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•Performance of discrete 
structure computations 
scales up as core count 
increases

•Standard primitives relieve 
programmer of parallel 
coding burden

• Algebraic graph primitives 
aggregate elementary operations 
to permit optimization

• 2D sparse array decomposition 
can scale beyond 10^3 cores

Expressive and flexible middleware enables scalable manycore combinatorial computing.

MAIN ACHIEVEMENT:
A library of concise, flexible, efficient tools for 
graph operations
Enables algebraic, visitor, and map/reduce 
patterns to interoperate cleanly for both edge-
based and traversal-based algorithms
Discrete structure computations achieve parallel 
performance and manycore scaling  by use of 
medium-granularity primitives that encapsulate 
load balancing, scheduling, and latency issues

HOW IT WORKS: 
2D compressed sparse block data decomposition 
supports user-defined edge/vertex/property types 
and operations
Common framework integrates edge-based, 
algebraic, and traversal-based  patterns with 
user-defined elementwise unary, binary, n-ary 
operations

ASSUMPTIONS AND LIMITATIONS:
Targets only global address space and shared 
memory architectures

Computation with discrete 
structures does not scale 
on multicore and future 
manycore processors

Computational Graph Theory
is fully functional 

as middleware for modern 
Discrete Structure Analysis
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Primitives and Patterns for Parallel Graph Computation



1.   Executive Summary 
 

Computation with combinatorial and discrete structures – graphs, networks, strings, partial orders, 
etc. – has become ubiquitous in many areas of data analysis and scientific modeling.  However, the 
field of high-performance combinatorial computing is in its infancy, and computations with discrete 
structures do not scale well on multicore and future manycore processors. 

 
In the mature field of numerical computing, by contrast, programmers possess standard algorithmic 
primitives, high-performance software libraries, powerful rapid-prototyping tools, and a deep 
understanding of effective mappings of problems to high-performance computer architectures.   
A key challenge of the manycore revolution is to replicate these achievements for combinatorial 
computing.   
 
We propose to design and implement a library called “Graph BLAS,” consisting of concise, flexible, 
efficient tools for graph operations that can serve as “middleware” for modern combinatorial 
computing and discrete structure analysis.   
 
We will build on our experience with novel sparse array-based algebraic graph primitives, which 
aggregate elementary operations to permit optimization and to encapsulate issues of load-balancing, 
scheduling, and latency tolerance.  In addition, our system will support visitor-based traversal 
primitives and map/reduce primitives in a common framework.  We will use an underlying two-
dimensional compressed sparse block representation, supporting user-defined edge/vertex/property 
types and elementary operations, which can allow scaling to thousands of cores.  The Graph BLAS 
will combine the performance and power of our algebraic primitives and 2D sparse block data 
structures with the expressivity and generality of fully general labeled graphs and visitor/traversal 
primitives in a coherent framework. 
 
The impact of this work will be that standard primitives can relieve the multicore programmer of 
much of the burden of parallel coding, while still enabling performance to scale with increasing core 
count.  As the manycore revolution gains momentum, more and more programmers will face the 
need to use parallelism in combinatorial computations, and this impact will become more and more 
significant. 
 
 
 
 



2.  Innovative Claims 
 
Computation with large combinatorial structures – graphs, strings, partial orders, etc. – has become 
fundamental in many areas of data analysis and scientific modeling. The field of high-performance 
combinatorial computing, however, is in its infancy. By way of contrast, in numerical computing we 
possess standard algorithmic primitives, high-performance software libraries, powerful rapid-
prototyping tools, and a deep understanding of effective mappings of problems to high-performance 
computer architectures. 
 
Linear algebra has played a crucial (one might almost say magical) role as “middleware” between 
continuous physical models to be computed and the simple arithmetic operations implemented by 
actual computer hardware.  From a mathematical point of view, graph theory occupies a similar 
position as middleware between models of discrete structures and actual computers.  However, for 
the most part computational graph theory still lacks the above-mentioned standard primitives, 
software libraries, rapid-prototyping tools, and connections to machine architecture. 
 
We propose a research plan leading to the development of tools and primitives for graph 
computation that play roles analogous to those of the BLAS (standard primitives), LAPACK and 
ScaLAPACK (high-performance libraries for key algorithms), and even Matlab (interactive systems 
for data analysis, exploration, and algorithmic prototyping).  The novel features of our proposal 
include: 

 
• We build on our experience with algebraic primitives for graph algorithms, which aggregate 

elementary operations to a level that allows optimization and load-balancing internal to the 
primitive.   
 

• By replacing earlier semiring-operation APIs with higher-level user-specified properties and 
operators, we achieve the performance benefits of the algebraic computational patterns with a 
more intuitive and flexible interface. 
 

• We propose a common framework that coherently integrates algebraic, visitor, and map-reduce 
patterns in a concise library of primitives that will interoperate cleanly for both edge-based 
and traversal-based algorithms. 

 
• Our implementation strategy is based on an efficient parallel sparse array infrastructure, which 

uses a 2D compressed sparse block data representation for efficiency and scalability.   
 

• We design and exploit kernels that are efficient in the “hypersparse” realm, where performance 
is limited by cache and memory bandwidth rather than raw operation count. 
 

• We benchmark and tune our library on a range of graph algorithms and applications. 
 

• Our design focuses on the capabilities of the manycore chips of the future, while achieving 
performance on today’s multicore chips and multisocket shared-memory systems. 

 
Our three-year project plan is centered on the design, implementation, evaluation, and application of 
a new library called “Graph BLAS”, or GBLAS.



3.  Detailed Technical Rationale, Approach, and Constructive Plan 
 
What would it mean to complete the analogy between linear algebra as middleware for continuous 
physical modeling, and graph theory as middleware for analysis of discrete structures?   This asks  
us to reflect on the steps that evolved numerical linear algebra from mathematical linear algebra 
(“numerical” here means “computational”), and to similarly develop a computational graph theory.   
 
Among the questions we must ask are:  What is a good set of primitive representations and 
operations for computational graph theory?  How can such primitives be implemented so that both 
functionality and performance are portable across a range of modern computers?  How should such 
primitives be presented to the user as APIs, programming patterns, languages, interactive 
environments?  How should we evaluate these tools from the points of view of performance, 
expressivity, and productivity?  Here we propose specific directions to explore for the answers to 
these questions. 
 
3.1.  Primitives 
Primitives should supply a common notation to express computations; should have broad scope but 
fit into a concise framework; should encourage programming at the appropriate level of abstraction 
and granularity; should scale seamlessly from laptop to supercomputer; and should hide architecture-
specific details from their users.  We plan to blend a selection of primitives drawn from a number of 
different sources into a coherent whole for this purpose.  An important part of our research will be to 
continually evaluate the completeness of our chosen primitive set; we expect its exact contents to 
evolve to a final state over the course of the project. 
 
3.1.1.  Sparse array-based primitives   
A sparse graph can be represented by a sparse array of edges (indexed by head and tail vertices), 
which in turn can be considered as a sparse matrix data structure for the graph’s adjacency matrix.  
Linear algebraic operations on this matrix correspond to some kinds of graph operations; for 
example, multiplying a sparse matrix by a dense vector systematically explores all the neighbors of 
each vertex.  We have achieved [BulGil2008a, BulGil2008b, BFFGL2009] good performance and 
scalability on parallel graph algorithms by using novel two-dimensional “compressed sparse block” 
data structures with sequential “hypersparse” array kernels. 
 
The most powerful algebraic primitives include: SpGEMM (sparse matrix-matrix multiplication); 
SpAdd (sparse matrix-matrix addition); SpMV (sparse matrix-dense vector multiplication); SpRef 
(selection of a subarray of a sparse matrix); SpAsgn (assignment to a subarray of a sparse matrix) 
and SpCat (concatenation of sparse arrays), all with the possibility of substituting different objects 
for numerical array elements and different operations for scalar addition and multiplication.  (In fact, 
these all can be implemented in terms of SpGEMM, though it’s not clear this is the most effective 
way to proceed.)  SpGEMM has not been studied extensively by the numerical linear algebra 
community, although sequential SpGEMM algorithms appear in Matlab [GilMolSch1992, Dav2007] 
and as far back as Gustavson [Gus1978].   
 
An example of the use of SpGEMM is our algebraic implementation of the SSCA#2 Betweenness 
Centrality benchmark [BMGSKMK2006].  The inner loop of BC is essentially a breadth-first search 
from multiple starting vertices.  (The number of starting vertices is a tunable parameter.)  If A is the 
transpose of the graph’s adjacency matrix, and B is an indicator matrix with a column for each start 



vertex, then B = A*B corresponds to one step of parallel breadth-first search.  The two-dimensional 
block decomposition of the sparse arrays invisibly encapsulates three levels of parallelism in this 
algorithm.  First, decomposing the columns of B corresponds to doing multiple simultaneous 
breadth-first searches in parallel.  Second, decomposing the rows of B and the columns of A 
corresponds to parallelism across the frontier vertices of each breadth-first search.  Third, 
decomposing the rows of A corresponds to parallelism across the incident edges of individual high-
degree frontier vertices.   
 
Merely identifying the primitive does not solve the problems of load balancing, synchronization, and 
latency, of course; but it encapsulates them in the implementation of the primitive and thus hides 
them from the user.  We have created an efficient distributed-memory implementation of SpGEMM 
in our distributed-memory Combinatorial BLAS library.  Using this library for a sparse array-based 
computation of the Betweenness Centrality benchmark yields good scalability up to many hundreds 
of cores on the TACC Ranger cluster, where it achieves a record of over 300 MTEPS (million edges 
traversed per second) on an RMAT power-law graph with 8 million vertices [Bul2010]. 
 
Gilbert et al. [GilReiSha2007] and Kepner et al. [KepGil2010] have shown that linear algebra over 
various user-defined semirings (including the familiar (+,*) ring, but also (min,+), (and,or), and 
others) can be used to implement a wide variety of graph algorithms.  However, semiring algebra 
becomes awkward in some cases, such as Fineman’s shortest path tree algorithm [Fin2010].  Here 
the data dependencies and the structure of the computation are exactly those of the underlying 
algebraic primitive (SpMV or SpGEMM in this case), but defining the elementary manipulations  
as semiring scalar operations – while possible –  seems unintuitive.   
 
Thus we propose to use the computational patterns of the sparse linear algebraic operations as 
primitives, rather than defining semiring matrix algebra operations as primitives themselves.  This 
has several advantages:  it will simplify unification of the algebraic primitives with other classes of 
primitives as described below; it will allow arbitrary representations of individual edge and vertex 
properties; and it will allow arbitrary user-specified operations on individual vertices, edges, and 
pairs to be invoked within the matrix-algebraic pattern.  This approach will also retain the 
advantages of the purely algebraic primitives in terms of data parallelism, level of abstraction, and 
aggregation of elementary operations. 
 
3.1.2.  Visitor primitives 
While algebraic primitives map well to data-parallel edge-based algorithms like breadth-first search, 
they map less well to priority-directed traversal algorithms like weighted single-source shortest paths 
or labeled subgraph isomorphism.  The visitor-based search patterns of the Boost Graph Library 
[SieLeeLum2001] and its relatives PBGL [GreLum2005] and MTGL [BHKK2007] are powerful 
ways to express algorithms that are based (as are many classical sequential algorithms) on depth-first 
search or cost-based priority searches.  A challenge here is that visitor patterns can require fine-
grained reasoning about synchronization and race conditions, and may be too fine-grained for a 
primitive to optimize across a large aggregation of operations.  Indeed, depth-first search (for 
example) is inherently difficult to parallelize; a problem like strongly connected components that is 
solved sequentially by DFS [Tar1972] is often best solved in parallel by different approaches 
[FleHenPin2000].  However, the power and utility of visitor-based patterns is undeniable in some 
situations, so we propose to include at least BfsVisitor (for breadth-first search), DfsVisitor (for 
depth-first search), and UcsVisitor (for uniform cost search) among our standard primitives.   
 



3.1.3.  Map/Reduce primitives 
The Map/Reduce (or Hadoop) framework [DeaGhe2008, Whi2009] is powerful for scanning, 
summarizing, and classifying data, especially in a distributed-storage “cloud” setting.  Cohen 
[Coh2009] has suggested that MapReduce could be appropriate for some edge-based graph 
computations like cluster coefficient (or triangle counting), but warns that “the prospect of the entire 
graph traversing the cloud fabric for each MapReduce job is disturbing.”  With its focus on loosely-
coupled distributed systems, and its lack of a straightforward user-visible cost model, MapReduce 
seems initially somewhat outside the scope of this project.  However, we do plan to include Map and 
Reduce patterns among our primitives for two reasons:  First, MapReduce has proved to be a simple 
framework for many computations, and will probably sometimes be the most natural way to express 
even tightly-coupled computations.  Second, relatively seamless scaling from small (local) to large 
(distributed) computations is certainly an advantage for any library of computational primitives. 
 
3.1.4.  Other primitives 
An important part of our project will be to identify a set of lower-level supporting primitives that is 
as concise and coherent as possible while still being sufficiently expressive for our needs.  This will 
undoubted include PrefixScan [Ble1989] (including segemented scans, and again with user-defined 
elements and operations); some versions of Set; and some kind of parallel PriorityQueue.  We expect 
also to define a general ExpandFrontier graph primitive, for use in algorithms like delta-stepping 
shortest path search [MeySan2003] in which a relaxed-priority parallel search replaces the strict 
priority search of a classical sequential algorithm.   
 
3.2.  Integration of primitives   
All the primitives – algebraic, visitor-based, and otherwise – will be built on top of a common sparse 
graph representation based on the compressed sparse block (CSB) data structure of Buluc et al. 
[BFFGL2009], which decomposes a graph not by vertices but by groups of edges.  Representation of 
individual vertices and edges (including labels, weights, or other properties) is user-defined.  The 
user interacts with the graph primitives by specifying (in sequential code) operations on single 
elements (vertex, edge, or label) or on pairs or sets of elements (corresponding to scalar semiring 
ops, scan ops, etc.).  We will also strive for a simple interface between our graph primitives and 
existing (or future) numerical sparse matrix primitives, since numerical matrix computation is useful 
in graph algorithms such as spectral clustering or importance ranking, and graph computation is 
useful in numerical sparse matrix applications as well. 
 
3.3.  Library design 
We plan to package the graph primitives in a “Graph BLAS” library of fairly simple design, building 
on our experience with the CBLAS library [Bul2010].  Unlike CBLAS or PBGL [GreLum2005], we 
will at least initially specify a single underlying graph data structure, namely CSB, for performance 
reasons:  we have both analytical and experimental evidence [BulGil2008a, BFFGL2009, Bul2010] 
that CSB-based algorithms scale better with increasing processor count than vertex-based 
algorithms, in the range of processor counts that will be available on single-socket systems in the 
next several years.  However, our library will support fully general user-defined element types, 
vertex and edge labels, and elementwise operations (unlike CBLAS, which assumed an underlying 
algebraic semiring).  Our goal is to produce a fairly spare library API that can be easily adapted or 
extended to different contexts. 
 
 
 



3.4.  Target architecture 
We will target single-address-space architectures (unlike CBLAS, PBGL, and Star-P 
[GilReiSha2008a]).  We expect that distributed-memory multinode architectures will remain of 
interest for some very large-scale graph computations, and we hope that this work will form the 
basis for such distributed-memory systems (whether programmed by message passing or by PGAS), 
but that is not our focus in this project.  We foresee continuing and indeed increasing interest in 
single-address-space large graph computation, partly due to the impact of manycore chips.  Our 
work will initially be aimed at future manycore single-socket systems; we will however also 
implement and benchmark our codes on shared-memory multisocket systems. 
 
3.5.  Performance evaluation, benchmarking, and tuning 
Performance is an essential goal of all parallel programming (otherwise why bother!).  We will 
measure parallel performance in a number of kernel and benchmark computations, and we will also 
seek opportunities to collaborate with application scientists to use our libraries in real codes.  Some 
kernel computations are listed below. 
 

Computation Type 
Degree distribution Edge-based  
Breadth-first search Edge-based or traversal-based 
Betweenness centrality, SSCA#2 BFS-based or traversal-based 
Cluster coefficient, triangles Edge-based 
Single-source shortest paths, weighted Traversal-based 
Connected components Edge-based or traversal-based 
Connected components in dynamic graph Edge-based or traversal-based 
Subgraph isomorphism, with labels Traversal-based 
Minimum spanning tree Edge-based 
Strongly connected components, dmperm Traversal-based 
Depth-first search Traversal-based, difficult 
Markov clustering BFS-based 
Spectral clustering, ordering, partitioning Numerical  
Bottleneck, cutset, vulnerability analysis Traversal-based 
Dynamic variants of all of the above Complex 

 
In tuning a primitive’s performance, a challenge is how to obtain statistics on bandwidth bottlenecks, 
cache behavior, etc.  While developing tools to measure and analyze such statistics is not part of our 
proposed project, we hope to collaborate closely with performance analysis tool developers; their 
tools can help our primitives, and our primitives can be good test cases for their tools. 
 
3.6.  Further directions 
We plan several directions for further exploration, some in future work.  We plan early on to develop 
interactive Matlab and Python interfaces, which will be useful not only for our own debugging and 
performance evaluation but as the basis for future high-productivity parallel graph programming 
environments.  We plan eventually to extend our sparse graph infrastructure to higher-dimensional 
sparse arrays, for tensor computation in data analysis [KolBad2009] and applications to 
computations on multigraphs and time series of graphs.  We also plan eventually to develop 
autotuning technology for our graph primitives, along the lines of those for numerical kernels 
[FriJoh1998, VudDemYel2005, WOVSYD2009]. 



4.  Comparison with Other Ongoing Research 
 

4.1.  Frameworks for parallel graph computation 
The Parallel Boost Graph Library (PBGL) [GreLum2005] is a parallel library for distributed 
memory computing on graphs. It is a significant step towards facilitating rapid development of high 
performance applications that use distributed graphs as their main data structure. Like the sequential 
Boost Graph Library [SieLeeLum2001], it has a dual focus on efficiency and flexibility. It relies 
heavily on generic programming through C++ templates.  
 
Lumsdaine et al. [LGHB2007] observed poor scaling of PBGL for some large graph problems.  We 
believe that the scalability of PBGL is limited due to two main factors.  The graph is distributed by 
vertices instead of edges, which corresponds to a one-dimensional partitioning in the sparse matrix 
world. We have shown [BulGil2008a] that this approach does not scale to large numbers of cores. 
We also believe that the visitor paradigm is sometimes too low-level for scalability, because it makes 
the computation data driven and obstructs opportunities for optimization.  Nonetheless, the visitor 
paradigm can be quite powerful, and as described in Section 3 we plan to integrate parts of it into our 
primitive library. 
 
The MultiThreaded Graph Library (MTGL) [BHKK2007] was originally designed for development 
of graph applications on massively multithreaded machines, namely Cray MTA-2 and XMT.  It was 
later extended to run on mainstream shared-memory architectures [BBMW2009].  MTGL is a 
significant step towards an extendible and generic parallel graph library. It will certainly be 
interesting to quantify the abstraction penalty it pays due to its generality. As of now, only 
preliminary performance results are published for MTGL. 
 
The Graph Algorithm and Pattern Discovery Toolbox (GAPDT, later renamed KDT) 
[GilReiSha2008b] provides both combinatorial and numerical tools to manipulate large graphs 
interactively. KDT runs sequentially on Matlab or in parallel on Star-P [ShaGil2005], a parallel 
dialect of Matlab. Although KDT focuses on algorithms, the underlying sparse matrix infrastructure 
also exposes linear algebraic kernels. KDT, like PBGL, targets distributed-memory machines. 
Differently from PBGL, it uses operations on distributed sparse matrices for parallelism. KDT 
provides an interactive environment instead of compiled code, which makes it unique among the 
frameworks surveyed here. Like PBGL, KDT’s main weakness is limited scalability due to its one-
dimensional distribution of sparse arrays.  
 
The Small-world Network Analysis and Partitioning (SNAP) framework [BadMad2008] contains 
algorithms and kernels for exploring large-scale graphs. SNAP is a collection of different algorithms 
and building blocks that are optimized for small-world networks.  It combines shared-memory thread 
level parallelism with state-of-the-art algorithm engineering for high performance. The graph data 
can be represented in a variety of different formats depending on the characteristics of the algorithm 
that operates on it. SNAP’s performance and scalability are high for the reported algorithms, but a 
head-to-head performance comparison with PBGL and KDT is not available. 
 
The Combinatorial BLAS (CBLAS) [Bul2010] is a C++ library for graph computation on large 
distributed memory machines.  Like KDT, its primitives are based on sparse arrays and semiring 
operations, but the underlying sparse data structures, element types, and semiring operations are 
quite flexible and can be defined by the user.  CBLAS supplies a 2D-partitioned distributed sparse 



array data structure, as well as implementations of some of the most useful semirings ((+,*); (min,+); 
etc.).  CBLAS has been shown to scale well to over 1000 cores on high-performance distributed 
memory clusters.  Its main disadvantages are:  (1) since it uses a basic MPI infrastructure (for 
portability) it cannot take advantage of flexible shared-memory operations; (2) it supplies only 
algebraic primitives, not traversal-based primitives; (3) the user must cast elementary operations as 
semiring operators, which can sometimes be unintuitive.   
 
Our proposed project combines the performance and power of the CBLAS’s algebraic primitives and 
2D sparse block data structures with the expressivity and generality of fully general labeled graphs 
and visitor/traversal primitives in a coherent framework. 

 
4.2 .  Frameworks for parallel sparse array and sparse matrix computation 
We briefly mention some other work on parallel sparse arrays, much of which is directed at 
numerical sparse matrix computation rather than graph computation.  Many libraries exist for 
solving sparse linear system and eigenvalue problems; some, like Trilinos [Her2005], include 
significant combinatorial capabilities.  The Sparse BLAS [DufHerPoz2002] is a standard API for 
numerical matrix- and vector-level primitives; its focus is infrastructure for iterative linear system 
solvers, and therefore it does not include such primitives as SpGEMM and SpRef.  Global Arrays 
[NieHarLit1996, NieCar1999] is a parallel dense and sparse array library that uses a one-sided 
communication infrastructure portable to message-passing, NUMA, and shared-memory machines.  
Star-P [GilReiSha2007, GilReiSha2008a] and pMatlab [KepTra2002] are parallel dialects of Matlab 
that run on distributed-memory message-passing machines; both include parallel sparse distributed 
array infrastructures. 

 
4.3.  Parallel graph algorithms 
Finally, we briefly mention some more traditional algorithmic work.  Parallel graph algorithms have 
been studied intensely by the theoretical computer science community since the 1970s; see e.g. 
Leighton [Lei1991] and Grama et al. [GGKK2003].  However, “computational graph theory,” which 
combines the theoretical and practical considerations of parallel algorithms, very large data, 
computer architecture, performance analysis, and algorithm engineering, is still an emerging field. 
 
It was recognized early on that efficient parallel graph algorithms could be quite different from 
sequential ones.  Depth-first search, the basis for many efficient sequential graph algorithms, does 
not expose parallelism well.  Shiloach and Vishkin [ShiVis1982] gave a PRAM algorithm for 
connected components that uses linking and shortcutting, edge operations, instead of traversal; later 
parallel algorithms and comparisons are described in [Gre1994, BHKK2007].  Though strongly 
connected components use DFS sequentially, no parallel algorithm is known that is efficient in both 
work and span; Fleischer et al. [FleHenPin2000] give a parallel algorithm that is effective in many 
practical settings.  Maximal independent set is easy sequentially but more subtle in parallel; Luby’s 
seminal paper [Lub1986] gave a simple randomized algorithm that is widely used (and also a more 
complicated derandomized version that is less widely used).  Breadth-first search has more 
parallelism than DFS, though taking advantage of it can be subtle [YCHMHC2005, BadMad2006b, 
BHKK2007].  Priority-based traversal algorithms for problems like single-source weighted shortest 
paths have been parallelized via various schemes to relax strict priority constraints [MeySan2003, 
BHKK2007].  Subgraph isomorphism is an NP-hard problem of interest in various applications, and 
can sometimes be done effectively in practice on labeled graphs [BHKK2007].  Betweenness 
centrality has been used as a parallel benchmark and therefore studied in many settings [Bra2001, 
BMGSKMK2006, BadMad2006a, BKMM2007, KepGil2010, Bul2010]. 
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