
CS 240A:  Solving Ax = b in parallel 

•  Dense A:  Gaussian elimination with partial pivoting (LU) 
•  Same flavor as matrix * matrix, but more complicated 

•  Sparse A:  Gaussian elimination – Cholesky, LU, etc. 
•  Graph algorithms 

•  Sparse A:  Iterative methods – Conjugate gradient, etc. 
•  Sparse matrix times dense vector 

•  Sparse A:  Preconditioned iterative methods and multigrid 
•  Mixture of lots of things 



Matrix and Graph 

•  Edge from row i  to column j  for nonzero A(i,j)  
•  No edges for diagonal nonzeros 

•  If A is symmetric, G(A) is an undirected graph  

•  Symmetric permutation PAPT renumbers the vertices 
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Compressed Sparse Matrix Storage 

•  Full storage:    
•  2-dimensional array. 
•  (nrows*ncols) memory. 
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•  Sparse storage:  
•  Compressed storage by 

columns (CSC). 
•  Three 1-dimensional arrays. 
•  (2*nzs + ncols + 1) memory. 
•  Similarly, CSR. 
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For a symmetric, positive definite matrix: 

1.  Matrix factorization:  A = LLT       (Cholesky factorization) 

2.  Forward triangular solve: Ly = b  

3.  Backward triangular solve: LTx = y 

For a nonsymmetric matrix: 

1.  Matrix factorization:  PA = LU          (Partial pivoting) 
2.  .  .  . 

Gaussian elimination to solve  Ax = b 



Sparse Column Cholesky Factorization 

for j = 1 : n 
 

   L(j:n, j) = A(j:n, j); 
   for k < j with L(j, k) nonzero 
      % sparse cmod(j,k) 
      L(j:n, j) = L(j:n, j) – L(j, k) * L(j:n, k); 
   end; 
 

   % sparse cdiv(j) 
   L(j, j) = sqrt(L(j, j)); 
   L(j+1:n, j) = L(j+1:n, j) / L(j, j); 
 

end; 

•  Column j of A becomes column j of L 
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Irregular mesh: NASA Airfoil in 2D 



Graphs and Sparse Matrices:  Cholesky factorization 
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Symmetric Gaussian elimination: 
for j = 1 to n 
    add edges between j’s 
    higher-numbered neighbors 

Fill: new nonzeros in factor 



Permutations of the 2-D model problem 

•  Theorem:  With the natural permutation, the n-vertex model 
problem has Θ(n3/2) fill.  (“order exactly”) 

•  Theorem:  With any permutation, the n-vertex model 
problem has Ω(n log n) fill.  (“order at least”) 

•  Theorem:  With a nested dissection permutation, the  
n-vertex model problem has O(n log n) fill.  (“order at 
most”) 

 



Nested dissection ordering 

•  A separator in a graph G is a set S of vertices whose 
removal leaves at least two connected components. 

•  A nested dissection ordering for an n-vertex graph G 
numbers its vertices from 1 to n as follows: 
•  Find a separator S, whose removal leaves connected 

components T1, T2, …, Tk 
•  Number the vertices of S from n-|S|+1 to n. 
•  Recursively, number the vertices of each component: 

T1 from 1 to |T1|,   T2 from |T1|+1 to |T1|+|T2|,   etc. 
•  If a component is small enough, number it arbitrarily. 

•  It all boils down to finding good separators! 



Separators in theory 

•  If G is a planar graph with n vertices, there exists a set 
of at most sqrt(6n) vertices whose removal leaves no 
connected component with more than 2n/3 vertices.   
(“Planar graphs have sqrt(n)-separators.”) 

•  “Well-shaped” finite element meshes in 3 dimensions 
have n2/3 - separators.  

•  Also some other classes of graphs – trees, graphs of 
bounded genus, chordal graphs, bounded-excluded-
minor graphs, … 

•  Mostly these theorems come with efficient algorithms, 
but they aren’t used much. 



Separators in practice 

•  Graph partitioning heuristics have been an active 
research area for many years, often motivated by 
partitioning for parallel computation.   

•  Some techniques: 
•  Spectral partitioning (uses eigenvectors of Laplacian matrix of graph) 
•  Geometric partitioning (for meshes with specified vertex coordinates) 
•  Iterative-swapping (Kernighan-Lin, Fiduccia-Matheysses) 
•  Breadth-first search (fast but dated) 

•  Many popular modern codes (e.g. Metis, Chaco) use 
multilevel iterative swapping 

•  Matlab graph partitioning toolbox: see course web page 



Complexity of direct methods 

n1/2 n1/3 

2D 3D 

Space (fill): O(n log n) O(n 4/3 ) 

Time (flops): O(n 3/2 ) O(n 2 ) 
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Conjugate gradient iteration 

•  One matrix-vector multiplication per iteration 
•  Two vector dot products per iteration 
•  Four n-vectors of working storage 

x0 =  0,    r0 =  b,    d0 =  r0	


for  k  =  1, 2, 3, . . .	


	

αk =  (rT

k-1rk-1) / (dT
k-1Adk-1)   step length 

	

xk  =  xk-1 + αk dk-1                         approx solution 

	

 rk =  rk-1 – αk Adk-1                         residual	


	

βk =  (rT

k rk) / (rT
k-1rk-1)          improvement	



	

dk  =  rk + βk dk-1                             search direction	


	





Sparse matrix data structure (stored by rows) 

•  Full:    

•  2-dimensional array of real or 
complex numbers 

•  (nrows*ncols) memory 

31 0 53 

0 59 0 

41 26 0 

31 53 59 41 26 

1 3 2 1 2 

•  Sparse:  
•  compressed row storage 

•  about (2*nzs + nrows) memory 



P0 �
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P2 �

Pp-1 �

5941 532631

23 131

Each processor stores: 
 

•   # of local nonzeros 
•   range of local rows 
•   nonzeros in CSR form 

Distributed row sparse matrix data structure 



•  Lay out matrix and vectors by rows 

•  y(i) = sum(A(i,j)*x(j)) 
•  Skip terms with A(i,j) = 0 

•  Algorithm 
Each processor i: 
   Broadcast x(i) 
   Compute y(i) = A(i,:)*x 

•  Optimizations:  reduce communication by 
•  Only send as much of x as necessary to each proc  
•  Reorder matrix for better locality by graph partitioning 
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Matrix-vector product:  Parallel implementation 



Sparse Matrix-Vector Multiplication 
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Conjugate gradient:  Convergence 

•  In exact arithmetic, CG converges in n steps  
                        (completely unrealistic!!) 

•  Accuracy after k steps of CG is related to: 
•  consider polynomials of degree k that are equal to 1 at 0. 
•  how small can such a polynomial be at all the eigenvalues of A? 

•  Thus, eigenvalues close together are good. 

•  Condition number:   κ(A)   =   ||A||2 ||A-1||2  =  λmax(A) / λmin(A) 

•  Residual is reduced by a constant factor by  
           O( sqrt(κ(A)) )  iterations of CG. 



Preconditioners 

•  Suppose you had a matrix B such that: 
1.  condition number  κ(B-1A) is small 
2. By = z is easy to solve 

•  Then you could solve (B-1A)x = B-1b instead of Ax = b 

•  Each iteration of CG multiplies a vector by B-1A: 
•  First multiply by A 
•  Then solve a system with B 



Preconditioned conjugate gradient iteration 

x0 =  0,    r0 =  b,    d0 = B-1 r0,      y0 = B-1 r0	


for  k  =  1, 2, 3, . . .	


	

αk =  (yT

k-1rk-1) / (dT
k-1Adk-1)   step length 

	

xk  =  xk-1 + αk dk-1                          approx solution 

	

 rk =  rk-1 – αk Adk-1                          residual 

	

 yk = B-1 rk                                              preconditioning solve	


	

βk =  (yT

k rk) / (yT
k-1rk-1)          improvement	



	

dk  =  yk + βk dk-1                              search direction	


	



•  One matrix-vector multiplication per iteration 
•  One solve with preconditioner per iteration 



Choosing a good preconditioner 

•  Suppose you had a matrix B such that: 
1.  condition number  κ(B-1A) is small 
2. By = z is easy to solve 

•  Then you could solve (B-1A)x = B-1b instead of Ax = b 

•  B = A is great for (1), not for (2) 
•  B = I is great for (2), not for (1) 
•  Domain-specific approximations sometimes work 
•  B = diagonal of A sometimes works 

•  Better:  blend in some direct-methods ideas. . .  



Incomplete Cholesky factorization  (IC, ILU) 

•  Compute factors of A by Gaussian elimination,  
but ignore fill 

•  Preconditioner B = RTR ≈ A, not formed explicitly 

•  Compute B-1z by triangular solves (in time nnz(A)) 

•  Total storage is O(nnz(A)), static data structure 

•  Either symmetric (IC) or nonsymmetric (ILU) 

x 

A	

 RT	

 R	





Incomplete Cholesky and ILU:   Variants 

•  Allow one or more “levels of fill” 
•  unpredictable storage requirements 

•  Allow fill whose magnitude exceeds a “drop tolerance” 
•  may get better approximate factors than levels of fill 
•  unpredictable storage requirements 
•  choice of tolerance is ad hoc 

•  Partial pivoting (for nonsymmetric A) 

•  “Modified ILU” (MIC):  Add dropped fill to diagonal of U or R 
•  A and RTR have same row sums 
•  good in some PDE contexts 
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Incomplete Cholesky and ILU:   Issues 

•  Choice of parameters 
•  good:  smooth transition from iterative to direct methods 
•  bad: very ad hoc, problem-dependent 
•  tradeoff:  time per iteration (more fill => more time) 

                vs # of iterations (more fill => fewer iters) 

•  Effectiveness 
•  condition number usually improves (only) by constant factor 

(except MIC for some problems from PDEs) 
•  still, often good when tuned for a particular class of problems 

•  Parallelism 
•  Triangular solves are not very parallel 
•  Reordering for parallel triangular solve by graph coloring 



Coloring for parallel nonsymmetric preconditioning    
[Aggarwal, Gibou, G] 

•  Level set method for multiphase  
interface problems in 3D 

•  Nonsymmetric-structure,   
second-order-accurate octree discretization. 

•  BiCGSTAB preconditioned by parallel triangular solves. 

263 million DOF 



Sparse approximate inverses 

•  Compute  B-1 ≈ A  explicitly 

•  Minimize  || B-1A – I ||F       (in parallel, by columns) 

•  Variants:  factored form of  B-1, more fill, . .  

•  Good: very parallel 

•  Bad: effectiveness varies widely 

A	

 B-1	





Other Krylov subspace methods 

•  Nonsymmetric linear systems: 
•  GMRES:   

for  i = 1, 2, 3, . . . 
    find xi ∈ Ki (A, b) such that  ri   =  (Axi – b)  ⊥  Ki (A, b) ���
But, no short recurrence => save old vectors => lots more space 
 (Usually “restarted” every k iterations to use less space.) 

•  BiCGStab, QMR, etc.: 
Two spaces Ki (A, b) and Ki (AT, b) w/ mutually orthogonal bases 
Short recurrences => O(n) space, but less robust 

•  Convergence and preconditioning more delicate than CG 
•  Active area of current research 

•  Eigenvalues:  Lanczos (symmetric), Arnoldi (nonsymmetric) 



Multigrid 

•  For a PDE on a fine mesh, precondition using a solution on 
a coarser mesh 

•  Use idea recursively on hierarchy of meshes 
•  Solves the model problem (Poisson’s eqn) in linear time! 
•  Often useful when hierarchy of meshes can be built 
•  Hard to parallelize coarse meshes well 

•  This is just the intuition – lots of theory and technology 



Complexity of linear solvers 

2D 3D 
Sparse Cholesky: O(n1.5 ) O(n2 ) 

CG, exact arithmetic: O(n2 ) O(n2 ) 

CG, no precond: O(n1.5 ) O(n1.33 ) 
CG, modified IC: O(n1.25 ) O(n1.17 ) 
CG, support trees: O(n1.20 ) -> O(n1+ )  O(n1.75 ) -> O(n1+  )  

Multigrid: O(n) O(n) 

n1/2 n1/3 

Time to solve 
model problem 
(Poisson’s 
equation) on 
regular mesh 



Complexity of direct methods 

n1/2 n1/3 

2D 3D 

Space (fill): O(n log n) O(n 4/3 ) 
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Time and 
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any problem 
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shaped finite 
element mesh 


