
Index of Notation and Definitions

CS 290 H: Graph Laplacians and Spectra

Version of June 12, 2014

There is a lot of variation in terminology and notation in the field of Laplacian matrix computa-
tion and spectral graph theory. Indeed, even “Laplacian matrix” is defined differently by different
authors!

This list gives the versions of notation, terminology, and definitions that we will use in CS 290H.
I mostly follow the conventions of Dan Spielman’s 2012 lecture notes, though I prefer not to use
greek letters for vectors. I will keep adding to this list during the quarter.

1. Unless otherwise stated, a graph G = (V,E) is always an undirected graph whose n vertices
are the integers 1 through n, with no multiple edges or loops.

2. The degree of a vertex is the number of edges incident on it, or equivalently (because we don’t
allow multiple edges or loops) the number of its neighboring vertices.

3. A graph is said to be regular if every vertex has the same degree.

4. A graph is said to be connected if, for every choice of two vertices i and j, there is a path of
edges from i to j. The connected components of a graph are its maximal connected subgraphs.

5. Kn is the complete graph, which has n vertices and all n(n− 1)/2 possible edges.

6. Pn is the path graph, which has n vertices and n− 1 edges in a single path.

7. Sn is the star graph, which has n vertices, one with degree n− 1 and n− 1 with degree 1.

8. Hk is the hypercube graph, which has n = 2k vertices, all of degree k. Vertices i and j have an
edge between them if i and j differ by a power of 2. Equivalently, we can identify each vertex
with a subset of {1, . . . , k}, with edges to just those subsets formed by adding or deleting one
element.

9. Ge or G(i,j) is the graph with n vertices and only one edge e = (i, j).

10. We will write a vector as a lower-case latin letter, possibly with a subscript, like x or w2. We
often think of an n-vector as a set of labels for the n vertices of a graph; in that case element i
of vector x is written as x(i), and we may write x ∈ RV instead of x ∈ Rn. In linear algebraic
expressions, vectors are column vectors.
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11. Two special vectors are 0, the vector of all zeros, and 1, the vector of all ones.

12. If i is a vertex then 1i is the characteristic vector of i, which is zero except for 1i(i) = 1.
Similarly if S is a set of vertices, then 1S is the vector that is equal to one on the elements
of S and zero elsewhere.

13. If d is an n-vector, diag(d) is the n-by-n diagonal matrix with the elements of d on the
diagonal. If A is any n-by-n matrix, diag(A) is the n-vector of the diagonal elements of A.

14. The Laplacian of graph G is the n-by-n matrix L whose diagonal element L(i, i) is the degree
of vertex i, and whose off-diagonal element L(i, j) is −1 if (i, j) ∈ E and 0 if (i, j) /∈ E. This
matrix, which we (and Spielman) just call the Laplacian, is sometimes called the combinatorial
Laplacian to distinguish it from the normalized Laplacian defined below (44). Note that
L1 = 0.

15. Le or L(i,j) is the n-by-n Laplacian matrix of the graph with n vertices and only one edge
e = (i, j). This matrix has only four nonzero elements, two 1’s on the diagonal and two −1’s
in positions (i, j) and (j, i); thus

L(i,j) = (1i − 1j)(1i − 1j)
T .

The Laplacian of any graph G = (V,E) is the sum of the Laplacians of its edges,

LG =
∑
e∈E

Le.

16. The Laplacian quadratic form (or just LQF) is xTLx, where L is a particular graph’s Laplacian
and x is a variable n-vector. Its value for a particular vector x is

xTLx =
∑

(i,j)∈E

(x(i)− x(j))2.

17. A cut vector is a vector each of whose elements is +1 or −1. We can think of a cut vector x
as representing a cut that partitions the vertices of graph into two sets S = { i : x(i) = 1 }
and V − S = { i : x(i) = −1 }. The LQF evaluated at a cut vector is easily seen to be four
times the number of edges that cross the cut:

xTLx = 4 · |{ (i, j) ∈ E : i ∈ S ∧ j ∈ V − S }|.

18. A square matrix Q is orthogonal if QTQ = I, that is, its inverse is its transpose. As vectors,
the columns of Q have unit length and are pairwise perpendicular; the same is true of the
rows of Q.

19. If Aw = λw for any square matrix A, nonzero vector w, and scalar λ, then λ is an eigenvalue
of A and w is an eigenvector associated with λ.
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20. If A is square and B is nonsingular, then the eigenvalues of BAB−1 are the same as those
of A, and the eigenvectors of BAB−1 are B times the eigenvectors of A.

21. If the n-by-n matrix A is symmetric, then it possesses n real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn
(possibly including duplicates) associated with n mutually orthogonal unit-length eigenvectors
w1, w2, . . . , wn. If W is the matrix [w1 w2 . . . wn] and Λ is the matrix diag(λ1, . . . , λn) then
we can summarize this as AW = WΛ and W TW = I. We also have A = WΛW T , whence

A =
n∑
i=1

λiwiw
T
i .

22. If symmetric A and its eigenvalues and eigenvectors are as in (21), any vector x can be written
as a linear combination of eigenvectors,

x =
n∑
i=1

αiwi,

where αi = wTi x. Multiplication by A acts termwise on such a sum:

Akx =
n∑
i=1

αiλ
k
iwi.

23. If symmetric A and its eigenvalues and eigenvectors are as in (21), the pseudoinverse of A is

A† =
∑
λi 6=0

1

λi
wiw

T
i ,

where the sum is taken over the nonzero eigenvalues of A. If A is nonsingular, A† = A−1. If
x is orthogonal to the null space of A (i.e. xTwi = 0 whenever λi = 0), then

A†Ax = AA†x = x.

24. Every Laplacian L is positive semidefinite, which means that none of its eigenvalues are
negative. Zero is an eigenvalue of L with multiplicity equal to the number of connected
components of the graph G. Therefore, if G is connected, we have 0 = λ1 < λ2 ≤ · · · ≤ λn.
In that case the eigenvector w1 is the constant vector 1/

√
n.

25. The Fiedler value of a graph is λ2, its second-smallest eigenvalue, and the Fiedler vector
is w2, the associated eigenvector. The Fiedler value of a graph is also called its algebraic
connectivity. Note that λ2 = 0 iff the graph is not connected.

3



26. The positive semidefinite square root of a positive semidefinite matrix A with eigenvalues and
eigenvectors as in (21) is the matrix

A1/2 =
n∑
i=1

λ
1/2
i wiw

T
i .

We write the psd square root of A† as

A†/2 =
∑
λi 6=0

λ
−1/2
i wiw

T
i .

27. The trace of a matrix is the sum of its diagonal elements. The trace is also equal to the sum∑
i λi of its eigenvalues. The trace of a Laplacian is equal to twice the number of edges in

the graph.

28. Gershgorin’s theorem. If A is any square matrix (real or complex), its n eigenvalues are
all contained in the union of the n disks D1, . . . , Dn in the complex plane defined by

Di = {α : |α−A(i, i)| ≤
∑
j 6=i
|A(i, j)|}.

This implies, for example, that the largest eigenvalue λn of a Laplacian is at most twice the
maximum vertex degree.

29. The Rayleigh quotient of a nonzero vector x and a matrix A is

xTAx

xTx
.

If Ax = λx, then the Rayleigh quotient of x and A is λ.

30. Rayleigh quotient theorem. The eigenvectors of a symmetric matrix A are critical points
of its Rayleigh quotient (considered as a real-valued function of an n-vector). Specifically,

λk = min
x⊥w1,...,wk−1

xTAx

xTx
= max

x⊥wk+1,...,wn

xTAx

xTx
,

and the extreme values are attained at x = wk. In particular, therefore, for a Laplacian L
the Fiedler value is

λ2 = min
x⊥1

xTAx

xTx
,

attained at the Fiedler vector w2.

31. Courant-Fischer theorem (a stronger version of the Rayleigh quotient theorem). The
eigenvalues λ1 ≤ · · · ≤ λn of a symmetric matrix A are characterized by

λk = max
dim S=n−k+1

min
x∈S

xTAx

xTx
= min

dim S=k
max
x∈S

xTAx

xTx
,

where S ranges over subspaces of Rn. The extreme values are attained at x = wk.
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32. A test vector for λ2 is an n-vector that is orthogonal to 1. By the Raleigh quotient theorem,
if v is any test vector then λ2 ≤ vTLv/vT v. Note that any vector x can be converted to a test
vector v = x− (xT1/n)1; in words, subtracting off the mean of any vector orthogonalizes it
against the constant vector.

33. A weighted graph is an undirected graph that comes with positive weights on the edges, which
we write c(e) or c(i, j). Note that c(i, j) = c(j, i).

34. The weighted Laplacian of a weighted graph is the n-by-n matrix L whose off-diagonal element
L(i, j) is −c(i, j) if (i, j) ∈ E and 0 if (i, j) /∈ E, and whose diagonal element L(i, i) =∑

k 6=i c(i, k) is chosen to make the row sums zero. Like the ordinary Laplacian, we have
L1 = 0, and indeed 0 is an eigenvalue of L with multiplicity equal to the number of connected
components of G.

35. Multiple of a graph. If G is a graph or a weighted graph and α > 0 is a constant, αG
is the graph whose edge weights are all multiplied by α; the Laplacian of αG is α times the
Laplacian of G.

36. Semidefinite ordering. If A is a matrix, A � 0 means that A is positive semidefinite. Thus
L � 0 for any Laplacian L. If A and B are matrices, A � B means A−B � 0. If G and H are
graphs or weighted graphs, G � H means LG � LH . Note that G � H iff xTLGx ≥ xTLHx
for all vectors x. For matrices A � 0 and B � 0, A � B implies λk(A) ≥ λk(B) for all k.
Also, A � B implies B† � A†.

37. Graph approximation. For any constant α ≥ 1, (weighted) graph H is an α-approximation
of (weighted) graph G if αH � G � H/α.

38. The boundary of a set S ⊆ V of vertices, written ∂S, is the set of edges with just one endpoint
in S. Formally, ∂S = { (i, j) ∈ E : i ∈ S ∧ j ∈ V − S }. The number of edges in ∂S is |∂S|.

39. The isoperimetric number of a set S ⊆ V of vertices, written θ(S), is the ratio

φ(S) =
|∂S|

min(|S|, |V − S|)
.

This is one sort of “surface-to-volume ratio”; see the definition of conductance (42) for another.

40. The isoperimetric number of a graph G, written θG, is minS⊂V θ(S), the smallest isoperimetric
number of any nonempty proper subset of vertices. Note that θG = 0 if and only if G is not
connected.

41. Isoperimetric theorem. For any set S of vertices, θ(S) ≥ λ2(1− |S|/|V |). This says that
the larger λ2 is, the larger the surface-to-volume ratio of any relatively small set of vertices
must be.
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42. The conductance of a set S ⊆ V of vertices, written φ(S), is the ratio

φ(S) =
|∂S|

min(d(S), d(V − S))
,

where d(S) is the sum of the degrees of the vertices in S. This is another sort of “surface-to-
volume ratio”; isoperimetric number (40) measures volume just by counting vertices, while
conductance measures volume by counting vertices weighted by their degrees. (“Conduc-
tance” has a different meaning in resistive networks; see (56) below.)

43. The conductance of a graph G, written φG, is minS⊂V φ(S), the smallest conductance of any
nonempty proper subset of vertices. This is sometimes called the “Cheeger constant” of the
graph, but definitions are particularly variable here and we’ll stick to this one. Note that
φG = 0 iff G is not connected. (“Conductance” has a different meaning in resistive networks;
see (56) below.)

44. The normalized Laplacian of graph G is the n-by-n matrix N whose diagonal element N(i, i)
is equal to 1, and whose off-diagonal element N(i, j) is −

√
d(i)d(j), the geometric mean of

the degrees of vertices i and j, where we define d to be the vector of vertex degrees of G.
Another way to say it is that the normalized Laplacian is the (ordinary) Laplacian with rows
and columns scaled symmetrically to make the diagonal elements equal to 1. If D = diag(d)
is the diagonal matrix of degrees, then

N = D−1/2LD−1/2.

Some authors, including notably Fan Chung in her wonderful book Spectral Graph Theory,
use the name “Laplacian” for this matrix N instead of for our L.

45. The normalized Laplacian N is symmetric and positive semidefinite, and like the Laplacian
it has 0 as an eigenvalue with multiplicity equal to the number of connected components
of G. In general however N ’s eigenvalues and eigenvectors are different from L’s. We write
0 = ν1 ≤ ν2 ≤ · · · ≤ νn for the eigenvalues of N . The eigenvector corresponding to ν1 is not
the constant vector, but the vector d1/2 of the square roots of the vertex degrees:

Nd1/2 = D−1/2LD−1/2d1/2 = D−1/2L1 = D−1/20 = 0.

46. It follows from Gershgorin’s theorem (28) that the eigenvalues of the normalized Laplacian
N are always bounded by 0 and 2,

0 = ν1 ≤ ν2 ≤ · · · ≤ νn ≤ 2.

47. The analysis in (45) above shows, incidentally, that the normalized Laplacian is not a weighted
Laplacian according to definition (34) unless the graph is regular. There is a way to define a
“normalized weighted Laplacian” that we may use later on.
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48. Cheeger’s inequality. The normalized Laplacian can be used to give both upper and lower
bounds on the conductance,

ν2/2 ≤ φG ≤
√

2ν2.

Equivalently,
φ2
G/2 ≤ ν2 ≤ 2φG.

The upper bound on ν2 is analogous to the isoperimetric inequality (41). The lower bound
on ν2 is Cheeger’s inequality, one of the most significant theorems of spectral graph theory.

49. Cauchy-Schwarz inequality. Just for reference, because it comes up in several of the
proofs we’re looking at. If x and y are n-vectors, then

|xT y| ≤ ‖x‖ ‖y‖.

Equivalently, (∑
i

x(i)y(i)
)2
≤
(∑

i

x(i)2
)(∑

i

y(i)2
)
.

50. The k-dimensional Krylov subspace based on a square matrix A and a vector b is

Kk(A, b) = span(b, Ab,A2b, . . . , Ak−1b).

51. Let A be n-by-n and symmetric, and let k ≤ n. Let Qk be n-by-k with orthonormal columns
(i.e. QTkQk = I) such that QTkAQk = Tk is symmetric and tridiagonal. Let Tk = VkΘV

T
k

where Vk is k-by-k and orthogonal, and Θ = diag(θ1, . . . , θk) is diagonal. Then θ1, θ2 . . . , θk
(the eigenvalues of Tk) are Ritz values for A, and the columns of QkVk are the corresponding
Ritz vectors.

52. If matrix M is partitioned into 2-by-2 block form

M =

(
A B
C D

)
such that A is square and nonsingular, then the Schur complement of A in M is the matrix

S = D − CA−1B.

53. If G is a graph with n vertices and m edges, an incidence matrix of G is an n-by-m matrix U
with a column for each edge of G. The column for edge (i, j) contains two nonzeros, a 1
and a −1, one in row i and one in row j. The incidence matrix is not unique; permuting its
columns or negating some of its columns produces another incidence matrix. Any incidence
matrix U is related to the Laplacian L by

L = UUT .
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54. If G is a weighted graph, its incidence matrix is the same as above (53), without weights. If
C = diag(c) is the diagonal matrix of edge weights, in the same order as the columns of U ,
then the weighted Laplacian L satisfies

L = UCUT .

55. An augmented matrix of an unweighted graph with n vertices and m edges is a symmetric
(n+m)-by-(n+m) matrix defined in block form as(

I UT

U 0

)
,

where U is an incidence matrix and I is the m-by-m identity matrix. An augmented matrix
of a weighted graph is (

R UT

U 0

)
,

where R = diag(1/c) = C−1 is the diagonal matrix of inverse edge weights. The Schur
complement of R is then −UR−1UT = −L, the negative of the weighted Laplacian.

56. A resistive network is a weighted graph with n vertices interpreted as nodes of an electrical
circuit and m edges interpreted as resistors joining pairs of nodes. If the resistor at edge e has
resistance r(e), the edge’s weight is the inverse resistance c(e) = 1/r(e). (Inverse resistance is
often called “conductance,” whence the letter c, but we will not use the term in this context
to avoid confusion with the unrelated notion of graph conductance in (42) above.)

57. In a resistive network G, suppose a current b(i) is injected at each node i, where bT1 = 0 so
the same total current is injected and removed from the network as a whole. For each edge
(i, j) ∈ E with i < j, let f(i, j) be the current or flow along edge (i, j). Then Ohm’s law, or
current times resistance equals voltage, says

v(i)− v(j) = f(i, j)r(i, j) for all (i, j) ∈ E.

Kirchoff’s current law, or current entering a node equals current leaving the node, says∑
j:(i,j)∈E

f(i, j) = b(i) for all i ∈ V .

The two laws can be combined in one augmented system (55) as(
R UT

U 0

)(
f
−v

)
=

(
0
b

)
,

where U is the incidence matrix of G with appropriate signs, and R is the m-by-m diagonal
matrix of edge resistances. The Schur complement of R is −UR−1UT , which is the negative
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Laplacian −L. A step of block Gaussian elimination on the augmented system thus leads to
the Laplacian linear system

Lv = b

relating the node voltages to the externally injected currents.

58. In a resistive network, the effective resistance between two vertices i and j, written Reff(i, j),
is the positive difference in voltage between i and j when one unit of current is injected at i
and extracted at j. That is, if uij = 1i−1j for i < j is the vector whose k’th element is equal
to 1 when k = i, equal to −1 when k = j, and equal to zero elsewhere, and Lv = uij , then

Reff(i, j) = uTijv = uTijL
†uij = vTLv.

We write Reff
G (i, j) if the graph is not clear from context.

59. Let G and H be resistive networks on the same number of vertices. Then

Reff
G (i, j) ≥ Reff

H (i, j) for all i, j ∈ V if and only if H � G.

60. The characteristic polynomial of n-by-n matrix A is the degree-n polynomial in one variable λ
defined by

P (λ) = det(λI −A).

As suggested by the notation, the n roots of P (λ) = 0 are the n eigenvalues λ1, . . . , λn of A.

61. Cayley-Hamilton theorem. For any matrix A, the characteristic polynomial interpreted
as a matrix polynomial and evaluated at A gives the zero matrix; that is, P (A) = 0.

62. The condition number of a square matrix A is κ(A) = ‖A‖ ‖A−1‖, interpreted as ∞ if A is
singular. If A is symmetric and positive definite, κ(A) = λn/λ1 is the ratio of the extreme
eigenvalues.

63. Conjugate gradient. The conjugate gradient algorithm (or CG) solves Ax = b, where A � 0
is a symmetric, positive definite matrix (see Shewchuk for details). Each iteration performs
one matrix-vector multiplication with A and some vector arithmetic, taking O(n+m) time per
iteration if A has m nonzeros. The relative error in the approximate solution xj is bounded
by

||xj − x||A
||x||A

< ε

after
j = O(

√
κ(A) log(1/ε))

iterations (in exact arithmetic), where κ(A) = λn/λ1 is the condition number of A and
||v||A = (vTAv)1/2 is the A-norm. With some care, CG can also be used for a positive
semidefinite matrix whose null space is known, e.g. a weighted graph Laplacian.
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64. Preconditioned conjugate gradient. The preconditioned conjugate gradient algorithm
(or PCG) solves Ax = b by applying CG to the linear system

(B−1/2AB−1/2)(B1/2x) = B−1/2b,

where A and B are symmetric positive definite. Each iteration of PCG performs one matrix-
vector multiplication with A, one linear system solve with B, and some vector arithmetic.
Matrix B is called a preconditioner for A, and may or may not be formed explicitly. A good
preconditioner satisfies two criteria:

• It should be “easy” to solve the linear system By = z for y.

• The condition number κ(B−1/2AB−1/2) = κ(AB−1) should be smaller than κ(A).

With some care, PCG can also be used with positive semidefinite matrices A and B if they
have the same null space.

65. For a symmetric positive semidefinite matrix A, the finite condition number is κf (A) = λn/λk,
where λk is the smallest nonzero eigenvalue. For example, if L is the Laplacian of a connected
graph, κf (L) = λn/λ2 is the relevant condition number for the convergence of conjugate
gradient.

66. Let A and B be symmetric positive semidefinite matrices with the same null space (e.g.,
weighted Laplacians of two connected graphs on the same vertices). The finite condition
number κf (A,B) is κf (AB†), which is the relevant condition number for the convergence of
conjugate gradient on Ax = b with preconditioner B. Note that κf (A,B) = κf (B,A).

67. Let A and B be two symmetric positive semidefinite matrices with the same null space. If
αB � A � βB, then α ≤ λ ≤ β for every nonzero eigenvalue λ of AB†, and therefore
κf (A,B) ≤ β/α.

68. Symmetric Gaussian elimination. If A is a positive definite matrix (or, with some care,
a positive semidefinite matrix), the Cholesky factorization is A = RTR, where R is an upper
triangular matrix with positive diagonal elements (non-negative in the semidefinite case).
The Cholesky factorization of any n-by-n matrix can be computed in O(n3) time and O(n2)
memory; some but by no means all sparse matrices have better bounds.

69. Cholesky graph game. Given positive (semi)definite A with undirected graph G(A), the
undirected graph G+(A) = G(R+RT ) of the Cholesky factors of A is obtained as follows:

for j = 1 : n

mark vertex j;

add "fill" edges between the umarked neighbors of vertex j;

end for
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(This gives the nonzero structure of R but not the nonzero values.) We are free to mark
the vertices in any order; choosing a different order corresponds to applying a permutation
symmetrically to the rows and columns of A.

70. Parter’s theorem. If the graph G(A) is a tree, a vertex ordering exists for which the
Cholesky factorization adds no fill and solving Ax = b takes only O(n) time and memory.

71. Nested dissection. If the graph G(A) is the
√
n-by-

√
n grid graph, the best possible elimi-

nation ordering has O(n log n) fill, for which Cholesky takes O(n3/2) time. The same upper
bounds hold for any planar graph. For the three-dimensional grid graph, the best possible
fill is O(n4/3) and Cholesky takes O(n2) time.

72. Spanning trees, fundamental cycles. If A is a connected graph (or a connected weighted
Laplacian), a spanning tree of A is a subgraph B of A that has no cycles (a tree) and includes
all the vertices of A (spanning). Edges of B have the same weight in B as they have in A.
Each edge e = (i, j) that is in A but not in B induces a fundamental cycle consisting of e
and the unique path P (e) in B between its endpoints i and j. For an edge e = (i, j) of B,
we write P (e) = (i, j) for the length-one path between its endpoints, but e does not induce a
fundamental cycle.

73. Dilation. If B is a spanning tree of A (connected weighted Laplacians), the dilation of an
edge e of A is the number of edges on the path P (e) between e’s endpoints in B. We define

dilation(A,B) = max
e∈E(A)

dilation(e),

the largest dilation of any edge of A, and informally call this “the dilation of B.”

74. Congestion. If B is a spanning tree of A (connected weighted Laplacians), the congestion
of an edge f of B is the number of edges e of A (including f) for which f is on the path P (e)
between e’s endpoints in B. We define

congestion(A,B) = max
f∈E(B)

congestion(f),

the largest congestion of any edge of B, and informally call this “the congestion of B.”

75. Stretch. If B is a spanning tree of A (connected Laplacians with edge weights c(e)), the
stretch of an edge e of A is the weighted version of its dilation:

stretch(e) = c(e)
∑

f∈P (e)

1

c(f)
.

If we interpret A and B as resistive networks with resistances r(e) = 1/c(e), then the stretch
of edge e is just r(P (e))/r(e).
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76. Maximum-weight spanning trees. The weight of a spanning tree B of A (connected
Laplacians with edge weights c(e)), is the total weight of the edges of B,∑

e∈E(B)

c(e).

A maximum-weight spanning tree of A is a spanning tree with the largest possible weight.
Such a tree can be found by a simple greedy algorithm in O(m log n) time (or a little faster
by a more complicated algorithm) if A has m edges.

77. Vaidya’s tree theorem. If B is a maximum-weight spanning tree of A (connected weighted
Laplacians), then the finite condition number of the preconditioned system satisfies

κf (A,B) ≤ dilation(A,B) · congestion(A,B).

This is at most nm if graph A has n vertices and m edges.

78. Low-stretch spanning trees. The stretch of a spanning tree B of A (connected weighted
Laplacians) is the total stretch of the edges of A (not the edges of B),

stretch(A,B) =
∑

e∈E(A)

stretch(e).

A nontrivial theorem (see Spielman’s 2010 survey paper in the course references) is that
every weighted graph A with n vertices and m edges has a spanning tree B with nearly linear
stretch,

stretch(A,B) = O(m log n log logn(log log log n)3).

It is an open problem whether this can be improved to O(m log n) in general, which would
be best possible. The tree B can be computed in time O(m log n+ n log2 n).
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