Knowledge Discovery Toolkit
Status Report

John R. Gilbert

University of California, Santa Barbara

KDT Spring Mind Meld |
March 5, 2012 e

-

Support: Intel, Microsoft, DOE Office of Science, NSF

Knowledge e

Discovery @5 o e
Toolbox L
http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

Knowledge e

Discovery @
Toolbox T

http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

N O U A WN =
°
® 0 0

Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

Easy-to-use Python interface

Runs on a laptop as well as a cluster with 10,000 processors

Knowledge e I
Discovery @5 o
Toolbox T L™
http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

Easy-to-use Python interface

Runs on a laptop as well as a cluster with 10,000 processors

A collaboration among UCSB, UCB, and Lawrence Berkeley Lab
Open source software, released under New BSD license
v0.1 released March 2011; v0.2 expected March 2012

KNOWLEDGE DISCOVERY WORKFLOW

KNOWLEDGE DISCOVERY WORKFLOW

|

{ it (00

>/

o
D)
>
)
Q
Q
—+
)

i ln000geoon

;)l'l—|
3
O
o @
(@)
S

[T T
: (V2]
PR S
&2 @
o O
=

Domain Expert vs. Graph Expert

(Semantic) directed graphs
— constructors, I/0
— basic graph metrics (e.g., degree ())

— vectors
Clustering / components

Centrality / authority: betweenness
centrality, PageRank

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Domain Expert vs. Graph Expert

(Semantic) directed graphs

constructors, |/O

basic graph metrics (e.g., degree
vectors

Clustering / components

Centrality / authority: betwee
centrality, PageRank

bigG contains the input graph
comp = bigG.connComp ()

giantComp = comp.hist () .argmax()

G = bigG.subgraph (comp==giantComp)

clus = G.cluster (*Markov’)

clusNedge = G.nedge(clus)
smallG = G.contract (clus)

visualize

Hypergraphs and sparse matrices

Graph primitives (e.g., bfsTree ())

SpMV / SpGEMM on semirings

Domain Expert vs. Graph Expert

(Semantic) directed graphs #

— constructors, I/0 gil
— basic graph metrics (e.g., degree §
— vectors cl
Clustering / components o1

Centrality / authority: betwee
centrality, PageRank

Sm

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Largest
Component

Markov
Clustering

\/’

Graph of
Clusters

Domain Expert vs. Graph Expert

(Semantic) directed graphs
constructors, |/O

basic graph metrics (e.g., degree

vectors

Clustering / components

Centrality / authority: betwee
centrality, PageRank

CcO ’
g]_ Markov
Clustering

o o
y
o o
5
) o
.
.
.
Y
/o
o

cl
Graph of

Clusters
Largest

Component

cl

Sm

Hypergraphs and sparse matri
Graph primitives (e.g., bfsTree
SpMV / SpGEMM on semirings

[...]
= G.toSpParMat ()

= L.sum(kdt.SpParMat.Column)

= -L

.setDiag (d)

= kdt.SpParMat.eye (G.nvert ())
pos = kdt.ParVec.rand(G.nvert())
for 1 in range (nsteps):

pos = M.SpMV (pos)

o e B s B O P

- mu*L

-

—

e

A few KDT applications

Markov Clustering

A

$ i

&

image courtesy Stijn van Dongen

Markov Clustering (MCL) finds clusters by
postulating that a random walk that visits
a dense cluster will probably visit many of
its vertices before leaving.

We use a Markov chain for the random
walk. This process is reinforced by adding
an inflation step that uses the Hadamard
product and rescaling.

J

1

(—[Betweenness Centrality]—\

77
Rocchini

Betweenness Centrality says that a vertex
is important if it appears on many
shortest paths between other vertices.
An exact computation requires a BFS for
every vertex. A good approximation can
be achieved by sampling starting vertices.

\§

J

—

o
PageRank €

courtesy Felipe Micaroni Lalli

—

PageRank

PageRank says a
vertex is important
if other important
vertices link to it.

5

Each vertex (webpage) votes by splitting
its PageRank score evenly among its out
edges (links). This broadcast (an SpMV) is
followed by a normalization step
(ColWise). Repeat until convergence.

PageRank is the stationary distribution of a
Markov Chain that simulates a "random

J

_ surfer”.

(—[Belief Propagation]—\

P& ;0
QO AT
Sum-up:
p= Pn+ZkEN(i) Py,
1= 151_1(131'1/11@ + ZkeN(i) Priping), Vi
Update i’s messages to its neighbors
Py = *;'112]' (P = Py),
tij = (Pifts — Pjipegi) [Aij.
Gaussian belief propagation (GaBP) is an
iterative algorithm for solving the linear
system of equations Ax = b, where A is
symmetric positive definite.
GaBP assumes each variable follows a
normal distribution. It iteratively calculates
the precision P and mean value u of each

variable; the converged mean-value vector

_ approximates the actual solution.

Real applications

Applets

Graph API (VOZ) New for v0.2
Community Network
Detection Vulnerability Analysis

Building .
blocks DiGraph

HyGraph

bfsTree, isBfsTree bfsTree, isBfsTree
plus utility (e.g., DiGraph,nvert, | |plus utility (e.g., HyGraph,nvert,
toParVec,degree,load,UFget,+,*,| | toParVec,degree,load,UFget)
sum,subgraph,reverseEdges)

(Sp)ParVec
(e.qg., +,*,|,&,>==51],
abs,max,sum,range,
norm, hist,randPerm,

scale, topK)

SpParMat
(e.g., +,*, SpMM,
SpMV, SpRef,
SpAsgn)

CombBLAS SpMV,
SpMM, etc.

Combinatorial BLAS: A matrix-based graph libra

CommGrid —— e DistMat

SpMat —— e SpDistMat DenseDistMat

CSC DCSC Triples CSB

Architecture of matrix classes

» Also sparse & dense vectors, distributed and local

« Matrix operations over user-defined (and some built-in) semirings

« Highly templated C++

- Reference implementation in MPI UCSB

13

Sparse array-based primitives

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® o ® ® ® ®

® ® ®

XQ o ® © .xQ
® ©o o o
o o

Element-wise operations

Sparse matrix indexing

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices on various semirings: (x,+) , (and,or) , (+ min) ,

Indexing sparse arrays in parallel

(coarsen graphs, extract subgraphs, etc.)

SpRref: B = A(I,)J) A,B: sparse matrices
SpAsgn: B(I,J) = A I,J: vectorsofindices
SpExpAdd: B(I,J) += A

length(J)

0/1/0/0 1/0(0
/ —
Iength(){0001 X X 0l110 =
— 0|01
" olofo]r"

SpRef using mixed-mode sparse matrix-matrix
multiplication (SpGEMM). Ex: B = A([2,4], [1,2,3])

15

Strong scaling of Spref

“®Time (secs) “’~Speedup

60 120

50 100
n 40 80 a
2 3
S 30 60 9
(] o
» 20 40 O

10 20

O | T T 0

1 4 16 64 256 1024
Cores

random symmetric permutation < relabeling graph vertices
 RMAT Scale 22; edge factor=8; a=.6, b=c=d=.4/3
* Franklin/NERSC, each node is a quad-core AMD Budapeﬁ CSB

16

KDT v0.2: Attributed Semantic Graphs and Filters

Example:

* \Vertex types: Person, Phone, Camera

 Edge types: PhoneCall, TextMessage,
Colocation

* Edge attributes: StartTime, EndTime

e Calculate centrality just for
PhoneCalls and TextMessages
between times sTime and eTime

def vfilter (self, vTypes):
return self.type in vTypes
def efilter (self, eTypes, sTime, eTime):

return ((self.type in eTypes) and
(self.sTime > sTime) and
(self.eTime < eTime))

wantedVTypes = (People)
(PhoneCall, TextMessage)
— dt.timedelta (hours=1)

wantedETypes =

start = dt.now()
end = dt.now()

bc = G.centrality(‘approxBC’ ,h filter=
((vEilter, wantedVTypes),

(efilter, wantedETypes,
start, end)))

Implementing filters: Options

Prefilter to extract the relevant subgraph

— Simple, but too much time / memory for many use cases

Write filters in Python, call back from CombBLAS

— Simple & flexible, but hurts performance

Write filters as semiring ops in C++, wrap in Python

— Good performance, but hard to write new filters

Work in progress: Write filters in Python subset, compile
with SEJITS (selective embedded just-in-time specialization)

UCSB

18

19

KDT Team (2011-12)

. David Alber, Microsoft

. Victor Amelkin, UCSB

. Aydin Buluc, LBNL

. Varad Deshmukh, UCSB

. Kevin Deweese, UCSB

. John Gilbert, UCSB

. Shoaib Kamil, UC Berkeley
. Chris Lock, UCSB

Adam Lugowski, UCSB
Steve Reinhardt, Cray

Lijie Ren, UCSB

Veronika Strnadova, UCSB
Yun Teng, UCSB

Drew Waranis, UCSB

Support: Intel, Microsoft,
DOE Office of Science, NSF

UCSB

