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Origins 
•  Boost Graph Library (1999) 

•  Generic programming with templates 
•  Good sequential performance with 

high-level abstractions 
•  Algorithm composition, visitors, 

property maps, etc. 

Lie-Quan Lee, Jeremy Siek, and Andrew Lumsdaine. Generic

Graph Algorithms for Sparse Matrix Ordering. ISCOPE.

Lecture Notes in Computer Science 1732. 1999.



Origins 
•  Parallel BGL (2005) 

•  Lifting abstraction 
•  Make what we already 

have parallel 
•  Same interfaces as 

sequential BGL 
•  Coarse-grained, BSP 

Douglas Gregor and Andrew Lumsdaine. The Parallel BGL: A Generic Li-
brary for Distributed Graph Computation. Workshop on Parallel Object-

Oriented Scientific Computing. July, 2005.

Douglas Gregor and Andrew Lumsdaine. Lifting Sequential Graph Algo-
rithms for Distributed-Memory Parallel Computation. Object-Oriented

Programming, Systems, Languages, and Applications. October, 2005



Case Study: Breadth-First Search 

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK



SPMD Breadth-First Search 
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SPMD Breadth-First Search 
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Rank 0 Rank 1 Rank 2 Rank 3 

Get 
neighbors 

Redistribute 
queues 

Combine 
received 
queues 



SPMD Breadth-First Search (Strong Scaling) 
Breadth-First Search (227 vertices 229 edges) 

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors 
with four cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband. 
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SPMD Breadth-First Search (Weak Scaling) 
Breadth-First Search (225 vertices 227 edges per node) 

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors 
with four cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband. 
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Find the Sequential Trap 

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK



Find the Synchronization Trap 

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

 for i in ranks: start receiving in_queue[i] from rank i 
  for j in ranks: start sending out_queue[j] to rank j 
  synchronize and finish communications 



What’s Wrong Here? 

•  Coarse-grained 
•  Static 
•  Balanced 
•  Bandwidth-bound with 

large messages 
•  Communicates data 

•  Fine-grained dependencies 
•  Dynamic, data-dependent 
•  Irregular 
•  Latency-bound with small 

messages 
•  Communicates control flow 

Traditional Scientific Apps Data-driven Apps SPMD 



Messaging Models 
•  Two-sided 

•  MPI 
•  Explicit sends and receives 

•  One-sided 
•  MPI-2 one-sided, ARMCI, PGAS languages 
•  Remote put and get operations 
•  Limited set of atomic updates into remote memory 

•  Active messages 
•  GASNet, DCMF, LAPI, Charm++, X10, etc. 
•  Explicit sends, implicit receives 
•  User-defined handler called on receiver for each message 



Active Messages 
•  Created by von Eicken 

et al, for Split-C (1992) 
•  Messages sent explicitly 
•  Receivers register 

handlers but not 
involved with individual 
messages 

•  Messages often 
asynchronous for higher 
throughput 

Send 

Message 
handler 

Reply 

Reply 
handler 

Tim
e 

Process 1 Process 2 



Active Messages 
•  Move control flow to data 
•  Fine-grained 
•  Asynchronous 
•  Uniformity of access 

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

AM++ 
•  Generic 
•  User-level 
•  Flexible/modular 
•  Send to targets, not 

processors 



Low-Level vs. High-Level AM Systems 
•  Active messaging systems (loosely) on a spectrum 

of features vs. performance 
•  Low-level systems typically have restrictions on message 

handler behavior, explicit buffer management, etc. 
•  High-level systems often provide dynamic load balancing, 

service discovery, authentication/security, etc. 

DCMF GASNet Java RMI Charm++/X10 
Low High 



The AM++ Framework 
•  AM++ provides a “middle ground” between low- and 

high-level systems 
•  Gets performance from low-level systems 
•  Gets programmability from high-level systems 

•  High-level features can be built on top of AM++ 

AM++ 
DCMF GASNet Java RMI Charm++/X10 

Low High 



Messages Can Send Messages 

•  Termination detection 
•  Detect network quiescence 
•  Pluggable 

send<T>(t)!
send<T>(t)!

owner(t) local? 

Execute 
handler<T>(t) 

Yes 

Execute 
handler<T>(t) 

Yes 

owner(t) local? 

send<T>(t)!

Send message 
return!

No 
owner(t) local? 



Active Pebbles 
•  Need to separate what the programmer expresses 

from what is actually executed 
•  A programming model and an execution model 



Active Pebbles Features 
•  Programming model 

•  Active messages (pebbles) 
•  Fine-grained addressing (targets) 

•  Execution model 
•  Flexible message coalescing 
•  Message reductions 
•  Active routing 
•  Termination detection 

•  Features are synergistic 
•  AM++ is our implementation of Active Pebbles model 



Programming Model 
•  Program with natural granularity 

•  No need to artificially coarsen 
object granularity 

•  Transparent addressing 
•  static and dynamic 
•  local and remote 

•  Bulk, anonymous handling of 
messages and targets 

•  Epoch model 
•  Enforce message delivery 
•  Controlled relaxed consistency 
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Execution Model 
•  Message coalescing 

•  Amortize latency 
•  Message reduction 

•  Eliminate redundant 
computation 

•  Distributed computation 
into network 

•  Active routing 
•  Exploit physical topology 

•  Termination detection 
•  Handlers send messages 
•  Detect quiescence 
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Routing + Message Coalescing 
•  Coalescing buffers limit scalability 

•  Communications typically all-to-all 
•  Impose a limited topology with fewer neighbors 
•  Better scalability, higher latency 

P0 P2P1 P3

P4 P7

P8 P11

P12 P13 P14 P15
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P6P5
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P4 P5 P6 P7
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14

Multi-source coalescing 



P0 P2P1 P3

P4 P5 P6 P7

P8 P10P9 P11

P12 P13 P14 P15

Message Reductions + Routing 
•  Messages to same target can often be combined 
•  Reductions application-specific, user-defined 
•  Routing allows cache hits at intermediate hops 

Automatically synthesize 
optimized collectives 

Distribute computation 
into the network 



Active Message Abstraction 
•  Pebbles are agnostic as to where they execute, 

operate on targets 
•  Independent of how messages are processed 

•  Network communication (MPI, GASNet, DCMF, IB Verbs…) 
•  Work stealing (Cilk++, Task parallelism) 
•  OpenMP (over coalescing buffers) 
•  Immediate execution in caller (of send()) 

•  Thread-safe metadata allows weakening message 
order 
•  Updates to targets must be atomic 
•  Algorithms may have to tolerate weak consistency 



Evaluation: Message Latency 

25 



Evaluation: Message Bandwidth 

26 



Active Pebbles 
•  Meant to support all kinds of parallelism 

•  Started with optimizing distributed memory 
communication 

•  Same features allow integration of fine-grained 
parallelism 



Active Messages for Work Decomposition 
•  Key idea is to find natural granularity 
•  Each pebble represents an independent computation 

that can be executed in parallel 

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

  
#pragma omp parallel for
for(each v ∈ Q)

  queue push msg→send()



What’s Thread-safe in AP? 
•  Messaging 
•  Epoch begin/end 
•  Termination detection 

•  NOT: 
•  Message creation 
•  Modifying message features: routing, coalescing, 

reductions 
•  Modifying termination detection 
•  Modifying the number of threads 



Parallel BGL Architecture 

Graph
(static... for 

now)

GraphProperty 
Maps

Algorithm
Class

Shared State

Message 
TypesMessage 

TypesMessage 
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operator()
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Object-
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Object-
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Collectives

T0 T1 T3T2

•  AP makes messaging thread-
safe.  

•  Property maps make 
metadata manipulation 
thread-safe and allow 
messages to be processed in 
arbitrary order 

•  Just as transactional memory 
generalizes processor 
atomics to arbitrary 
transactions, Active Pebbles 
generalizes one-sided 
operations to user-defined 
handlers 



Active Pebbles Breadth-First Search 
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BFS: Strong Scaling 
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Breadth-First Search (227 vertices 229 edges) 

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors 
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband. 



BFS: Weak Scaling 
Breadth-First Search (225 vertices 227 edges per node) 
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Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors 
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband. 



Delta-Stepping: Strong Scaling 
Delta-Stepping SSSP (227 vertices 229 edges) 
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Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors 
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband. 



Delta-Stepping: Weak Scaling 
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Transactional Metadata updates 

Graph
(static... for 

now)

GraphProperty 
Maps

Algorithm
Class

Shared State

Entry point
operator()

LockMap

T0 T1 T3T2

•  Sometimes we want to update non-contiguous, 
dependent data atomically 

•  Predecessor and BFS level 
•  Or arbitrary visitor code supplied by users 

•  Limited-scope transactions, are these any easier? 

•  std::atomic<std::pair<T1, T2> > !?! 
•  template <typename T> struct Foo;!
  std::atomic<Foo<T> > !!?!! 



Summary 
•  Active Messages 

•  Express fine-grained, asynchronous operations elegantly 
•  Well-matched to data-driven problems 
•  Enable fine-grained parallelism (threads, GPUs, FPGAs, …) 
•  Asynchrony allows latency hiding 

•  Concise expression and efficient execution 
•  Separate programming and execution models 

•  Active Pebbles 
•  Simple programming model 
•  Execution model maps programs to hardware efficiently 

•  AM++ is our implementation 
•  Could be targeted as a runtime by languages (X10, Chapel, …) 



Future Work 
•  Constrained parallelism in shared memory 

•  Not entirely work queue-based 
•  Not entirely recursion-based 

•  Acceleration 
•  Coalesced message buffers offer great opportunities 

here… if getting to the accelerator is cheap 
•  Optimizing local memory transactions 

•  Intel’s TSX in Haswell CPUs 
•  Declarative language for transaction code generation 



Questions? 

•  More info on Active Pebbles 
•  Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, and Andrew Lumsdaine.  

Active Pebbles: Parallel Programming for Data-Driven Applications.  ICS ‘11. 

•  More info on AM++ 
•  Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, and Andrew Lumsdaine.  

AM++: A Generalized Active Message Framework.  PACT ‘10. 

•  More info on the Parallel Boost Graph Library and graph 
applications: 
•  http://www.osl.iu.edu/research/pbgl 
•  http://www.boost.org 
•  Watch for a new release of PBGL based on Active Pebbles, running on AM++ soon! 

ngedmond@cs.indiana.edu 

(Ask if you’d like access to a pre-release, very alpha copy) 


