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1 Introduction

BTER [3] is a graph generator that models social network graphs my matching the degree and clus-
tering coefficient distributions. It is hoped that by matching these distributions that the randomly
generated graphs are enough like the original that computations on them are roughly computation-
ally equivalent to computations on the original. In this study, eigenvalues and eigenvectors between
the original and resultant graphs are compared to test their equivalency.

BTER works by creating a small set of tightly integrated subgraphs to match degree distribu-
tions and clustering coefficients and then connecting them in a global structure to create a single
graph.

1. Building the small clusters is a three step process

(a) Create a sorted list of vertices labeled with degrees from the original graph

(b) Pop off vertices from the top of this list in size equal to the degree of the first vertex (so
if the first degree is 3, then a group of 3 vertices is lumped off)

c¢) Interconnect these vertices probabilistically with a distribution that is a function of the
Int t th ti babilistically with a distribution that is a functi f th
graph type (set to a sort of decaying log form in the reference implementation)

2. Interconnecting all the small graphs is easy. For each cluster, use any unmet degrees (not all
the degree parameters of each vertex are necessarily met in the prior step) from within the
cluster to randomly link it to things across the graph

Again, BTER was designed to work specifically on social networks, but the idea seems robust
enough it could be used for other graph types. This paper is going to test how effectively BTER
can model a wide range of Laplacian graphs sourced from the Florida Matrix Archive [I]. The
BTER implementation used is the BTER test implementation[4], so there is probably some room
for improvement on the general problems tested in this study.

2 Methods

A significant number of mostly symmetric (all but one) graphs were selected from the archive. Every
graph was turned into a symmetric Laplacian by first making all off diagonal elements symmetric
(by assigning A = A + AT), turning all the nonzero entries into negative ones, and then replacing
the diagonal elements with the absolute value of the sum of the non-diagonal elements in each row
(this is the lapacian command from Gilbert [2]).

Graphs were categorized into rough bins:

1. Social network graphs — These are the graphs BTER was designed to model well



2. Mesh graphs — These graphs correspond to meshes from physical problems (FEM or FD) and
are very structured

3. Road network — These graphs came from the SNAP collection and are roads networks in U.S.
states

4. Real-space pseudopotential method — These graphs come from linear systems that appear in
solution to some physics problems

5. “Other” graphs — These are just a myriad of the other types of graphs on the Florida Sparse
Matrix Archive

Generated graphs were created where possible from given graphs by following the steps outlined
on the BTER website [5].

Graphs were compared to their generated versions in two ways: visualizing degree and clustering
distributions (which were given as input to the algorithms) and visualizing comparisons of the
eigenvalue spectra (which were not given as input).

If BTER was unable to generate the graph, no comparison was made and the graph was marked
as such.

3 Results

This section contains the results of the experiments described above.



3.1 Initial Graph Generation Test

Number Description BTER worked
Social Networks
2297 Collaboration network of Arxiv General Relativity Yes
980 Stanford-Berkeley web (Not symmetric) Yes
FEM
33 Symmetric Stiffness Matrix, Ore Car (Lumped Masses) Yes
2283 3D FEM, transient electric field diffusion. Evan Um, Stanford Yes
1421 Circuit simulation problem, Ufuk Okuyucu, AMD, Inc. No
1892 Denormals in A + alpha x I as alpha > 0 varies, J. Castrillon, Teledyne No
2258 FEM problem, temperature and deformation of a steel cylinder No
430 Test Matrix from FIDAP: Ex33.mat No
228 Splatzman Symmetric Finite Difference Three Ocean Model No
29 Symmetric Stiffness Matrix, Medium Test, Consisten Masses No
791 Acoustic Radiation around aft duct fan. D. Okunbor No
Road networks
2317 Road network of California Yes
2318 Road network of Texas No
2319 Road network of Pennsylvania No
Psuedopotential Method
1363 Real-space pseudopotential method. Zhou, Saad, Tiago, Chelikowsky Yes
1366 Real-space pseudopotential method. Zhou, Saad, Tiago, Chelikowsky Yes
1350 Real-space pseudopotential method. Zhou, Saad, Tiago, Chelikowsky No
Other
1347 Sparse bundle adjustment, 3D vision, M. Lourakis, Greece Yes
1551 IBM TJ Watson, non-linear optimization Yes
4 Admittance Matrix 685 Bus Power System, D.J.Tylavsky, 1985 Yes
3 Admittance Matrix 662 Bus Power System, D.J.Tylavsky, 1985 Yes
2 Admittance Matrix 494 Bus Power System, D.J.Tylavsky, 1985 Yes

Both social networks worked, very few of the FEM models worked, and with other graphs, it
was very hit and miss what worked (Only one of three road networks worked, but all power systems
worked. Two out of three 'Real-space Psuedo...” matrices worked).

There were two common errors, which, according to correspondance with T. Kolda [3], both
resulted because of the graphs’ dissimilarities with social network graphs. First of all, the degree
distributions of FEM graphs can be quite different to that in social networks. Displayed in Figure
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Figure 1: Comparison of the degree distributions of graph 29 (FEM) and graph 2297 (Citations)

is the degree distribution of graph 29 (FEM) alongside the degree distribution of graph 2297
(Arxiv collaboration network). BTER is designed to model the long decaying tail of graph 2297,
not the slowly growing tail of graph 29. According to T. Kolda (correspondence), many of the errors
in matching these graphs were due to the non-decaying degree distributions. Part of the BTER
algorithm is a choice of probability distribution function that represents an edge probability for a
cluster given the degree distribution of the original graph. Perhaps choosing this more carefully
would overcome this limitation.

Secondly, FEM meshes can be unusually connected. The clustering coefficient is the ratio of
triangles formed between edges with neighbors and then the number of possible triangles that could
be formed by edges with neighbors. In FEM meshes, this is frequently 1. In social networks, this is
frequency between 0.1-0.5 [3]. Because of how the BTER graph generate generates its subclusters,
it does not allow fully connected clusters to be generated (from correspondence with T. Kolda, it
might take a very long time to generate a fully connected cluster randomly).

Both of these errors seemed to be a result of how the BTER example code was implemented
though, not the algorithm.

These errors popped up sporadically in other types of graphs. Very long range connections



seemed to work better with the generator. This corresponds to filling rows with widely spaced
elements, or adding edges that shortcut otherwise long paths through the graph. Even graphs that
looked very irregular and generatable at face value, like the road maps, sometimes were not able
to be duplicated with the BTER generator. Perhaps this could be pinned to the lack of long range
graph connections.

3.2 Distributions, Smallest Eigenvalues, and Fiedler Eigenvectors

The degree and clustering coefficients, ten smallest eigenvalues, and Fiedler eigenvectors were com-
puted for three graphs. The degree and sample coefficients were computed with code given in the
BTER implementation [4], and the eigenvalues and eigenvectors were computed with code from
Gilbert [2]. These are graph 2297 (Arxiv Citations), graph 33 (FEM), and graph 4 (Admittance
matrix). The solvers frequently complained that the matrices were badly scaled or otherwise not
easy to compute eigenvalues and eigenvectors for, but no effort was taken to make sure the solvers
were working properly. In all cases, while the degree distributions and clustering coeflicient graphs
line up, the spectral measurements (either eigenvalues or eigenvectors) do not totally align. For
graph 2297 (Arxiv Citations), the Fiedler eigenvalue is reasonably close (0.000673 compared with
0.000525), but as discussed later this is probably just a fluke.

Of note, the eigenvalues for the random graph are mostly below the eigenvalues for the original
graphs. Also, for graph 4 and 33, the eigenvectors returned as the Fiedler eigenvector are very close
to being the constant vector. This hints that maybe something is going wrong.

In some sense, the graph generator fits the distributions that it fits, and with some luck the
spectral stuff can match up, but it is not guaranteed, and the match is not very pretty.

3.3 Fiedler Eigenvalues

Without requiring much effort, the Fiedler value and condition number can be compared for a
wider array of graphs than those above. The graphs in the table below were all selected primarily
due to their small sizes. The eigenvalue solver frequently complained about badly scaled matrices,
but nothing was done to check if the eigenvalues were really accurate or anything.
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Figure 2: This is the comparison of generated and original graph 2297 (Arxiv Citations). The
Fiedler eigenvalues are 0.000673 for the original graph and 0.000525 for the generated graph. The
eigenvectors of the generated and original graph look similar except for a large chunk missing from

the generated graph. It is unclear what causes this
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Figure 3: This is the comparison of generated and original graph 33 (FEM). The Fiedler eigenvalues
are 0.041663 for the original graph and 0.106670 for the generated graph. For the FEM graph, a
number of the degree vertices have clustering coefficients of zero. This phenomena showed up in
many other systems, and can occur in a mesh built from squares, for instance. The BTER graph
generator fits the degree distribution fine, even though the graph tail distribution does not look
like a social network. Finally, the eigenvector for the real system has 'fins’ which, depending on the
run, pointed either up or down. This indicates that the eigenvector solver was struggling for these
graphs (since mathematically there is only one Fiedler eigenvector). The generated graph did not

duplicate this
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Figure 4: This is the comparison of generated and original graph 4 (Admittance matrix). The
Fiedler eigenvalues are 0.006088 for the original graph and 0.013323 for the generated graph. The
Fiedler eigenvector and all computed eigenvalues are quite different from the references
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Figure 5: The Fiedler values from graph 2297 and graph 33 are compared to the ones from the
generated graphs

Number

Real Fiedler

Generated Fiedler

Real Cond. Num. Generated Cond. Num.

Social Networks

2297 0.5195706229 0.0039357127 3830.1330414811  281788.384360883
FEM

33 0.0416627326  0.0357234377 1630.1581377668  1296.5005986051

Psuedopotential Method

1366 2.4995347435 1.9632425369 165.8133466451 122.1822376171
Other

1347 1.5715035978  1.3704721957 1092.5841992422  596.4449019947

1551 0.5857864376  0.0023078737 3397.1845065909  464990.682703995

4 0.0053413717  0.009433869 3518.7665950482  1709.2210936338

3 0.013451767  0.0076989114 1087.129841142 1651.3912761102

2 0.0073634699  0.0061492206 1828.7851489422  2034.1680963568

This table shows mixed results. In some cases (graph 2) the Fiedler eigenvalues are quite close,
but sometimes for similar graphs it is totally off (graph 3). The condition numbers tell the same
story (being the radio of eigenvalues, this could be expected).

Naturally, the graphs generated here are random, and so the Fiedler values will have some
varation. To capture this, the Fiedler eigenvalues of ten thousand generated copies of graphs 2297
and 33 were compared against their exact values. This is shown in Figure

The first thing to note about the histograms is that the eigenvalue distributions are not obviously
standard distributions, even given the relatively high resolution experiment (10000 samples & 100
bins). Secondly, picking an eigenvalue at random, there is very little reason to think that it will be
very close to the correct eigenvalue.
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Figure 6: This is the equivalent to (3| (with Laplacian replaced by normalized Laplacian). This is
the comparison of generated and original graph 33 (FEM). The Fiedler eigenvalues are 0.00534137
for the original graph and 0.0296625 for the generated graph. For the FEM graph, a number of
the degree vertices have clustering coeflicients of zero. This phenomena showed up in many other
systems, and can occur in a mesh built from squares, for instance. The BTER graph generator
fits the degree distribution fine, even though the graph tail distribution does not look like a social
network. Finally, the eigenvector for the real system has ’fins’ which, depending on the run, pointed
either up or down. This indicates that the eigenvector solver was struggling for these graphs (since
Mathematically there is only one Fiedler eigenvector). The generated graph did not duplicate this

3.4 Normalized Laplacian

Throughout this discussion, the Laplacian matrix has been used for the spectral computations.
Similar results are found for the Normalized Laplacian. Figure [f]is the equivalent of Figure [3| and
Figure[7]is the equivalent of Figure [5| with the normalized Laplacian used for spectral comparisons.

4 Discussion & Conclusion

In conclusion, there was no dependable magic in the generated graphs. However, the spectral
results were not terrible. If an error of a factor of two or three, then maybe the spectral results
here are useful.

The BTER example implementation ran sucessfuly on about half of the graphs pulled from
the Florida Matrix Archive. It did an admiral job of matching degree distributions and clustering

10
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Figure 7: This is the equivalent to |5| (with Laplacian replaced by normalized Laplacian). The
Fiedler values from normalized Laplacian of graph 2297 and normalized Laplacian of graph 33 are
compared to the ones from the normalized Laplacians of the generated graphs

coefficients even in situations that it was not advertised to work in. If the issues with high clustering
coefficients and non-decaying degree distributions could be resolved (and it seems like the limitations
are simple implementation details — not algorithm roadblocks), it could be more useful.
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