
The Parallel Boost Graph Library
spawn(Active Pebbles)

Nicholas Edmonds and Andrew Lumsdaine
Center for Research in Extreme Scale Technologies

Indiana University

Origins
•  Boost Graph Library (1999)

•  Generic programming with templates
•  Good sequential performance with

high-level abstractions
•  Algorithm composition, visitors,

property maps, etc.

Lie-Quan Lee, Jeremy Siek, and Andrew Lumsdaine. Generic

Graph Algorithms for Sparse Matrix Ordering. ISCOPE.

Lecture Notes in Computer Science 1732. 1999.

Origins
•  Parallel BGL (2005)

•  Lifting abstraction
•  Make what we already

have parallel
•  Same interfaces as

sequential BGL
•  Coarse-grained, BSP

Douglas Gregor and Andrew Lumsdaine. The Parallel BGL: A Generic Li-
brary for Distributed Graph Computation. Workshop on Parallel Object-

Oriented Scientific Computing. July, 2005.

Douglas Gregor and Andrew Lumsdaine. Lifting Sequential Graph Algo-
rithms for Distributed-Memory Parallel Computation. Object-Oriented

Programming, Systems, Languages, and Applications. October, 2005

Case Study: Breadth-First Search

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

SPMD Breadth-First Search

a b

c

h

g
i

d
f

e

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

a

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

Q.push(d)

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

Q

Q

Q

d

a b

c

h

g
i

d
f

e

SPMD Breadth-First Search

6

Rank 0 Rank 1 Rank 2 Rank 3

Get
neighbors

Redistribute
queues

Combine
received
queues

SPMD Breadth-First Search (Strong Scaling)
Breadth-First Search (227 vertices 229 edges)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with four cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

SPMD/BSP

SPMD Breadth-First Search (Weak Scaling)
Breadth-First Search (225 vertices 227 edges per node)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with four cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

SPMD/BSP

Find the Sequential Trap

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

Find the Synchronization Trap

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

 for i in ranks: start receiving in_queue[i] from rank i
 for j in ranks: start sending out_queue[j] to rank j
 synchronize and finish communications

What’s Wrong Here?

•  Coarse-grained
•  Static
•  Balanced
•  Bandwidth-bound with

large messages
•  Communicates data

•  Fine-grained dependencies
•  Dynamic, data-dependent
•  Irregular
•  Latency-bound with small

messages
•  Communicates control flow

Traditional Scientific Apps Data-driven Apps SPMD

Messaging Models
•  Two-sided

•  MPI
•  Explicit sends and receives

•  One-sided
•  MPI-2 one-sided, ARMCI, PGAS languages
•  Remote put and get operations
•  Limited set of atomic updates into remote memory

•  Active messages
•  GASNet, DCMF, LAPI, Charm++, X10, etc.
•  Explicit sends, implicit receives
•  User-defined handler called on receiver for each message

Active Messages
•  Created by von Eicken

et al, for Split-C (1992)
•  Messages sent explicitly
•  Receivers register

handlers but not
involved with individual
messages

•  Messages often
asynchronous for higher
throughput

Send

Message
handler

Reply

Reply
handler

Tim
e

Process 1 Process 2

Active Messages
•  Move control flow to data
•  Fine-grained
•  Asynchronous
•  Uniformity of access

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

AM++
•  Generic
•  User-level
•  Flexible/modular
•  Send to targets, not

processors

Low-Level vs. High-Level AM Systems
•  Active messaging systems (loosely) on a spectrum

of features vs. performance
•  Low-level systems typically have restrictions on message

handler behavior, explicit buffer management, etc.
•  High-level systems often provide dynamic load balancing,

service discovery, authentication/security, etc.

DCMF GASNet Java RMI Charm++/X10
Low High

The AM++ Framework
•  AM++ provides a “middle ground” between low- and

high-level systems
•  Gets performance from low-level systems
•  Gets programmability from high-level systems

•  High-level features can be built on top of AM++

AM++
DCMF GASNet Java RMI Charm++/X10

Low High

Messages Can Send Messages

•  Termination detection
•  Detect network quiescence
•  Pluggable

send<T>(t)!
send<T>(t)!

owner(t) local?

Execute
handler<T>(t)

Yes

Execute
handler<T>(t)

Yes

owner(t) local?

send<T>(t)!

Send message
return!

No
owner(t) local?

Active Pebbles
•  Need to separate what the programmer expresses

from what is actually executed
•  A programming model and an execution model

Active Pebbles Features
•  Programming model

•  Active messages (pebbles)
•  Fine-grained addressing (targets)

•  Execution model
•  Flexible message coalescing
•  Message reductions
•  Active routing
•  Termination detection

•  Features are synergistic
•  AM++ is our implementation of Active Pebbles model

Programming Model
•  Program with natural granularity

•  No need to artificially coarsen
object granularity

•  Transparent addressing
•  static and dynamic
•  local and remote

•  Bulk, anonymous handling of
messages and targets

•  Epoch model
•  Enforce message delivery
•  Controlled relaxed consistency

!

"#$%&'& "#$%&(& "#$%&)& "#$%&*& "#$%&+&

,#-./0&12#3/&

4565-&

!"#$%&'()*%+,-./.
..0)()*1,2.3.!(405.
..")*.4((.6%789!)*#.:.)".,.
....!"#$%&'()*%+,-.
;.

<"#$%&'()*%+:=.,=."(48-./.
.7".4((.6%789!)*#.)".,.4*%.!(405..
..................46<.,.>.#):*0%.
....<"#$%&'()*%+,=.:=.?@-.
.%(#%.")*.%409.6%789!)*.A.)".,.
....<"#$%&'()*%+,=.A=.BCDE-.
;.
.

Execution Model
•  Message coalescing

•  Amortize latency
•  Message reduction

•  Eliminate redundant
computation

•  Distributed computation
into network

•  Active routing
•  Exploit physical topology

•  Termination detection
•  Handlers send messages
•  Detect quiescence

!"#$%&'#&("
')*%+,"+-)

P0 P1

P2 P3

0 1

F

table.insert(0, F)

table.insert(6, D)

4 5

table.insert(7,B)

table.insert(6,A)
7 B

6 A

6 D
2 3

table.insert(6,A)

table.insert(...)

6 A6 D

6 D A

6 7

table.insert(4,A)

table.insert(4,B)

4 B A

MULTI-SOURCE REDUCTION

SINGLE-SOURCE REDUCTION

COALESCING

HYPERCUBE
ROUTING

Routing + Message Coalescing
•  Coalescing buffers limit scalability

•  Communications typically all-to-all
•  Impose a limited topology with fewer neighbors
•  Better scalability, higher latency

P0 P2P1 P3

P4 P7

P8 P11

P12 P13 P14 P15

P9 P10

P6P5

P0 P2P1 P3

P4 P5 P6 P7

P8 P10P9 P11

P12 P13 P14 P15

1411

11

14
1411

1411

11

14

Multi-source coalescing

P0 P2P1 P3

P4 P5 P6 P7

P8 P10P9 P11

P12 P13 P14 P15

Message Reductions + Routing
•  Messages to same target can often be combined
•  Reductions application-specific, user-defined
•  Routing allows cache hits at intermediate hops

Automatically synthesize
optimized collectives

Distribute computation
into the network

Active Message Abstraction
•  Pebbles are agnostic as to where they execute,

operate on targets
•  Independent of how messages are processed

•  Network communication (MPI, GASNet, DCMF, IB Verbs…)
•  Work stealing (Cilk++, Task parallelism)
•  OpenMP (over coalescing buffers)
•  Immediate execution in caller (of send())

•  Thread-safe metadata allows weakening message
order
•  Updates to targets must be atomic
•  Algorithms may have to tolerate weak consistency

Evaluation: Message Latency

25

Evaluation: Message Bandwidth

26

Active Pebbles
•  Meant to support all kinds of parallelism

•  Started with optimizing distributed memory
communication

•  Same features allow integration of fine-grained
parallelism

Active Messages for Work Decomposition
•  Key idea is to find natural granularity
•  Each pebble represents an independent computation

that can be executed in parallel

ENQUEUE(Q, s)
while (Q �= ∅)
u ← DEQUEUE(Q)

for (each v ∈ Adj[u])
if (color[v] = WHITE)

color[v] ← GRAY

ENQUEUE(Q, v)
else color[u] ← BLACK

#pragma omp parallel for
for(each v ∈ Q)

 queue push msg→send()

What’s Thread-safe in AP?
•  Messaging
•  Epoch begin/end
•  Termination detection

•  NOT:
•  Message creation
•  Modifying message features: routing, coalescing,

reductions
•  Modifying termination detection
•  Modifying the number of threads

Parallel BGL Architecture

Graph
(static... for

now)

GraphProperty
Maps

Algorithm
Class

Shared State

Message
TypesMessage

TypesMessage
Types

Entry point
operator()

LockMap

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

Object-
Based Addr.

Object-
Based Addr.

Object-
Based Addr.

Collectives

T0 T1 T3T2

•  AP makes messaging thread-
safe.

•  Property maps make
metadata manipulation
thread-safe and allow
messages to be processed in
arbitrary order

•  Just as transactional memory
generalizes processor
atomics to arbitrary
transactions, Active Pebbles
generalizes one-sided
operations to user-defined
handlers

Active Pebbles Breadth-First Search
Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

Process 0

Process 1 Process 2

a b

c

h

g
i

d
f

e

explore(b, 1)

explore(b, 1)

Process 0

Process 1 Process 2

explore(h, 2)

explore(h, 3)

a b

c

h

g
i

d
f

e

BFS: Strong Scaling

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

Breadth-First Search (227 vertices 229 edges)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

BFS: Weak Scaling
Breadth-First Search (225 vertices 227 edges per node)

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

Delta-Stepping: Strong Scaling
Delta-Stepping SSSP (227 vertices 229 edges)

 1

 10

 100

 1000

 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

Delta-Stepping: Weak Scaling

 10

 100

 1000

 1 2 4 8 16 32 64 128

T
im

e
 [
s]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

Delta-Stepping SSSP (224 vertices 226 edges per node)

Results were run on Erdős-Renyí graphs using a cluster of 128 2.0Ghz Opteron 270 processors
with two cores and 8GB of PC2700 DDR-DRAM per node connected via SDR Infiniband.

Transactional Metadata updates

Graph
(static... for

now)

GraphProperty
Maps

Algorithm
Class

Shared State

Entry point
operator()

LockMap

T0 T1 T3T2

•  Sometimes we want to update non-contiguous,
dependent data atomically

•  Predecessor and BFS level
•  Or arbitrary visitor code supplied by users

•  Limited-scope transactions, are these any easier?

•  std::atomic<std::pair<T1, T2> > !?!
•  template <typename T> struct Foo;!
 std::atomic<Foo<T> > !!?!!

Summary
•  Active Messages

•  Express fine-grained, asynchronous operations elegantly
•  Well-matched to data-driven problems
•  Enable fine-grained parallelism (threads, GPUs, FPGAs, …)
•  Asynchrony allows latency hiding

•  Concise expression and efficient execution
•  Separate programming and execution models

•  Active Pebbles
•  Simple programming model
•  Execution model maps programs to hardware efficiently

•  AM++ is our implementation
•  Could be targeted as a runtime by languages (X10, Chapel, …)

Future Work
•  Constrained parallelism in shared memory

•  Not entirely work queue-based
•  Not entirely recursion-based

•  Acceleration
•  Coalesced message buffers offer great opportunities

here… if getting to the accelerator is cheap
•  Optimizing local memory transactions

•  Intel’s TSX in Haswell CPUs
•  Declarative language for transaction code generation

Questions?

•  More info on Active Pebbles
•  Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, and Andrew Lumsdaine.

Active Pebbles: Parallel Programming for Data-Driven Applications. ICS ‘11.

•  More info on AM++
•  Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, and Andrew Lumsdaine.

AM++: A Generalized Active Message Framework. PACT ‘10.

•  More info on the Parallel Boost Graph Library and graph
applications:
•  http://www.osl.iu.edu/research/pbgl
•  http://www.boost.org
•  Watch for a new release of PBGL based on Active Pebbles, running on AM++ soon!

ngedmond@cs.indiana.edu

(Ask if you’d like access to a pre-release, very alpha copy)

