
Spectral decomposition using the Lanczos method

E. Biegert and N. Konopliv

June 11, 2014

Contents

1 Introduction 1

2 Generating the laplacian matrix 2
2.1 Data distribution . 2
2.2 Calculating edge weights . 2
2.3 Edge weight functions . 3

3 Calculation of the Fiedler value 6
3.1 Lanczos algorithm . 6
3.2 Partial Reorthogonalization . 7
3.3 Selection of η . 8
3.4 QR solution of tridiagonal matrix . 14
3.5 Convergence of λ2 . 16

4 Performance 19

5 Sample Results 23

A Lanczos method with partial reorthogonalization 27
A.1 Lanczos algorithm . 27
A.2 Partial reorthogonalization . 28

B Code 28
B.1 structs.h . 28
B.2 main.cpp . 29
B.3 matvec.h . 38
B.4 matvec.cpp . 39
B.5 lanczos.h . 44
B.6 lanczos.cpp . 44
B.7 qr tridiag.h . 52
B.8 qr tridiag.cpp . 53

1 Introduction

This project was about partitioning a set of particles with equal radii in such a way that if the
particles were moving in random directions there would be very few imminent collisions between
particles across partitions. Each particle was defined by the location of its center. To accomplish

1

the partitioning, we used the particle positions to generate a graph with vertices corresponding to
particles and edge weights based on the distance between particles. If the particles were further
apart than a certain threshold, no edge was created. The Fiedler vector of the laplacian of this
graph was then used to partition the particles in half.

We calculated the Fiedler vector by using the Lanczos algorithm with partial reorthogonalization
and the QR algorithm for finding the eigenvalues and eigenvectors of a tridiagonal matrix. Lanczos
was implemented in parallel with MPI and QR was implemented in serial. We experimented
with different edge weights and different levels of partial reorthogonalization. We also tested the
performance of our code with problem size and number of processors.

2 Generating the laplacian matrix

2.1 Data distribution

Our code is fed an ASCII input file containing the total number of particles on the first line and
one particle position (x,y) on each line after that. Each MPI process, one at a time, opens the
input file and reads a certain subset of particle positions into memory, based on the the total
number of particles, the total number of MPI processes and its rank. Particles are divided as
evenly as possible among processors. There is no particular pattern of particle positions assigned
to each processor. It is completely random. We thought about assigning particles to processors
based on particle position so that each processor would have neighbors and would only need to
communicate with a subset of the other processors. However, if the particles are moving and being
re-assigned to different processors over time, there is no longer any set pattern that would define
what a neighboring processor is. Also, if the particles had a non-uniform distribution in space, it
is conceivable that a processor would be assigned two clumps of particles that are far apart, with a
larger clump in between assigned to another processor. Because we wanted flexibility, the particles
were initially assigned to processors without regard to spatial location.

2.2 Calculating edge weights

The Laplacian matrix in our code is implemented as a linked list, with one entry for every non-
zero location away from the diagonal. The diagonal is stored separately in a contiguous block
of memory. The matrix is divided among the processors by blocks of rows. Each processor first
calculates off-diagonal entries corresponding to pairs of particles that it owns. For each pair of
particles that are a distance apart that is less than the threshold distance, two off-diagonal entries
are added. Each time an off-diagonal entry is added, the weight is added to the corresponding
diagonal entry. After the processors are done looking for edges between particles that they own,
a carousel algorithm is used to calculate the remaining edges in parallel. Each processor passes
its particles to the processor with rank + 1 and the highest rank processor passes to rank 0. The
processors look for edges between particles that they own and the guest particles that the just
received. When that is finished, the guest particles are passed and the process repeats until each
processor has checked for edges between its particles and every other particle. This process could
be made more efficient by up to a factor of 2. For example, as it stands, processors 0 and 1 would

2

both look for edges between processor 0 particles and processor 1 particles. A possible change
would be to have processors only look at at half of the particles owned by the processor with lower
rank. For example when processor 1 has guest particles from processor 0, it would only look at the
first half of processor 0 particles and send information on the edges it found back to processor 0 at
the end. When processor 0 has guest particles from processor 1, it would look at the other half of
processor 0 particles and send information on the edges it found back to processor 1. We did not
implement this because we ran out of time.

2.3 Edge weight functions

The edge weights were given by a formula of distance between the particles:

w(d) =
1

(d− 0.9)n
(1)

where n could be chosen. The radius of the particles in our tests was 0.5, so the minimum value
of d was 1. The volume fraction of the particles in the domain was always 0.3 in our tests. If
the distance between the particles was greater than some threshold, chosen to be 3, no edge was
created. The particles were partitioned in half using the Fiedler vector. Those with a value in the
Fiedler vector greater than the median were assigned to one half and the others were assigned to
the other half. Assuming a number of processors equal to a power of 2, this process can be repeated
until there are N divisions, where N is the number of processors. We would have N/2 processors
work on half of the particles from the first partition and N/2 processors work on the other half.
These halves would then be partitioned in half and N/4 processors assigned to each group. The
process would repeat until there were N partitions. In our tests, we only did the first partition in
half because we ran out of time and found plenty of other interesting things to look at.

The effect of chosing n can be seen in figures 1 through 5. Chosing a larger n makes edges between
particles that are close have weights that are much larger than for particles that are far apart.
In general, larger values of n give better partitioning results. Intuitively, this was because it was
harder to cut edges between particles that were close together while it was easier to cut edges
between particles that were far apart.

When n was larger, it was tempting to lower the threshold since the edge weights at distances
close to 3 were small. The problem with this was that the graph would become disconnected if
the threshold was too small. It was necessary to have some very weak edges to keep the graph
connected. A threshold of 3 was probably a little too high for the particle density chosen, but it
ensured we always had a connected graph. The weight function and threshold together set the range
of weights that were possible in the laplacian. The ratio of the largest to smallest possible weights in
the laplacian was a good indicator of how difficult it would be to find the Fiedler vector. When the
ratio was large, the Fiedler value took a long time to converge. The Fiedler vector was considered
converged when the Fiedler value converged. For large ratios, the Lanczos vectors also had a higher
tendency to lose orthogonality. The wide range of values in the laplacian made roundoff errors more
harmful. Partial reorthogonalization was less effective - when reorthogonalizations occurred, the
vector had to reorthogonalized against more of the previous Lanczos vectors. A more complete
discussion can be found in section 3.3. When n was 5, the ratio was order 107. This meant that
our code had to do more work, but choosing n = 5 did give noticeably better partitions.

3

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 1: Particle partitions with n = 1 in the weight function (1). The number of particles here
is 661.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 2: Particle partitions with n = 2 in the weight function (1). The number of particles here
is 661.

4

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 3: Particle partitions with n = 3 in the weight function (1). The number of particles here
is 661.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 4: Particle partitions with n = 4 in the weight function (1). The number of particles here
is 661.

5

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 5: Particle partitions with n = 5 in the weight function (1). The number of particles here
is 661.

3 Calculation of the Fiedler value

3.1 Lanczos algorithm

The Lanczos algorithm provides an inexpensive first step towards calculating the eigenvalues and
eigenvectors of a matrix. Given an m×m symmetric matrix A, this algorithm can be carried out
for n steps, yielding

A = QTTQ

where T is an n× n tridiagonal matrix

T =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βn−2 αn−1 βn−1
βn−1 αn


and the m× n matrix Q contains the Lanczos vectors qj , which are orthogonal to one another:

Q = [q1 q2 . . . qn]

If we can diagonalize the tridiagonal matrix T as

T = VTDV

6

then we will have diagonalized the starting matrix:

A = QTTQ = QTVTDVQ = WTDW

An approximate subset of the eigenvalues and eigenvectors of A are then given by diag(D) and
the corresponding columns of W, respectively. This method converges to the largest and smallest
eigenvalues first, working its way towards the middle eigenvalues with additional steps. There
cannot be more Lanczos steps than there are elements along one dimension of the matrix (m ≥ n).

The algorithm, presented in Appendix A.1, generates the tridiagonal matrix T with less computa-
tional cost than that required by Householder or Givens rotations [2]. A problem with this method,
however, is that it depends on the Lanczos vectors qj maintaining their orthogonality. Because the
vector qi only depends on qi−1 and qi−2, round-off errors can build up over several steps.

When this “deorthogonalization” happens, one or more Ritz vectors may diverge from the vector to
which they were converging, moving instead towards another vector and resulting in an eigenvalue
duplicity. Furthermore, these “shifts” will continue to happen so that, depending on the convergence
criteria and behavior of the matrix, the expected set of eigenvalues and eigenvectors is never found
within a given tolerance.

Reorthogonalization, that is, enforcing that qi be orthogonal to all previous vectors, prevents
the aforementioned problems from occuring. The next section explains how implement partial
reorthogonalization, in which we reorthogonalize only against the “least orthogonal” vectors.

3.2 Partial Reorthogonalization

In order to prevent the deorthogonalization of Lanczos vectors, one of several strategies can be
taken. The most simple—and expensive—strategy, which we refer to as full reorthogonalization,
would be to reorthogonalize the new Lanczos vector against all the previously generated vectors.
However, it turns out that deorthogonalization occurs for a subset of the previous vectors. Thus,
we could instead reorthogonalize only against this subset. To find this subset, we could employ a
strategy such as the following:

• Reorthogonalize qj+1 against qk if qTk qj+1 >= TOL for k = 1, . . . , j

• Do nothing with qj+1 and qk if qTk qj+1 < TOL for k = 1, . . . , j

for some given tolerance TOL.

However, calculating the inner product between qj+1 and qk is expensive, particularly if we have to
do it for all k = 1, . . . , j for each Lanczos step (this also gets us halfway to full reorthogonalization
anyway).

Simon [4] studied the magnitudes of the inner products qTk qj+1 and noticed a pattern from which
he was able to formulate an algorithm. Representing the inner products with an approximation

ωj,k ≈ qTj qk = qTk qj

7

he saw a dependence of ωj+1,k on previously known values of ω. This algorithm, presented in
Appendix A.2, mimics the propagation of round-off errors in these inner products. As we shall see
in the results section, this method works quite well, albeit with some caveats.

The real beauty of Simon’s partial reorthogonalization (PRO) is that we can keep track of which
Lanczos vectors are losing their orthogonality without explicitly calculating their inner products.
Thus, we can maintain the spirit of the Lanczos algorithm by making inexpensive updates of our
variables using only information from the previous step or two.

Simon’s algorithm decides which vectors to reorthogonalize qj+1 against by searching through
|ωj+1,k| for values greater than

√
ε, where ε is the machine precision. According to Simon, the

threshold of
√
ε is enough to ensure the accurate calculation of eigenvalues and eigenvectors. If no

values exceeding the threshold of
√
ε are found, no reorthogonalization is performed. If some values

do exceed the threshold, |ωj+1,k| is searched in an outward fashion from those places. When those
searches hit values lower than a specified value, η, the search stops and the reorthogonalization is
done on all vectors that ended up in one of the search radii. Simon recommended η = ε0.75, but we
found we needed an even smaller η.

3.3 Selection of η

The choice of η in the partial reorthogonalization process had an important impact on the results.
Choosing a smaller η led to more reorthogonalizations, which was more work, but sometimes
necessary to ensure accurate results. Because the estimates of the loss of orthogonality had a random
component, it was possible for a worse than usual Lanczos vector to appear that was not seen in the
estimate. For example, say that the 100th Lanczos vector generated was perfectly orthogonal to
every other Lanczos vector except the 20th one, which it was still mostly orthogonal with but had
an unusually high dot product with. If this error was not captured in the orthogonality estimate,
the partial reorthogonalization would not orthogonalize against the 20th vector and Lanczos would
lose orthogonality. We found that most of the time, the orthogonality estimates were very reliable.
Figures 6 through 8 show plots of estimated and actual orthogonality. For timed runs, we didn’t
calculate the actual orthogonality - it was just for these tests. These figures along with figures 9 and
10 show that usually the orthogonality estimate had the same pattern as the actual orthogonality,
but was slightly larger, as it should have been. Occaisionally, this is not true as can been seen
obviously in figure 6 and at the right side of figure 7. Doing a full reorthogonalization every time
the algorithm decides to reorthogonalize can solve this problem, but making η smaller can also help
by making the reorthogonalization closer to a full reorthogonalization.

8

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Estimated orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−15

−10

−5

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Actual orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−15

−10

−5

50 100 150 200 250 300 350
10

−20

10
−10

10
0

Maximum orthogonality to new vector

Lanczos step

Estimated error

Actual error

Figure 6: Loss of orthogonality, both actual and estimated, vs. Lanczos step for η = ε0.80. The
base 10 log of the magnitude of the orthogonality is shown in the colormaps. Reorthogonalizations
are visible as vertical blue streaks in the colormaps.

9

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Estimated orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−15

−10

−5

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Actual orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−15

−10

−5

50 100 150 200 250 300 350
10

−20

10
−10

10
0

Maximum orthogonality to new vector

Lanczos step

Estimated error

Actual error

Figure 7: Loss of orthogonality, both actual and estimated, vs. Lanczos step for η = ε0.85. The
base 10 log of the magnitude of the orthogonality is shown in the colormaps. Reorthogonalizations
are visible as vertical blue streaks in the colormaps.

10

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Estimated orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−18

−16

−14

−12

−10

−8

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s Actual orthogonality to new vector

50 100 150 200 250 300 350

100

200

300

−18

−16

−14

−12

−10

−8

50 100 150 200 250 300 350
10

−20

10
−10

Maximum orthogonality to new vector

Lanczos step

Estimated error

Actual error

Figure 8: Loss of orthogonality, both actual and estimated, vs. Lanczos step for η = 0, or full
reorthogonalization (not after every Lanczos step though). The base 10 log of the magnitude of the
orthogonality is shown in the colormaps. Reorthogonalizations are visible as vertical blue streaks
in the colormaps.

11

Lanczos step

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s

Estimated orthogonality to new vector

50 100 150 200 250 300 350

50

100

150

200

250

300

350

−18

−16

−14

−12

−10

−8

−6

Figure 9: A larger version of the approximated loss of orthogonality from figure 7.

12

Lanczos step

P
re

vi
ou

s
La

nc
zo

s
ve

ct
or

s

Actual orthogonality to new vector

50 100 150 200 250 300 350

50

100

150

200

250

300

350

−18

−16

−14

−12

−10

−8

−6

Figure 10: A larger version of the actual loss of orthogonality from figure 7.

13

3.4 QR solution of tridiagonal matrix

We must now find the eigenvalues and eigenvectors of the tridiagonal matrix T. To do so, we
carry out the method described in [3]. The principle behind this method is that, given the QR
transformation of T

T = VR

where R is an upper-triangular matrix, the sequence

Tj = VjRj (2a)

Tj+1 = RjVj

(
= VT

j TjVj

)
(2b)

will converge to the diagonal matrix Tj → D as j → ∞. For a tridiagonal matrix, the QR
transformation is carried out through Givens rotations Pi:

VT
j = P

(j)
1 P

(j)
2 · · ·P

(j)
n−1

where

P
(j)
i =



i i+ 1
. . .

1
i c −s
i+ 1 s c

1
. . .


with s on row i and column i+ 1. The values c and s are designed to eliminate the lower-diagonal
entry Tj(i+ 1, i), with the additional constrain that s2 + c2 = 1.

The convergence of the QR iterative method can be slow. We can speed up the convergence,
however, by estimating the eigenvalues of the matrix and then operating on the shifted matrix
T− kI, where k is an estimated eigenvalue and I is the identity matrix.

The numerical recipes book [3] goes on to show that, if the last row of VT
j is known, then all the

other rows are can be determined from that row. In other words, if P
(j)
n−1 is known, then the other

P
(j)
i are also known. This fact is used to show that the following method works:

1. The [tridiagonal] matrix Tj may be split into several blocks, each of which are separated
where off-diagonal elements are zero. For each block B of dimensions b× b:

B =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βb−2 αb−1 βb−1
βb−1 αb



14

(a) Estimate a shift value k by finding the eigenvalue of the 2×2 matrix in the far lower-right
corner which is closest to αb:

λ1, λ2 = eig

([
αb−1 βb−1
βb−1 αb

])
k = min(|λ1 − αb|, |λ2 − αb|)

(b) Operate a symmetric Givens rotation P1 on B as if we were eliminating β1 of the shifted
matrix B− kI:

B′ = PT
1 BP1 =


α′1 β′1 γ′

β′1 α′2 β′2
γ′ β′2 α3 β3

. . .
. . .

. . .

βb−1 αb


where

P1 =


c −s
s c

1
. . .


and γ′ is the off-off-diagonal term created by the rotation. This step thus creates a
“bulge” in the tridiagonal matrix.

(c) Execute b − 2 additional rotations P2, . . . ,Pb−1, each of which seeks to eliminate the
newly-generated γ:

B(i+1) = PT
i+1B

(i)Pi+1 =



. . .
. . . 0

. . . α′′i+1 β′′i+1 γ(i+1)

0 β′′i+1 α′′i+2 β′′i+2

γ(i+1) β′′i+2 αi+3
. . .

. . .
. . .


with

Pi+1 =



i+ 1 i+ 2
. . .

1
i+ 1 c −s
i+ 2 s c

1
. . .


This step thus “chases the bulge down the diagonal.”

15

(d) The resulting matrix B̃ will be tridiagonal

B̃ = PTBP

where
P = P1P2 · · ·Pb−1

2. If Pi is the resulting matrix found for block Bi, i = 1, . . . , l, then

Vj = P1P2 · · ·Pl

Tj+1 = VT
j TjVj

represents one iteration of the sequence described by (2).

3. Iterating on this procedure will cause Tj+1 to converge to a diagonal matrix D:

V = V1V2 . . .VJ

D = VTTV

where convergence has occurred after J iterations.

3.5 Convergence of λ2

When monitoring a general value to check for convergence, the most obvious criteria to determine
if it is converged is to wait until the change between two iterations falls below a certain value.
This can lead to false convergence if the convergence is slow, which it can be when calculating the
Fiedler value. The convergence is especially slow if the weight function is chosen in such a way
that the matrix is not “nice”, as discussed in section 2.3. Additionally, it is inefficient to run the
QR algorithm to get the Ritz values after every Lanczos step. Both of these issues were resolved
by looking at an estimate of the true error and then guessing how many more Lanczos steps would
be needed to achieve convergence.

Let λ∗2 be the true Fiedler value and λk2 be the second smallest Ritz value after k Lanczos steps
that will converge to λ∗2. Then the true error can be written

λk2 − λ∗2 = λk2 − λk+1
2 + λk+1

2 − λk+2
2 + λk+2

2 − ...− λ∗2 (3)

by adding and subtracting λk+1
2 , λk+2

2 , λk+3
2 , etc. Using the triangle inequality gives

|λk2 − λ∗2| ≤ |λk+1
2 − λk2|+ |λk+2

2 − λk+1
2 |+ ... (4)

An estimate for the rate of convergence is then used:

ρ =
|λk2 − λ

k−1
2 |

|λk−12 − λk−22 |
(5)

This ρ is assumed to be constant for all k. If ρ is close to 1, λ2 is converging slowly because it is
changing by about the same amount after each step. Figure 11 shows a plot of ρ vs. Lanczos step

16

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

ρ

Actual ρ
Estimate of ρ

Figure 11: Rate of convergence ρ after k Lanczos steps. The actual ρ is evaluated using (5) and
the estimate is evaluated using (8). The size of the matrix was 763.

for matrix of size 763, and figure 12 shows the corresponding convergence of λ2. The data for ρ is
quite noisy, but seems to hover around a constant value. Using (5) allows (4) to be written

|λk2 − λ∗2| ≤ ρ|λk2 − λk−12 |+ ρ2|λk2 − λk−12 |+ ρ3|λk2 − λk−12 |+ ... (6)

The geometric sum on factors of ρ yields the estimate of the true error

|λk2 − λ∗2| ≤
ρ

1− ρ
|λk2 − λk−12 | (7)

It is easy to get |λk2 − λ
k−1
2 | if the Ritz values are calculated after two steps in a row. This means

to check the error, we calculate the Ritz values for two consecutive steps. An estimate of ρ is given
by

ρ =

(
|λk2 − λ

k−1
2 |

|λ32 − λ22|

)1/(k−3)

(8)

as recommended by Ascher and Petzold [1], except that λ22 is the earliest λk2 used instead of λ1.
This is because λ12 is basically a random number. We could have chosen other pairs of λ2’s for the
denominator, but this seemed to work well. This estimate of ρ is nice because there is always a
fairly large number in the denominator, so division by small numbers producing large errors is not
a concern here. It also helps to smooth out rho, as shown in figure 11. The estimate of ρ appears
to approach a fairly constant value that is close to 1, indicating slow convergence.

17

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lanczos step

F
ie

dl
er

 v
al

ue

Figure 12: Convergence of λ2 for the same test run as in figure 11. It takes a large number of
Lanczos steps to get convergence of λ2. The size of the matrix was 763. The y-axis has been
zoomed in to show that λ2 was still converging after many Lanczos steps.

18

Given a desired error tolerance, the estimate of the true error can also be used to guess how many
more Lanczos steps are needed. Setting (7) equal to an error tolerance after m more steps gives

ETOL =
ρ

1− ρ
ρm|λk2 − λk−12 | (9)

The factor of ρm appears because ρm|λk2 − λ
k−1
2 | is an estimate of what |λk2 − λ

k−1
2 | will be after m

more steps. This can be solved for m:

m = logρ
ETOL

EST
(10)

where
EST =

ρ

1− ρ
|λk2 − λk−12 | (11)

is the error estimate that has already been calculated. In our code, instead of taking m more steps,
we took a more conservative 0.8m more steps. There is a tradeoff here between taking a higher
percentage of m more steps (possibly more than 100%) and doing less QR algorithm work, but
overshooting and taking more Lanczos steps than necessary. This would have been interesting to
examine, but in the interest of time we decided other things were more interesting. Of course, we
checked to ensure that we never take more Lanczos steps than the size of the original matrix.

4 Performance

We performed a brief analysis of how our code scales with problem size and number of processors.
Due to the non-deterministic nature of the code, we have conducted each test a number of times
until we obtained 10 runs that produced the correct solution. However, we have only tested one
graph for each problem size. A variety of graphs for each problem size would give a better basis
for analyzing the code, but our time constraints prohibited us from pursuing this analysis.

Figures 13 and 14 show how the code scales with problem size. In Figure 13, we see that the
QR portion of the code accounts for the vast majority of the time, while the Lanczos algorithm
accounts for a smaller portion. The initialization routines that generate the sparse matrix are
negligible compared to these other parts, so we will discard it for the rest of this analysis.

In Figure 14, we see that the parallel efficiency increases for a time with increasing problem size,
peaking around N = 1200. In fact, the parallel efficiency is above 1.0 for all the larger problem
sizes. Looking at Figure 15, we can hypothesize the reason for this observation. Here, we see that
the QR algorithm accounts for most of the program’s runtime for a small number of processors,
but this time decreases sharply as the number of processors is increased. Looking at our code, we
realized this must be a caching problem. We noticed that our algorithm moves through the slowly-
varying index when updating the eigenvector matrix Q. Thus, when there are enough processors,
and Q is spread thinly enough among them, this caching problem disappears.

This caching issue would explain the observed parallel efficiency being greater than one, allowing
us to better interpret Figure 14. For small problem sizes, a single processor does not encounter
as many caching issues and thus lowers the speedup relative to larger problem sizes. However, for
problem sizes larger than N = 1200, we see the parallel efficiency decrease. This may be due to the

19

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

Problem size N

T
im

e
 (

s
)

Program total

Lanczos

QR

Initialization

Figure 13: Time individual program components took to run on 8 processors for different problem
sizes.

problem size reaching the cache limit on 8 processors. If the problem size continues to increase, we
may see another increase in the parallel efficiency when the single processor hits the level in cache
size.

Another interesting result is that, for a fixed (low) number of processors, the QR algorithm domi-
nates the program runtime (Figure 13), while for a fixed problem size, the QR algorithm dominates
the runtime for a low number of processors, while the Lanczos algorithm dominates for a large num-
ber of processors (Figure 15). This result is likely due to communication slowdowns. The Lanczos
algorithm requires several communications among the processors, while the QR algorithm, as cur-
rently written, runs independently on each processor. We can see this result reflected in Figure 16,
where the QR algorithm maintains a parallel efficiency around 1, which decreases slightly for a
larger number of processors (because every processor is still calculating the tridiagonal entries of
the matrix, whose work does not decrease with the number of processors).

20

200 400 600 800 1000 1200 1400 1600
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
a
ra

lle
l
e
ff
ic

ie
n
c
y

Problem size N

Program total

Lanczos

QR

Figure 14: Parallel efficiency of individual program components on 8 processors for different problem
sizes.

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

Number of processors

T
im

e
 (

s
)

Program total

Lanczos

QR

Figure 15: Time individual program components took to run on different numbers of processors
for the problem size of N = 1564.

21

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
a
ra

lle
l
e
ff
ic

ie
n
c
y

Number of processors

Program total

Lanczos

QR

Figure 16: Parallel efficiency of individual program components on different numbers of processors
for the problem size of N = 1564.

22

5 Sample Results

Sample partitioning results are shown here for systems with varying numbers of particles. The
weight function used was

w(d) =
1

(d− 0.9)5
(12)

A good partition has very few instances where collisions between particles assigned to different
partitions are imminent. Only two partitions are shown here, but the partitioning can be recursively
repeated to obtain more partitions. The partitions are perfect, but they are pretty good overall.
The spectral partitioning did a good job of keeping clumps of particles on a single partition.

We checked our results for accuracy by comparing with the output of Matlab’s eig() function.
When our results were wrong, it was always because of a loss of orthogonality. We would fix this
by either trying with another starting vector or lowering η.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 17: Partition for 55 particles

23

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Figure 18: Partition for 97 particles

0 5 10 15 20 25
0

5

10

15

20

25

Figure 19: Partition for 220 particles

24

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 20: Partition for 1197 particles

25

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure 21: Partition for 1564 particles

26

A Lanczos method with partial reorthogonalization

A.1 Lanczos algorithm

Given an m×m matrix A ∈ Rn×n, we will carry out the Lanczos method for n steps, giving us n
approximate eigenvalues and corresponding eigenvectors.

1. Choose a random starting vector q1 and let q0 = 0.

2. for j = 1:n

v = Aqj

αj = vTqj

v = v − αjqj − βj−1qj−1
βj = ||v||
Partially reorthogonalize v against q1, . . . , qj

qj+1 =
v

βj

This method will produce the matrices Q and T such that

A = QTTQ

where T ∈ Rn×n is a tridiagonal matrix

T =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βn−2 αn−1 βn−1
βn−1 αn


and Q ∈ Rm×n contains the vectors qj :

Q = [q1 q2 . . . qn]

All that is needed to carry out Lanczos are matrix vector multiplications. With the sparse matrix
data structure discussed in section 2, matrix-vector multiplications are easy. To make things as
simple as possible, the data for the vector is communicated to all processors so that all processsors
contain the entire vector in memory. Each processor can then calculate its part of the product
vector by looping through the linked list containing the off-diagonal entries and then applying the
diagonal entries.

It should also be noted that when a reorthogonalization is done, it must be done in two consecutive
steps. Otherwise roundoff errors from the previous Lanczos vector will still propagate forward.

27

A.2 Partial reorthogonalization

To avoid expensive schemes, such as orthogonalizing the new vector qj+1 against all previous
vectors, we have implemented the method of Horst D. Simon [4]. He devises a method which seeks
to approximate the inner products of the Lanczos vectors by

ωj+1,j+1 = 1

ωj+1,j = ψj

for k = 1:j

ωj+1,k =
1

βj
[βkωj,k+1 + (αk − αj)ωj,k + βk−1ωj,k−1 − βj−1ωj−1,k + θj,k]

where

ψj = ε
β1
βj
m randn(0, 0.6)

θj,k = ε
βk
βj

randn(0, 0.3)

and randn(m, s) generates a random number in a normal distribution with mean m and standard
deviation s.

When a reorthogonalization was performed, the ωj+1,k corresponding to the vectors which were
orthogonalized against were set to randn(0, 1.5ε).

B Code

B.1 structs.h

#ifndef _STRUCTS

#define _STRUCTS

typedef struct

{

double x;

double y;

int id;

} PARTICLE;

typedef struct

{

// MPI rank and number of processors

int rank, nproc;

// Debug file

FILE *dbg;

char real_filename[50], approx_filename[50], flag_filename[50];

// Particle data

28

PARTICLE *particles;

int Np;

int *Np_local;

int *vecstart;

int Np_local_max;

} LDATA;

typedef struct spmat_entry_t

{

int row; //local

double weight;

int column; //global

struct spmat_entry_t *next;

} SPMAT_ENTRY;

typedef struct

{

double *diag;

SPMAT_ENTRY *root;

} SPMAT;

typedef struct

{

int start;

int steps;

double **Q;

double *alpha;

double *beta;

// Variables necessary for restarting

double **w, *w0;

int *flag_reorth;

int firststep;

} LANCZOS;

#undef DEBUG

#define CALC_REORTH

#endif

B.2 main.cpp

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stddef.h>

#include <mpi.h>

#include <math.h>

#include <time.h>

29

#include "structs.h"

#include "matvec.h"

#include "lanczos.h"

#include "qr_tridiag.h"

#define min(a, b) ((a)<(b)) ? (a) : (b)

#define ETOL 1e-6

/**/

/*

*/

/**/

void save_vector(const char *filename, double *lvec, LDATA *data)

{

int i;

int signal;

MPI_Status status;

FILE *fp;

if (data->rank != 0)

{

MPI_Recv(&signal, 1, MPI_INT, data->rank-1, 0, MPI_COMM_WORLD, &status);

fp = fopen(filename, "a");

}

else

{

fp = fopen(filename, "w");

}

for (i = 0; i < data->Np_local[data->rank]; i++)

fprintf(fp, "%.14e\n", lvec[i]);

fclose(fp);

if (data->rank != data->nproc-1)

MPI_Send(&signal, 1, MPI_INT, data->rank+1, 0, MPI_COMM_WORLD);

}

/**/

/*

*/

/**/

void get_id_startstop(LDATA *data, int *id_start, int *id_stop)

{

int rank = data -> rank;

int nproc = data -> nproc;

int Np = data -> Np;

30

//divide the particles evenly among processors, assign "leftover" particles to low rank processors so some low rank processors get one extra particle

if (rank < Np % nproc) //extra particle processors

{

*id_start = rank * (Np / nproc + 1);

*id_stop = *id_start + Np / nproc;

}

else

{

*id_start = rank * (Np / nproc) + (Np % nproc);

*id_stop = *id_start + Np / nproc - 1;

}

}

/**/

/*

*/

/**/

void load_particles(char *filename, LDATA *data)

{

FILE *fp;

char junk[100];

int i;

int signal = 0;

int id_start, id_stop;

MPI_Status status;

int rank = data -> rank;

int nproc = data -> nproc;

if (rank != 0)

MPI_Recv(&signal, 1, MPI_INT, rank-1, 0, MPI_COMM_WORLD, &status);

fp = fopen(filename, "r");

fscanf(fp, "%d\n", &data->Np);

get_id_startstop(data, &id_start, &id_stop);

data->Np_local = (int *) malloc(nproc * sizeof(int));

data->Np_local[rank] = id_stop - id_start + 1;

//skip to starting position

for (i = 0; i < id_start; i++)

fgets(junk, 100, fp);

//read the local particles

data->particles = (PARTICLE *) malloc(data->Np_local[rank] * sizeof(PARTICLE));

for (i = 0; i < data->Np_local[rank]; i++)

{

data->particles[i].id = id_start + i;

fscanf(fp, "%lf %lf\n", &data->particles[i].x, &data->particles[i].y);

}

31

fclose(fp);

if (rank != nproc-1)

MPI_Send(&signal, 1, MPI_INT, rank+1, 0, MPI_COMM_WORLD);

}

/**/

/*

*/

/**/

void share_Np_local(LDATA *data)

{

int i;

int rank = data -> rank;

int nproc = data -> nproc;

MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, data->Np_local, 1, MPI_INT, MPI_COMM_WORLD);

data->Np_local_max = data->Np_local[0];

data->vecstart = (int *) malloc(nproc*sizeof(int));

data->vecstart[0] = 0;

for (i = 1; i < nproc; i++)

{

if (data->Np_local_max < data->Np_local[i])

data->Np_local_max = data->Np_local[i];

data->vecstart[i] = data->vecstart[i-1] + data->Np_local[i-1];

}

}

/**/

/*

*/

/**/

void clean_data(LDATA *data)

{

free(data->particles);

free(data->vecstart);

free(data->Np_local);

}

/**/

/*

*/

32

/**/

void clean_lancz(LANCZOS *lancz)

{

free(lancz -> w0);

free(&(lancz -> w[lancz->steps - 2]));

free(lancz -> flag_reorth);

free(lancz -> alpha);

free(lancz -> beta);

free_mat(lancz -> Q);

}

/**/

/*

*/

/**/

MPI_Datatype make_mpi_particle(void)

{

MPI_Datatype mpi_type;

MPI_Datatype types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT};

int nitems = 3;

int blocklengths[3] = {1, 1, 1};

MPI_Aint offsets[3];

offsets[0] = offsetof(PARTICLE, x);

offsets[1] = offsetof(PARTICLE, y);

offsets[2] = offsetof(PARTICLE, id);

MPI_Type_create_struct(nitems, blocklengths, offsets, types, &mpi_type);

MPI_Type_commit(&mpi_type);

return mpi_type;

}

/**/

/*

*/

/**/

int main(int argc, char **argv)

{

int rank, nproc;

FILE *dbg;

char dbg_filename[100];

int i, j;

int seed;

MPI_Datatype mpi_particle;

LDATA data;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

33

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

data.rank = rank;

data.nproc = nproc;

double T0, T1, T2;

double t_total, t_initialize;

double t_lanczos = 0.0;

double t_qr = 0.0;

T0 = MPI_Wtime();

// Initialize random number generator with same seed among all processors

// if (rank == 0)

// seed = time(0);

// MPI_Bcast(&seed, 1, MPI_INT, 0, MPI_COMM_WORLD);

// srand(seed);

sprintf(dbg_filename, "debug/rank_%02d.txt", rank);

dbg = fopen(dbg_filename, "w");

data.dbg = dbg;

#ifdef CALC_REORTH

if (rank == 0) {

FILE *fid;

sprintf(data.real_filename, "real.txt");

sprintf(data.approx_filename, "approx.txt");

sprintf(data.flag_filename, "flag.txt");

fid = fopen(data.real_filename, "w");

fclose(fid);

fid = fopen(data.approx_filename, "w");

fclose(fid);

fid = fopen(data.flag_filename, "w");

fclose(fid);

}

#endif

SPMAT L;

T1 = MPI_Wtime();

// fprintf(dbg, "Begin initializing\n"); fflush(dbg);

load_particles(argv[1], &data);

share_Np_local(&data);

init_spmat(&L, &data);

// fprintf(dbg, "End initializing\n"); fflush(dbg);

MPI_Barrier(MPI_COMM_WORLD);

mpi_particle = make_mpi_particle();

// fprintf(dbg, "Made mpi_particle\n"); fflush(dbg);

gen_matrix_intra(&L, &data);

// fprintf(dbg, "Made intra matrix\n"); fflush(dbg);

gen_matrix_inter(&L, &data, mpi_particle);

// fprintf(dbg, "Made inter matrix\n"); fflush(dbg);

34

T2 = MPI_Wtime();

t_initialize = T2 - T1;

int count = 0;

int N[2];

double *alpha, *beta, **Q;

int ilam = 0;

double past_lam[4] = {0.0, 0.0, 0.0, 0.0};

int past_steps[4];

double minritz;

int lam_ind, minritz_ind;

double rho;

double error;

int more;

int single_iteration;

LANCZOS lancz;

lancz.start = 0;

// Number of initial steps to take

if (argc > 2) {

single_iteration = 1;

lancz.steps = atoi(argv[2]);

}

else {

single_iteration = 0;

lancz.steps = 2;

}

error = ETOL+1.0;

while (error > ETOL)

{

// Clear results of tridiagonal solution from last iteration

if (count > 0) {

free(alpha);

free(beta);

free_mat(Q);

}

if (rank == 0)

printf("steps = %d\n", lancz.steps);

//--

// Run Lanczos algorithm

//--

T1 = MPI_Wtime();

lanczos(L, &data, &lancz);

T2 = MPI_Wtime();

t_lanczos += T2 - T1;

#ifdef DEBUG

35

fprintf(dbg, "alpha = \n");

for (i = 0; i < lancz.steps; i++)

fprintf(dbg, "%2d %f\n", i, lancz.alpha[i]);

fprintf(dbg, "beta = \n");

for (i = 0; i < lancz.steps-1; i++)

fprintf(dbg, "%2d %f\n", i, lancz.beta[i]);

fflush(dbg);

#endif

//--

// Solve eigenvals and eigenvecs for tridiagonal system

//--

alpha = (double *)malloc(lancz.steps * sizeof(double));

beta = (double *)malloc(lancz.steps * sizeof(double));

Q = alloc_mat(lancz.steps, data.Np_local[rank]);

// Copy ’alpha,’ ’beta,’ and ’Q’ from Lanczos results

memcpy(alpha, lancz.alpha, lancz.steps * sizeof(double));

memcpy(beta, lancz.beta, lancz.steps * sizeof(double));

memcpy(Q[0], lancz.Q[0], lancz.steps * data.Np_local[rank] * sizeof(double));

// Dimensions of ’Q’

N[0] = data.Np_local[rank];

N[1] = lancz.steps;

// Solve for eigenvalues and eigenvectors

T1 = MPI_Wtime();

tridiag(alpha, beta, Q, N);

T2 = MPI_Wtime();

t_qr += T2 - T1;

// Get Fiedler value and which Q index that is

minritz = alpha[0];

minritz_ind = 0;

for (i = 0; i < lancz.steps; i++)

{

if (minritz > alpha[i])

{

minritz = alpha[i];

minritz_ind = i;

}

}

lam_ind = (minritz_ind + 1) % lancz.steps;

past_lam[ilam] = alpha[lam_ind];

for (i = 2; i < lancz.steps; i++)

{

j = (minritz_ind + i) % lancz.steps;

if (alpha[j] < past_lam[ilam])

{

past_lam[ilam] = alpha[j];

36

lam_ind = j;

}

}

// Stop checking error if lanczos steps = size of original matrix

if (lancz.steps == data.Np || single_iteration)

break;

// Determine error and how many more steps to take

past_steps[ilam] = lancz.steps;

lancz.start = lancz.steps - 1;

ilam++;

if (ilam > 3) // enough info to evaluate error

{

rho = pow(fabs((past_lam[3] - past_lam[2])/(past_lam[1] - past_lam[0])), 1.0/(past_steps[2] - past_steps[0]));

error = rho/(1.0-rho)*fabs(past_lam[3]-past_lam[2]);

more = ceil(0.8*log(ETOL/error)/log(rho));

if (more < 1)

break;

lancz.steps += more;

lancz.steps = min(lancz.steps, data.Np-1);

ilam = 2;

}

else

{

lancz.steps++;

}

count++;

}

#ifdef DEBUG

fprintf(dbg, "alpha_tridiag = \n");

for (i = 0; i < lancz.steps; i++)

fprintf(dbg, "%2d %f\n", i, alpha[i]);

fprintf(dbg, "beta_tridiag = \n");

for (i = 0; i < lancz.steps-1; i++)

fprintf(dbg, "%2d %f\n", i, beta[i]);

fflush(dbg);

fprintf(dbg, "Q_tridiag = \n");

for (j = 0; j < data.Np_local[rank]; j++) {

for (i = 0; i < lancz.steps; i++) {

fprintf(dbg, "%f ", Q[i][j]);

}

fprintf(dbg, "\n");

}

fflush(dbg);

#endif

// Save Fiedler vector

save_vector("fiedler_vec.txt", Q[lam_ind], &data);

37

if (rank == 0) {

if (single_iteration)

printf("Fiedler value = %.14e\n", past_lam[0]);

else

printf("Fiedler value = %.14e\n", past_lam[3]);

}

T2 = MPI_Wtime();

t_total = T2 - T0;

// Timing results

if (rank == 0) {

printf("Total time: %g\n", t_total);

printf("Initialization time: %g\n", t_initialize);

printf("Lanczos algorithm time: %g\n", t_lanczos);

printf("QR tridiagonal time: %g\n", t_qr);

}

MPI_Barrier(MPI_COMM_WORLD);

clean_lancz(&lancz);

clean_data(&data);

clean_spmat(&L);

free(alpha);

free(beta);

free_mat(Q);

fclose(dbg);

MPI_Finalize();

return 0;

}

B.3 matvec.h

#ifndef _MATVEC

#define _MATVEC

#include <mpi.h>

#include "structs.h"

extern double thresh_conn;

double **alloc_mat(int m, int n);

void free_mat(double **mat);

double get_weight(double dist);

SPMAT_ENTRY *add_spmat_entry(SPMAT_ENTRY *root, int row, double w, int column);

void gen_matrix_intra(SPMAT *mat, LDATA *data);

38

void gen_matrix_inter(SPMAT *mat, LDATA *data, MPI_Datatype mpi_particle);

void init_spmat(SPMAT *mat, LDATA *data);

void clean_spmat(SPMAT *mat);

void matvec(LDATA *data, SPMAT mat, double *lvec, double *prod);

#endif

B.4 matvec.cpp

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "matvec.h"

double thresh_conn = 3.0;

/**/

/*

Allocates space for a 2-D double array, where ’m’ and ’n’ are the dimensions of

the slow- and fast-varying indices, respectively

*/

/**/

double **alloc_mat(int m, int n) {

int i;

double **mat;

mat = (double **)malloc(m * sizeof(double *));

mat[0] = (double *)malloc(m * n * sizeof(double));

for (i = 1; i < m; i++)

mat[i] = mat[0] + i * n;

return mat;

}

/**/

/*

Frees matrix generated by alloc_mat()

*/

/**/

void free_mat(double **mat) {

free(mat[0]);

free(mat);

}

/**/

39

/*

*/

/**/

double get_weight(double dist)

{

// return 0.9*0.5*(1.0-erf(10.0*(dist-1.15))) + 0.1*exp(-3.0*(dist-1.0));

// return 1.0/(dist-1.0);

return pow((dist - 0.9), -5.0);

}

/**/

/*

*/

/**/

SPMAT_ENTRY *add_spmat_entry(SPMAT_ENTRY *root, int row, double w, int column)

{

SPMAT_ENTRY *entry;

if (root == NULL)

{

root = (SPMAT_ENTRY *) malloc(sizeof(SPMAT_ENTRY));

entry = root;

}

else

{

entry = root;

while (entry->next != NULL)

entry = entry->next;

entry->next = (SPMAT_ENTRY *) malloc(sizeof(SPMAT_ENTRY));

entry = entry->next;

}

entry->row = row;

entry->weight = w;

entry->column = column;

entry->next = NULL;

return root;

}

/**/

/*

*/

/**/

void gen_matrix_intra(SPMAT *mat, LDATA *data)

{

int i, j, k;

double dx, dy, dist, weight;

40

int rank = data -> rank;

k = data->vecstart[rank];

for (i = 0; i < data->Np_local[rank]; i++)

{

for (j = i+1; j < data->Np_local[rank]; j++)

{

dx = data->particles[i].x - data->particles[j].x;

dy = data->particles[i].y - data->particles[j].y;

dist = sqrt(dx * dx + dy * dy);

if (dist < thresh_conn)

{

weight = get_weight(dist);

mat->root = add_spmat_entry(mat->root, i, -weight, k+j);

mat->root = add_spmat_entry(mat->root, j, -weight, k+i);

mat->diag[i] += weight;

mat->diag[j] += weight;

}

}

}

}

/**/

/*

*/

/**/

void gen_matrix_inter(SPMAT *mat, LDATA *data, MPI_Datatype mpi_particle)

{

int step;

int send, recv;

int i, j, k;

PARTICLE *sendbuf, *recvbuf, *tempbuf;

int sendbufN, recvbufN;

MPI_Status status;

double dx, dy, dist, weight;

int rank = data -> rank;

int nproc = data -> nproc;

sendbuf = (PARTICLE *) malloc(data->Np_local_max * sizeof(PARTICLE));

recvbuf = (PARTICLE *) malloc(data->Np_local_max * sizeof(PARTICLE));

send = (rank + 1) % nproc;

recv = (rank - 1 + nproc) % nproc;

memcpy(sendbuf, data->particles, data->Np_local[rank] * sizeof(PARTICLE));

sendbufN = data->Np_local[rank];

//carousel algorithm

41

for (step = 1; step < nproc; step++)

{

MPI_Sendrecv(&sendbufN, 1, MPI_INT, send, 0, &recvbufN, 1, MPI_INT,

recv, 0, MPI_COMM_WORLD, &status);

MPI_Sendrecv(sendbuf, sendbufN, mpi_particle, send, 1,

recvbuf, recvbufN, mpi_particle, recv, 1, MPI_COMM_WORLD, &status);

k = data->vecstart[(rank-step+nproc) % nproc];

for (i = 0; i < data->Np_local[rank]; i++)

{

for (j = 0; j < recvbufN; j++)

{

dx = data->particles[i].x - recvbuf[j].x;

dy = data->particles[i].y - recvbuf[j].y;

dist = sqrt(dx*dx + dy*dy);

if (dist < thresh_conn)

{

weight = get_weight(dist);

mat->root = add_spmat_entry(mat->root, i, -weight, k+j);

mat->diag[i] += weight;

}

}

}

tempbuf = sendbuf;

sendbuf = recvbuf;

recvbuf = tempbuf;

sendbufN = recvbufN;

}

free(sendbuf);

free(recvbuf);

}

/**/

/*

*/

/**/

void init_spmat(SPMAT *mat, LDATA *data)

{

int rank = data -> rank;

mat->diag = (double *) malloc(data->Np_local[rank] * sizeof(double));

memset(mat->diag, 0, data->Np_local[rank] * sizeof(double));

mat->root = NULL;

}

/**/

/*

42

*/

/**/

void clean_spmat(SPMAT *mat)

{

SPMAT_ENTRY *one, *two;

free(mat->diag);

one = mat->root;

while (one->next != NULL)

{

two = one->next;

free(one);

one = two;

}

}

/**/

/*

*/

/**/

void matvec(LDATA *data, SPMAT mat, double *lvec, double *prod)

{

SPMAT_ENTRY *node;

int i, k;

double *vec;

int rank = data -> rank;

FILE *dbg = data -> dbg;

k = data->vecstart[rank];

// fprintf(dbg, "vecstart = %d\n", k); fflush(dbg);

// fprintf(dbg, "vec = \n");

// for (i = 0; i < data->Np; i++)

// fprintf(dbg, "%2d %f\n", i, vec[i]);

// fflush(dbg);

vec = (double *) malloc(data->Np * sizeof(double));

// memcpy(&vec[k], lvec, data->Np_local[rank] * sizeof(double));

MPI_Allgatherv(lvec, data->Np_local[rank], MPI_DOUBLE,

vec, data->Np_local, data->vecstart, MPI_DOUBLE, MPI_COMM_WORLD);

// fprintf(dbg, "vec = \n");

// for (i = 0; i < data->Np; i++)

// fprintf(dbg, "%2d %f\n", i, vec[i]);

// fflush(dbg);

memset(prod, 0, data->Np_local[rank]*sizeof(double));

43

// fprintf(dbg, "my part of prod = (before matvec op)\n");

// for (i = 0; i < data->Np_local[rank]; i++)

// fprintf(dbg, "%2d %f\n", data->particles[i].id, prod[i]);

// fflush(dbg);

// fprintf(dbg, "diagonal entries = \n");

for (i = 0; i < data->Np_local[rank]; i++)

{

prod[i] += mat.diag[i]*vec[k+i];

// fprintf(dbg, "%2d %f\n", data->particles[i].id, mat.diag[i]);

}

// fflush(dbg);

// fprintf(dbg, "off-diagonal entries = \n");

node = mat.root;

while (node != NULL)

{

// fprintf(dbg, "row = %2d, column = %2d, weight = %f\n", k+node->row, node->column, node->weight);

prod[node->row] += node->weight * vec[node->column];

node = node->next;

}

// fflush(dbg);

free(vec);

}

B.5 lanczos.h

#ifndef _LANCZOS

#define _LANCZOS

double dot(double *x, double *y, int lN);

void lanczos(SPMAT mat, LDATA *data, LANCZOS *lancz);

#endif

B.6 lanczos.cpp

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <mpi.h>

#include <string.h>

#include "structs.h"

#include "lanczos.h"

#include "matvec.h"

#define PI 3.14159265359

44

#define RANK_TEST 1

/**/

/*

Determines value of machine precision within a factor of two of its actual

value

*/

/**/

double calc_eps()

{

double eps = 1.0;

do {

// printf("%G\t%.20f\n", eps, (1.0 + eps));

eps /= 2.0f;

// If next epsilon yields 1, then break, because current

// epsilon is the machine epsilon.

} while ((double)(1.0 + (eps / 2.0)) != 1.0);

return eps;

}

/**/

/*

Generates a random number from a normal distribution using the Box-Muller

method.

- mu: mean

- sigma: standard deviation

*/

/**/

double randn(double mu, double sigma)

{

double X, U, V;

U = ((double) rand()) / RAND_MAX;

V = ((double) rand()) / RAND_MAX;

X = sqrt(-2.0 * log(fabs(U))) * cos(2.0 * PI * V);

return sigma * X + mu;

}

/**/

/*

Computes dot product of two vectors ’x’ and ’y’ which are split among all the

45

processors. The vector length on the local processor is ’lN’

*/

/**/

double dot(double *x, double *y, int lN)

{

int i;

double lans = 0.0;

double ans;

for (i = 0; i < lN; i++)

lans += x[i] * y[i];

MPI_Allreduce(&lans, &ans, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

return ans;

}

/**/

/*

Executes Lanczos algorithm to calculate eigenvalues and eigenvectors of a

sparse matrix defined by ’mat’.

This method produces a (symmetric) tridiagonal matrix (from a symmetric

Laplacian matrix):

- alpha: Diagonal entries, vector of length ’steps’

- beta: Off-diagonal entries, vector of length ’steps-1’

The pseudo-eigenvectors are defined as ’Q’, having dimensions ’Np’ by ’steps’:

- Np: Number of particles, i.e. size of Laplacian matrix

- steps: Number of Lanczos iterations to perform, yielding that many

eigenvectors

On the local processor, ’Q’ has dimensions ’Np_local’ by ’steps’. The ’steps’

dimension is the slowly-varying dimension.

We are using the partial reorthogonalization method (PRO) of Horst D. Simon

[’The Lanczos algorithm with partial reorthogonalization’, Mathematics of

Computation, 1984], which estimates the degree of deorthogonalization (which we

keep track of in ’w’) and then reorthogonalizes the new eigenvector against

only those that have a high degree of deorthogonalization.

*/

/**/

void lanczos(SPMAT mat, LDATA *data, LANCZOS *lancz)

{

double **Q;

double *alpha, *beta;

double *v;

int i, j, k;

double temp;

46

double **w, *w0, *temp_ptr;

int firststep, *flag_reorth;

int lo, up;

double eps, sqrt_eps, psi, theta, eta;

int rank = data -> rank;

FILE *dbg = data -> dbg;

int N_local = data -> Np_local[rank];

int N_global = data -> Np;

int start = lancz -> start;

int steps = lancz -> steps;

#ifdef CALC_REORTH

FILE *fid_real, *fid_approx, *fid_flag;

if (rank == 0) {

fid_real = fopen(data -> real_filename, "w");

fid_approx = fopen(data -> approx_filename, "a");

fid_flag = fopen(data -> flag_filename, "a");

}

#endif

//--

// Allocate storage

//--

// Matrix of eigenvectors: Q[j][i] = element ’i’ of eigenvector ’j’

Q = alloc_mat(steps, N_local);

// Vector of main diagonal elements produced by Lanczos

alpha = (double *) malloc(steps * sizeof(double));

// Vector of off-diagonal elements produced by Lanczos

beta = (double *) malloc(steps * sizeof(double));

// Temporary storage vector for Lanczos algorithm

v = (double *) malloc(N_local * sizeof(double));

// Matrix of approximated inner products. We change the pointer to ’w’ to

// simulate how it changes with ’j’. Thus, in the Lanczos iterations, we

// can use ’w’ as if we were storing the whole matrix, even though we are

// only storing three steps at a time.

w = alloc_mat(3, steps);

w0 = w[0];

w += 1 - start;

// Flag of which vectors to reorthogonalize

flag_reorth = (int *) malloc(steps * sizeof(int));

for (i = 0; i < steps; i++)

flag_reorth[i] = 0;

47

//--

// Initialize Lanczos

//--

// Machine precision

eps = calc_eps();

// Threshold for starting reorthogonalization, p. 126 of reference

sqrt_eps = sqrt(eps);

// Threshold for range of reorthogonalization, p. 129 of reference

// eta = pow(eps, 0.75);

eta = pow(eps, 0.8);

// eta = 0;

// Start Lancozs method

if (start == 0) {

// Random initial vector

srand(rank);

for (i = 0; i < N_local; i++)

Q[0][i] = ((double) rand())/RAND_MAX - 0.5;

// Reseed random number generator, in case N_local varies among

// processors

int seed = rand();

MPI_Bcast(&seed, 1, MPI_INT, 0, MPI_COMM_WORLD);

srand(seed);

#ifdef DEBUG

fprintf(dbg, "starting vec = \n");

for (i = 0; i < N_local; i++)

fprintf(dbg, "%.14f\n", Q[0][i]);

fflush(dbg);

#endif

temp = sqrt(dot(Q[0], Q[0], N_local));

for (i = 0; i < N_local; i++)

Q[0][i] /= temp;

w[0][0] = 1.0;

#ifdef DEBUG

fprintf(dbg, "starting vec = \n");

for (i = 0; i < N_local; i++)

fprintf(dbg, "%f\n", Q[0][i]);

fprintf(dbg, "w = \n%g\n", w[0][0]);

fflush(dbg);

#endif

firststep = 1;

}

// Continue Lanczos for more iterations

48

else {

// Copy Q matrix into new, larger storage

memcpy(Q[0], lancz->Q[0], (start + 1) * N_local * sizeof(double));

free_mat(lancz->Q);

// Copy alpha vector into new, larger storage

memcpy(alpha, lancz->alpha, (start + 1) * sizeof(double));

free(lancz->alpha);

// Copy beta vector into new, larger storage

memcpy(beta, lancz->beta, (start + 1) * sizeof(double));

free(lancz->beta);

// Copy w matrix into new, larger storage

for (j = start - 1; j <= start; j++) {

for (i = 0; i <= start; i++) {

w[j][i] = lancz->w[j][i];

}

}

free(lancz -> w0);

free(&(lancz -> w[start - 1]));

// Copy flag_reorth into new, larger storage

memcpy(flag_reorth, lancz->flag_reorth, (start + 1) * sizeof(int));

free(lancz->flag_reorth);

// Copy state of firststep

firststep = lancz -> firststep;

}

//--

// Lanczos algorithm

//--

for (j = start; j < steps-1; j++) {

matvec(data, mat, Q[j], v);

alpha[j] = dot(v, Q[j], N_local);

for (i = 0; i < N_local; i++)

v[i] -= alpha[j] * Q[j][i];

if (j > 0) {

for (i = 0; i < N_local; i++)

v[i] -= beta[j-1] * Q[j-1][i];

}

beta[j] = sqrt(dot(v, v, N_local));

// Estimate loss of orthogonality, eq. (5.1) p. 121 of reference paper

// ’psi’ from eq. (5.3) p. 123 of reference paper

49

psi = eps * N_global * beta[0] / beta[j] * randn(0, 0.6);

// psi = eps * N_global * randn(0, 1.0);

w[j+1][j+1] = 1.0;

w[j+1][j] = psi;

for (k = 0; k < j; k++) {

// ’theta’ from eq. (5.2) p. 123 of reference paper

theta = eps * (beta[k] + beta[j]) * randn(0, 0.3);

// theta = eps * randn(0, KAPPA);

w[j+1][k] = 1.0 / beta[j] * (beta[k] * w[j][k+1] + (alpha[k] - alpha[j]) * w[j][k]

- beta[j-1] * w[j-1][k]) + theta;

if (k > 0)

w[j+1][k] += beta[k-1] / beta[j] * w[j][k-1];

}

// Flag which vectors need to be reorthogonalized

if (firststep) {

// Reset flags

for (k = 0; k <= j; k++)

flag_reorth[k] = 0;

up = 0;

k = 0;

while (k <= j) {

// Find where estimated inner product exceeds threshold

if (fabs(w[j+1][k]) > sqrt_eps) {

firststep = 0;

// Other vectors to be reorthogonalized described on p. 128

// of reference

// Search for lower bound of lesser threshold

lo = k;

while (lo >= up && fabs(w[j+1][lo]) > eta) {

flag_reorth[lo] = 1;

lo--;

}

// Search for upper bound of lesser threshold

up = k + 1;

while (up <= j && fabs(w[j+1][up]) > eta) {

flag_reorth[up] = 1;

up++;

}

k = up;

}

k++;

50

}

}

else {

firststep = 1;

}

// Reorthogonalize

for (k = 0; k <= j; k++) {

if (flag_reorth[k]) {

temp = dot(v, Q[k], N_local);

for (i = 0; i < N_local; i++) {

v[i] -= Q[k][i] * temp;

}

w[j+1][k] = eps * randn(0, 1.5);

}

}

beta[j] = sqrt(dot(v, v, N_local));

// Store eigenvector

for (i = 0; i < N_local; i++)

Q[j+1][i] = v[i] / beta[j];

#ifdef CALC_REORTH

if (rank == 0) {

for (i = 0; i <= j; i++) {

fprintf(fid_approx, "%g ", w[j+1][i]);

fprintf(fid_flag, "%d ", flag_reorth[i]);

}

fprintf(fid_approx, "\n");

fflush(fid_approx);

fprintf(fid_flag, "\n");

fflush(fid_flag);

}

#endif

// Update storage of ’w’

temp_ptr = w[j-1];

w[j-1] = w[j];

w[j] = w[j+1];

w[j+1] = temp_ptr;

w--;

}

// Calculate last alpha

matvec(data, mat, Q[steps-1], v);

alpha[steps-1] = dot(v, Q[steps-1], N_local);

#ifdef CALC_REORTH

// Calculate actual orthogonalities

for (j = 0; j < steps; j++) {

51

for (k = 0; k < j; k++) {

temp = dot(Q[j], Q[k], N_local);

if (rank == 0)

fprintf(fid_real, "%g ", temp);

}

if (rank == 0) {

fprintf(fid_real, "\n");

fflush(fid_real);

}

}

if (rank == 0) {

fclose(fid_real);

fclose(fid_approx);

fclose(fid_flag);

}

#endif

//--

// Save return values

//--

lancz -> Q = Q;

lancz -> alpha = alpha;

lancz -> beta = beta;

lancz -> w = w;

lancz -> w0 = w0;

lancz -> firststep = firststep;

lancz -> flag_reorth = flag_reorth;

free(v);

}

B.7 qr tridiag.h

#ifndef _QR_TRIDIAG

#define _QR_TRIDIAG

void tridiag(double *d, double *e, double **z, int *N);

#endif

52

B.8 qr tridiag.cpp

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "qr_tridiag.h"

/**/

/*

Calculates eigenvalues of symmetric 2x2 matrix

- d: Diagonal entries, vector of length 2

- e: Off-diagonal entry

- lambda: vector into which the two eigenvalues will be deposited

*/

/**/

void eig(double *lambda, double *d, double e) {

// Trace

double T = d[0] + d[1];

// Determinant

double D = d[0] * d[1] - e * e;

// Eigenvalues

lambda[0] = 0.5 * T + sqrt(0.25 * T * T - D);

lambda[1] = 0.5 * T - sqrt(0.25 * T * T - D);

}

/**/

/*

Computes sqrt(a^2 + b^2) without numerical overflow

*/

/**/

double pythag(double a, double b) {

static double dsqrarg;

#define DSQR(a) ((dsqrarg=(a)) == 0.0 ? 0.0 : dsqrarg*dsqrarg)

double absa, absb;

absa = fabs(a);

absb = fabs(b);

if (absa > absb)

return absa * sqrt(1.0 + DSQR(absb / absa));

else

return (absb == 0.0 ? 0.0 : absb * sqrt(1.0 + DSQR(absa / absb)));

#undef DSQR

}

53

/**/

/*

Calculates eigenvalues of symmetric tridiagonal matrix

- d: Main diagonal of matrix, vector of length ’n’

- e: Off-diagonal of matrix, vector of length ’n-1,’ but memory should be

allocated as if length ’n’

- v: Matrix of size ’m-by-n’ which will be operated on to yield the

eigenvectors. Pass the identity matrix to obtain the eigenvectors of

the tridiagonal matrix. Pass another matrix if this is the last step

in finding the eigenvectors of a matrix (e.g. as part of Lanczos

algorithm).

- N: Array describing matrix dimensions, m = N[0], n = N[1]

*/

/**/

void tridiag(double *d, double *e, double **v, int *N) {

// Is matrix ’v’ row-major or column-major form?

#undef ROW_MAJOR

// Indices to mark position within block, i = Is:Ie-1 would access every

// diagonal element in the block

int i, j, Is, Ie;

// Matrix ’v’ is m-by-n

int m = N[0];

int n = N[1];

// Flag to indicate that the matrix has not been reduced to 1x1 and 2x2 blocks

int flag;

// Number of iterations across entire matrix

int iter;

// Eigenvalues of 2x2 matrix, shift variable

double lambda[2], mu;

// Rotation matrix coefficients:

// inverse tangent, sine, cosine, sin^2, cos^2, sin * cos

double it, s, c, s2, c2, sc;

// Diagonal and off-diagonal elements

double d0, d1, dd;

// Off-diagonal elements

double e_1, e0, e1;

54

// Bulge (off-off diagonal) element

double bulge;

// Eigenvector temp storage

double v0;

Is = 0;

iter = 0;

flag = 1;

while (flag || Is > 0) {

if (Is == 0)

flag = 0;

//--

// Find end of block

//--

for (i = Is; i < n - 1; i++) {

dd = fabs(d[i]) + fabs(d[i+1]);

if (dd + e[i] == dd) {

break;

}

}

Ie = i + 1;

//--

// Block size is greater than 1

//--

if (Ie - Is > 1) {

flag = 1;

//--

// Calculate shift

//--

eig(lambda, &d[Ie - 2], e[Ie - 2]);

if (fabs(lambda[0] - d[Ie - 1]) < fabs(lambda[1] - d[Ie - 1]))

mu = lambda[0];

else

mu = lambda[1];

//--

// Create bulge (can assume e[Is] != 0)

//--

d0 = d[Is];

e0 = e[Is];

d1 = d[Is + 1];

e1 = e[Is + 1];

// Rotation coefficients

55

if (e0 == 0) {

fprintf(stderr, "Error: e0 == 0.\n");

exit(0);

}

it = (d0 - mu) / e0;

s = 1 / sqrt(1 + it * it);

c = it * s;

s2 = s * s;

c2 = c * c;

sc = s * c;

// Rotate matrix

d[Is] = c2 * d0 + s2 * d1 + 2 * sc * e0;

d[Is+1] = s2 * d0 + c2 * d1 - 2 * sc * e0;

e[Is] = sc * (d1 - d0) + (c2 - s2) * e0;

e[Is+1] = c * e1;

bulge = s * e1;

for (j = 0; j < m; j++) {

#ifdef ROW_MAJOR

v0 = v[j][Is];

v[j][Is] = c * v0 + s * v[j][Is+1];

v[j][Is+1] = -s * v0 + c * v[j][Is+1];

#else

v0 = v[Is][j];

v[Is][j] = c * v0 + s * v[Is+1][j];

v[Is+1][j] = -s * v0 + c * v[Is+1][j];

#endif

}

//--

// "Squeeze" bulge down diagonal

//--

for (i = Is + 1; i < Ie - 1; i++) {

e_1 = e[i - 1];

d0 = d[i];

e0 = e[i];

d1 = d[i + 1];

e1 = e[i + 1];

// Rotation coefficients

if (bulge == 0) {

fprintf(stderr, "Error: bulge == 0.\n");

exit(0);

}

it = e_1 / bulge;

s = 1 / sqrt(1 + it * it);

c = it * s;

s2 = s * s;

56

c2 = c * c;

sc = s * c;

// Rotate matrix

d[i] = c2 * d0 + s2 * d1 + 2 * sc * e0;

d[i+1] = s2 * d0 + c2 * d1 - 2 * sc * e0;

e[i-1] = c * e_1 + s * bulge;

e[i] = sc * (d1 - d0) + (c2 - s2) * e0;

e[i+1] = c * e1;

bulge = s * e1;

for (j = 0; j < m; j++) {

#ifdef ROW_MAJOR

v0 = v[j][i];

v[j][i] = c * v0 + s * v[j][i+1];

v[j][i+1] = -s * v0 + c * v[j][i+1];

#else

v0 = v[i][j];

v[i][j] = c * v0 + s * v[i+1][j];

v[i+1][j] = -s * v0 + c * v[i+1][j];

#endif

}

}

}

//--

// Reset of beginning of matrix

//--

if (Ie == n) {

Is = 0;

iter++;

}

else

Is = Ie;

}

// printf("Iterations: %d\n", iter);

}

57

References

[1] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1st edition, 1998.

[2] C. D. Meyer, editor. Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 2nd
edition, 1992.

[4] H. D. Simon. The lanczos algorithm with partial reorthogonalization. Mathematics of Compu-
tation, 42(165):pp. 115–142, 1984.

58

