Symmetric Cholesky | Conjugate

32;1:11;: gradient

More Robust

More Robust <P | ess Storage (if sparse)

Conjugate gradient iteration

Xo=0, 1,=D0b, dy= 14

for k = 1,2,3,...
o, = (! 1)/ (dY Ad,) steplength
Xp = X+ 0y dp 4 approx solution
r, = r,_,— 0o, Ad,_, residual
B.= hr)/ (@l 1) improvement
d. = r .+, d, search direction

« One matrix-vector multiplication per iteration
* Two vector dot products per iteration
* Four n-vectors of working storage

Sparse matrix data structure (stored by rows)

311 0 | 53
01591 O
411261 0

Full:

« 2-dimensional array of real or

complex numbers

* (nrows*ncols) memory

Sparse:

- compressed row storage

* about (2*nzs + nrows) memory

Distributed row sparse matrix data structure

31141]59] 26| 53

p . 1 3123]1

e

| o1 &

o
&—1——p
\

Each processor stores:

* # of local nonzeros
* range of local rows
p * nonzeros in CSR form

Matrix-vector product: Parallel implementation

» Lay out matrix and vectors by rows

« y(i) = sum(A(i,j)*x(j)) |PO|P1 IP2 | P3I y
» Skip terms with A(i,j) = 0 [PO
+ Algorithm Y i
Each processor i: P2
Broadcast x(i) P3

Compute y(i) = A(i,:)*x -

* Optimizations: reduce communication by
* Only send as much of x as necessary to each proc
* Reorder matrix for better locality by graph partitioning

Sparse Matrix-Vector Multiplication

Partitioning a Sparse Symmetric Matrix

CS 240A: Solving Ax = b in parallel

 Dense A: Gaussian elimination with partial pivoting (LU)
o See April 15 slides
« Same flavor as matrix * matrix, but more complicated

« Sparse A: Gaussian elimination — Cholesky, LU, etc.
* Graph algorithms

« Sparse A: lterative methods — Conjugate gradient, etc.
e Sparse matrix times dense vector

« Sparse A: Preconditioned iterative methods and multigrid
« Mixture of lots of things

Conjugate gradient: Convergence

 In exact arithmetic, CG converges in n steps
(completely unrealistic!!)

Accuracy after k steps of CG is related to:
« consider polynomials of degree k that are equal to 1 at 0.
* how small can such a polynomial be at all the eigenvalues of A?

* Thus, eigenvalues close together are good.

Condition number: K(A) = ||All, |A |, = Apa(A) I A0 (A)

max(min(

Residual is reduced by a constant factor by
O(sqrt(x(A))) iterations of CG.

Preconditioners

e Suppose you had a matrix B such that:

1. condition number K(B-'A) is small
2. By = z is easy to solve

« Then you could solve (B-'A)x = B-'b instead of Ax = b
« Each iteration of CG multiplies a vector by B-'A:

* First multiply by A
* Then solve a system with B

Preconditioned conjugate gradient iteration

x,= 0, r,=b, d,=B" Iy, y,=B"r,
for k = 1,2,3,...
o, = (yi 1./ (dY Ad,) steplength

Xp = X+ 0y dp 4 approx solution

r, = r,_,— 0o, Ad,_, residual

Vi = B~ Iy preconditioning solve
B.= i)/ L 1) improvement

d, = y .+ P d, search direction

* One matrix-vector multiplication per iteration
* One solve with preconditioner per iteration

Choosing a good preconditioner

e Suppose you had a matrix B such that:

1. condition number K(B-'A) is small
2. By = z is easy to solve

« Then you could solve (B-'A)x = B-'b instead of Ax = b

- B =Aisgreatfor (1), notfor (2)

- B =1lis great for (2), not for (1)

* Domain-specific approximations sometimes work
« B = diagonal of A sometimes works

 Better: blend in some direct-methods ideas. . .

Incomplete Cholesky factorization (IC, ILU)

® e 0 0 o ® ® 0 o
® o o

[[[[X [

o [o o o

® ® o ® o
A RT R

« Compute factors of A by Gaussian elimination,
but ignore fill

« Preconditioner B = R'R = A, not formed explicitly
« Compute B-'z by triangular solves (in time nnz(A))
- Total storage is O(nnz(A)), static data structure

« Either symmetric (IC) or nonsymmetric (ILU)

Incomplete Cholesky and ILU: Variants

1 4 1 P4
Allow one or more “levels of fill” | Z
« unpredictable storage requirements

2 3 2 3

Allow fill whose magnitude exceeds a “drop tolerance”
* may get better approximate factors than levels of fill
* unpredictable storage requirements
» choice of tolerance is ad hoc

Partial pivoting (for nonsymmetric A)

“Modified ILU” (MIC): Add dropped fill to diagonal of U or R
« A and RTR have same row sums
e good in some PDE contexts

Incomplete Cholesky and ILU: Issues

* Choice of parameters
« good: smooth transition from iterative to direct methods
* bad: very ad hoc, problem-dependent

 tradeoff: time per iteration (more fill => more time)
vs # of iterations (more fill => fewer iters)

« Effectiveness

« condition number usually improves (only) by constant factor
(except MIC for some problems from PDESs)

- still, often good when tuned for a particular class of problems

 Parallelism

« Triangular solves are not very parallel
« Reordering for parallel triangular solve by graph coloring

Coloring g‘or garallel nonsymmetric preconditioning
100U

[Aggarwal,

B 263 million DOF

 Level set method for multiphase

2.z z.z Q2o FEH] 2.z z.2 Q2w FEH]

. . S5 2S5 S5 gE 25 25 g =%
S B2 BE TE¥ BE T¥ BB §E

= = = = = = = =

= = = = = = = =

= = = = = = = =

! 4 8 16 3 64 128

Nonsymmetric-structure,
second-order-accurate octree discretization.

« BICGSTAB preconditioned by parallel triangular solves.

Sparse approximate inverses

0.0 o.o
° ° ® °
A B-!

- Compute B! = A explicitly
 Minimize || B'A—T1]||z (in parallel, by columns)

« Variants: factored form of B!, more fill, . .
« (Good: very parallel

« Bad: effectiveness varies widely

Other Krylov subspace methods

* Nonsymmetric linear systems:

« GMRES:
for i=1,2,3,...
find x; € K, (A, b) such that r;, = (Ax,—b) L K (A, b)
But, no short recurrence => save old vectors => lots more space

(Usually “restarted” every k iterations to use less space.)

 BiCGStab, QMR, etc.:
Two spaces K, (A, b) and K. (AT, b) w/ mutually orthogonal bases
Short recurrences => O(n) space, but less robust

« Convergence and preconditioning more delicate than CG
 Active area of current research

* Eigenvalues: Lanczos (symmetric), Arnoldi (nonsymmetric)

Multigrid

For a PDE on a fine mesh, precondition using a solution on
a coarser mesh

Use idea recursively on hierarchy of meshes

Solves the model problem (Poisson’ s eqgn) in linear time!
Often useful when hierarchy of meshes can be built
Hard to parallelize coarse meshes well

This is just the intuition — lots of theory and technology

Complexity of linear solvers

Time to solve

model problem
(Poisson’ s ni/z n1/3
equation) on
regular mesh

2D 3D
Sparse Cholesky: O(n') O(n?)
CG, exact arithmetic: O(n?) O(n?)
CG, no precond: O(n1-3) O(n1-33)
CG, modified IC: O(n1-2%) O(n117)
CG, support trees: O(n120) -> O(n™)| O(n'7%) -> O(n'*)
Multigrid: O(n) O(n)

Complexity of direct methods

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

n1/2

2D

n1/3

3D

Space (fill):

O(n log n)

O(n 43)

Time (flops):

O(n 3/2)

O(n ?)

