Graph Algorithms in the Language of Linear Algebra:
How did we get here, where do we go next?

John R. Gilbert

University of California, Santa Barbara

IPDPS Graph Algorithms Building Blocks

Support: Intel, Microsoft, DOE Office of Science, NSF

George Polya on how to give a mathematical talk

(as described by John Todd)

“Polya’s recipe was as follows:
The first quarter should be
understandable to absolutely
everyone, the second quarter should
include kind words about your
friends (especially those in the
audience), and then it doesn’t matter
what you say in the last half hour.”

UCSB

George Polya on how to give a mathematical talk

(as described by John Todd)

“Polya’s recipe was as follows:
The first quarter should be
understandable to absolutely
everyone, the second quarter should
include kind words about your
friends (especially those in the
audience), and then it doesn’t matter
what you say in the last half hour.”

“I [Todd] adjust this by adding,
sit down after a quarter hour.” [JC S B

In the year 1961 ...

Prehistory: A 1-person game on graphs

[S. Parter 1961]

Prehistory: A 1-person game on graphs

 Mark a vertex.

Prehistory: A 1-person game on graphs

 Mark a vertex.

« Connect its unmarked neighbors.

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

10

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

11

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

12

Prehistory: A 1-person game on graphs

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

13

Prehistory: A 1-person game on graphs

14

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

Y o5 _aB

Prehistory: A 1-person game on graphs

15

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

B o5 _aB

Prehistory: A 1-person game on graphs

16

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

B o5 _aB

Prehistory: A 1-person game on graphs

17

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

B o5 _aB

Prehistory: A 1-person game on graphs

18

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

B o5 _aB

Prehistory: A 1-person game on graphs

19

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

B o5 _aB

Prehistory: A 1-person game on graphs

20

* Mark a vertex.
« Connect its unmarked neighbors.

* Repeat.

Goal: End up with as few edges as possible.

UCSB

Y o5 _aB

Vertex elimination game (or chordal completion)

[Parter, Rose]

Repeat:

Choose a vertex v and mark it;

Add edges between unmarked neighbors of v;
Until: Every vertex is marked

Goal: End up with as few edges as possible.

. Best play is NP-complete [Yannakakis 1981]
. The final graph is always chordal (every cycle has a shortcut edge).
. Perfect play is possible iff the initial graph is chordal.

. Changing “fewest edges” to “smallest complete subgraph” gives the
graph’s freewidth, which shows up in lots of graph algorithms.

UCSB

21

Combinatorics in the service of linear algebra

“T observed that most of the

Py, coefficients 1n our matrices were

\ zero; 1.e., the nonzeros were
T ‘sparse in the matrix, and that
typically the triangular matrices
associated with the forward and back
solution provided by Gaussian
elimination would remain sparse if
pivot elements were chosen with

77

carc

as

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

22

Cholesky factorization: A = LLT

[Parter, Rose]

1 3 7

; :

4 10
G(A)

23

5

G*(A)
[chordal]

10

Fill: new nonzeros in factor

Symmetric Gaussian elimination:

forj=1ton
add edges between j's
higher-numbered neighbors

UCSB

Complexity measures for chordal completion

Elimination degree:
° ° d; = # higher neighbors of j in G*
4
G*(A) 10 d=(2,2,2,2,2,2,1,2,1,0)
9 2
5
 Nonzeros = edges = Zj d; (moment 1)
« Work = flops = Zj (d;)? (moment 2)

* Front size ~ fast memory = max; d; (moment *)

(minimum possible front size is the same as treewidth)

24

Aside: Matrix structure prediction

« Computing the nonzero structure of Cholesky factor L is
much cheaper than computing L itself.

« Cost to compute nnz(L) is almost linear in nnz(A). /G, Ng, Peyton]

25

Aside: Matrix structure prediction

« Computing the nonzero structure of Cholesky factor L is
much cheaper than computing L itself.

« Cost to compute nnz(L) is almost linear in nnz(A). /G, Ng, Peyton]

 Not so for sparse matrix product (SpGEMM); computing
nnz(B*C) seems to be as hard as computing B*C.

. UCSB

Aside: Matrix structure prediction

« Computing the nonzero structure of Cholesky factor L is
much cheaper than computing L itself.

« Costto compute nnz(L) is almost linear in nnz(A). [G, Ng, Peyton]

 Not so for sparse matrix product (SpGEMM); computing
nnz(B*C) seems to be as hard as computing B*C.

« Can estimate nnz(B*C) accurately in time linear in nnz(B, C)!
[E. Cohen 1998]

 Lots of cool recent work on sampling algorithms to estimate
statistics of matrix functions.

UCSB

27

Orderings for sparse Gaussian elimination

(PAP") (Px) = (Pb) PAPT=L,L,T

28

Nested dissection and graph partitioning
[George 1973, many extensions]

Matrix reordered by nested dissection

\’

Vertex separator in graph of matrix

Elimination tree with nested dissection
nz = 844

Heuristic: Find small vertex separator, put it last, recurse on subgraphs
Theory: Approx optimal separators => approx optimal fill

Practice: Lots of work on heuristics for graph partitioning!

UCSB

Prehistory: Graph algorithms for sparse matrices

Many, many graph algorithms have been used, invented,
implemented at large scale for sparse matrix computation:

« Symmetric problems: elimination tree, nonzero
structure prediction, sparse triangular solve, sparse
matrix-matrix multiplication, min-height etree, ...

« Nonsymmetric problems: sparse triangular solve,
bipartite matching (weighted and unweighted),
Dulmage-Mendelsohn decomposition / strong
components, ...

« |terative methods: graph partitioning again,
iIndependent set, low-stretch spanning trees, ... [JC S B

30

In the year 1992 ...

History: Mesh partitioning for scientific computing,
circa 1992

32

A
KA RIS
NN AR S
QRRISSARAN
WSM§WA‘V
AN

Both for nested dissection and for parallel sparse matvec
Spectral partitioning: Laplacian eigenvectors

Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

History: Mesh partitioning for scientific computing,
circa 1992

EAYATATATANY
N Y
CRNARARD
INNANSHAAS

« Both for nested dissection and for parallel sparse matvec
« Spectral partitioning: Laplacian eigenvectors
* Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

« Geometric partitioning: Shang-Hua Teng’s PhD thesis ...

UCSB

Y o5 _aB

33

History: Mesh partitioning for scientific computing,
circa 1992

34

PO

»‘m’%ﬂ%‘i« B

AR K OARRD
B PORIRRROR
REORARES
ANARSEIATSY

B

Both for nested dissection and for parallel sparse matvec
Spectral partitioning: Laplacian eigenvectors

Recursive coarsening: Chaco [Hendrickson/Leland], MetiS [Karypis/Kumar]
Geometric partitioning: Shang-Hua Teng’s PhD thesis ...

... and sparse matrices had just been added to Matlab ...

UCSB

Y o5 _aB

Geometric partitioning in Matlab [, mirer, Teng;

1. Original Mesh

W
)
2 L Z
gi
2. Mesh Points VA
il é
oz RIS AR PR %{g
i " >
. REL s
o L %%
'1[1 0.5 II::I ns 1 1 (: ﬁ
43 ok mdgex

In the year 2002

(and soon after) ...

In the year 2002

(and soon after) ...

(In 2002, JRG shared an office with Jeremy Kepner at MIT.)

UCSB

B &5 _aB

37

First draft of HPCS graph analysis benchmark

[circa 2004]

graph in random order
e

0 P T ¥ e
A R

RIS

100

200

300

400

500

600

700

800 f

900

1000 |

nz = 8108

. Many tight clusters, loosely interconnected
. Input data is edge triples <i,j,a>
. Vertices and edges permuted randomly

38

Greedy clustering by breadth-first search

* Grow local clusters from many seeds in parallel
» Breadth-first search by sparse matrix * matrix

» Cluster vertices connected by many short paths

Input graph in cluster order

D e 13 _l
100} " <
% Grow each seed to vertices 711 — .]
% reached by at least k 300+
% paths of length 1 or 2 00
soof, - - £+
C = sparse(seeds, 1l:ns, 1, n, ns); sl L,
C=2a*C; 700, ;
C=C+A*C; 800 "ty
C = C >= k; Pie, o
1000+ o 2 .,' r-. S 3 gy B 3 27E T
0 200 400 600 800 1000

nz = 8106

UCSB

Y o5 _aB

39

Multiple-source breadth-first search

40

Multiple-source breadth-first search

o ® o
® ®
® o o ® ®
o e O 2 ®
[J ®
® ® o
[
Al B A'B

e Sparse array representation => space efficient
e Sparse matrix-matrix multiplication => work efficient

e Three possible levels of parallelism: searches, vertices, edges

41 U C SB

Multiple-source breadth-first search

The final HPCS graph analysis benchmark (SSCA2) was
betweenness centrality, not clustering -- but the main
primitive was still multiple-source breadth-first search!

UCSB

B o5 _aB

42

In the year 2010

(and soon after) ...

Matrix-based graph processor design at MIT-LL

[Song, Kepner, et al. 2010]

3-D Graph Processor

William S. Song, Jeremy Kepner, Huy T. Nguyen, Joshua I. Kramer, Vitaliy Gleyzer, James R. Mann, Albert H. Horst, Larry
L. Retherford, Robert A. Bond, Nadya T. Bliss, Eric I. Robinson, Sanjeev Mohindra, Julie Mullen
Lincoln Laboratory, Massachusetts Institute Technology, Lexington, MA 02420

Graph Sparse Matrix
107 Representation Representation
3
Qs h 1
9 4 —+— Matrix 1.5GHz PowerPC |} 1 1
% ~+— Graph 1.5GHz PowerPC |}
3 -0~ Matrix 3.2GHz Intel Xeon |} T
w o -0~ Graph 3.2GHz Intel Xeon || 11
Pota g] Figure 2: Sparse Matrix Representation of Graph.
/ bl TN 1
Al W ?
] Coupling Stacked Processor 3-D Processor 3-D Parallel
10° N | . Connector Boards Chassis Processor
m‘ 10° 10° 10° 10" Cold Plate
Number of Element/Edges Per Row/Vertex ——— “"""’"me
Y‘ i . Heat Removal m ‘
Layer
Coupling

Figure 1: Computational Throughput Differences
between Conventional and Graph Processing.

44

Connectars

Coupler

Figure 3: 3-D Graph Processor with Electromagnetic
Coupling Communications between Processor Boards.

12 3 45 6 7

Combinatorial BLAS 2010

gauss.cs.ucsb.edu/~aydin/CombBLAS
[Azad, Buluc, G, Lugowski, ...]

N o U s WN
[]
o 0 o

An extensible distributed-memory library offering a
small but powerful set of linear algebraic operations
specifically targeting graph analytics.

* Aimed at graph algorithm designers/programmers who are not
expert in mapping algorithms to parallel hardware.

* Flexible templated C++ interface.

e Scalable performance from laptop to 100,000-processor HPC.

* Open source software.
* Version 1.6.2 released April 2018.

Sparse array primitives for graphs

Sparse matrix-sparse

matrix multiplication

Element-wise operations

Sparse matrix-sparse
vector multiplication

Sparse matrix indexing

<<~

Matrices over various semirings: (+, -), (and, or), (min, +), ...

46

Examples of semirings in graph algorithms

47

“values”:
“add”:

edge/vertex attributes,
vertex data aggregation,

“multiply”: edge data processing

General schema for user-specified
computation at vertices and edges

Real field: (R, +, *)

Numerical linear algebra

Boolean algebra: ({0 1}, |, &)

Graph traversal

Tropical semiring: (R U {o=}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes
to form quotient graph

UCSB

Graph algorithms in the language of linear algebra

e
* Kepner et al. study [2006]: jeremy Kepner and John Gilber C iz
fundamental graph algorithms s
iIncluding min spanning tree, % b
shortest paths, independent
set, max flow, clustering, ... Graph Algorithms in the
Language of Linear Algebra
. SSCA#2 / centrality [2008]
. Basic breadth-first search / .

Graph500 [2010]

CONTRIBUTORS

Bader, Bliss, Bond, Bulug, Dunlavy, Edelman, Faloutsos, Fineman,
Gilbert, Heitsch, Hendrickson, Kegelmeyer, Kepner, Kolda, Leskovec,

° CO m b i n ato ri aI B LAS [20 1 O] Madduri, Mohindra, Nguyen, Rader, Reinhardt, Robinson & Shah

UCSB

48

History: D4M and Graphulo [kepner et al., MIT & UW 2011 - 2015]

17 1]
@I D4M: “Databases For Matlab [&] Computer Networks
) ==/
Network Events Table: T SEE NI \g \é'a S 0 ® ©®
Triple Store D4M (Associative Arrays A ClAssociative Amayih___ s s S AEE, P LEEES
Distributed Database Dynamic Numerical Computing Environment Row | Koy (time)
_y . p g 1 2001-10-01 01 01 00
= D!Sll‘lbl-l.ted 2 2001-10-01 01 02 00
RN IIIIII‘ “ DlmenSIonaI B 3 2001-10-01 01 03 00
Data A 4 2001-10-01 01 04 00
Model 5 2001-10-01 01 05 00
1 ﬁ % “ 0 2001-10-01 01 06 00
Query: E * Define ranges of rows and columns
Alice
Bob ° r = '2001-01-01 01 02 00,:,2001-01-01 01 04 00,"
u g:f% A D4M query returns a Sparse matrix C = StartsWith('src_ip/,domain/,dest_ip/')
Earl - -
| s or graph from Accumulo ... * Query table and find popular pairs
f A = T(r,c)
.) A" * A > 200
Triple store are high performance
distributed databases for J LJuJ L
heterogeneous data o)) [c)-€:2)- €N -€2)-€)- (1) €D ()
...for statistical signal processing — o W W W W W W W
or graph analysis in MATLAB
/ http://graphulo.mit.edu
* DAM bint_:ls Associat_ive Arl_'ays to Triple Stf)re, enab_ling l.'api_d . How to do matrix math in Accumulo?
prototyping of data-intensive cloud analytics and visualization h bl |
— The TwoTable iterator pipeline
- LINCOLN LABORATORY
e MASSACHUSETTS INSTITUTE OF TECHNOLOGY P Jacca rd & k-Tru ss

> When to do matrix math in Accumulo?
— Memory requirements
— Compare in-database I/0 vs. alternatives
> Future Work: Multi-Node,

expand to Relational Algebra,
use an Optimizer to choose the best plan

Linear algebra on associative
arrays for heterogeneous
distributed databases & graphs

dhutchis@cs.washington.edu

I I I W ontact: Dylan Hutchison

W

49

History: Jon Berry challenge problems 2013

« Clustering coefficient (triangle counting)
Connected components (bully algorithm)

« Maximum independent set (NP-hard)

« Maximal independent set (Luby algorithm)
« Single-source shortest paths

« Special betweenness (for subgraph isomorphism)

UCSB

50

Counting triangles (clustering coefficient)

Clustering coefficient:

e Pr(wedge i-j-k makes a triangle with edge i-k)
e 3* #triangles / # wedges
e 3*%4/19=0.63inexample

e may want to compute for each vertex j

51

Counting triangles (clustering coefficient)

Clustering coefficient:

e Pr(wedge i-j-k makes a triangle with edge i-k)
e 3* #triangles / # wedges
e 3*%4/19=0.63inexample

e may want to compute for each vertex j

“Cohen’s” algorithm to count triangles:

hi(v) hi - Count triangles by lowest-degree vertex.
lo

hi(v) hi - Enumerate “low-hinged” wedges.
lo

hiM ~ ~hi - Keep wedges that close.

L U C S B

52

Counting triangles (clustering coefficient)

A=L+U
L XU=B (wedge, low hinge)
A A B=C (closed wedge)

(hi->lo + lo->hi)

sum(C)/2 = 4 triangles
A . L u . C
oo 0 oo 0
® o0 ° o0 11
o0 ° o0 °
o0 000 oo 00 0 1 2

Counting triangles (clustering coefficient)

A=L+U
L XU=B (wedge, low hinge)
A A B=C (closed wedge)

(hi->lo + lo->hi)

sum(C)/2 = 4 triangles
A . L u . C
oo 0 oo 0
® o0 ° o0 11
o0 ° o0 °
o0 000 oo 00 0 1 2

Spoiler: (L. X L) A LL works better in practice [Wolf et al. 2017] UC S B

54

History: The Graph BLAS Forum
http://graphblas.org

Standards for Graph Algorithm Primitives

® M a n | Fes 'I'O Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National
’ Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
H pE c 2 Ol 3 . Christos Faloutsos (Carnegie Melon University). John Feo (Pacific Northwest National Laboratory), John Gilbert

(University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles
Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

: Mathematical Foundations of the GraphBLAS
* Foundations,

Jeremy Kepner (MIT Lincoln Laboratory Supercomputing Center), Peter Aaltonen (Indiana University),
HPEC 2016: David Bader (Georgia Institute of Technology), Aydin Bulu¢ (Lawrence Berkeley National Laboratory),

Franz Franchetti (Carnegie Mellon University), John Gilbert (University of California, Santa Barbara),
Dylan Hutchison (University of Washington), Manoj Kumar (IBM),
Andrew Lumsdaine (Indiana University), Henning Meyerhenke (Karlsruhe Institute of Technology),
Scott McMillan (CMU Software Engineering Institute), Jose Moreira (IBM),
55 John D. Owens (University of California, Davis), Carl Yang (University of California, Davis),
Marcin Zalewski (Indiana University), Timothy Mattson (Intel)

The Present

In the year 2018

The Present

GABB 2018 Talks

GrB_Info bfsSm

GrB_Vector *v_output,
const GrB_Matrix A,

// BFS of a graph (using vector assign & reduce)
// v [i] is the BFS level of node i in the graph

// input graph, treated as if boolean in semiring
// starting node of the BFS

0 ; i < n ; i++) GrB_Vector_setElement (v, 0, i) ;

GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ;

true ; // true when some successor found

// # of nodes in the graph

// nodes visited at each level
// result vector

// Logical-or monoid

// Boolean semiring

// Descriptor for mxv

/7
/7
/7

n = # of rows of A
Vector<int32_t> v(n) = 0
n) ; Vector<bool> q(n) = false

// qls] = true, false elsewhere

// invert the mask
// clear q first

Enabling Massive Deep Neural Networks

GraphBLAS

Jeremy Kepner!, Manoj Kumar?, José Moreira?,
Pratap Pattnaik®, Mauricio Serrano®, Henry Tufo?

GrB_Index s
(8:30am-10am))
Spectral Graph Drawing: Building Blocks {
Shad Kirmani and Kamesh Madduri @ . .
. rB_Info info ;
and Performance Analysis @ N
rB_Index n ;
GrB_Vector q = NULL ;
GrB_Vector v = NULL ;
Morning Break (10-10:30am) GrB_Monoid Lor = NULL ;
GrB_Semiring Boolean = NULL ;
GrB_Descriptor desc = NULL ;
1— Parallel generation of large-scale random AT GrB_Matrix_nrows (&n, A) ;
: : . 1 ul t GrB_Vector_new (&v, GrB_INT32, n) ;
The GraphBLAS C APT Specification T: e SrBjector-ney (v, Orp T2
. (12) for (int32_t i =
Version 1.2.0 Gen Design, Generation, and Validation of . « isias GrB_Vector_setElement (q, true, s) ;
erating eremy Kepner and Sid Samsi
I — Extreme Scale Power-Law Graphs GrB_Monoid_new (&Lor, GrB_LOR, (bool) false) ;
raphs wit GrB_Semiring_new (%Boolean, Lor, GrB_LAND) ;
. . ,) On Large-Scale Graph Generati ith GrB_Descriptor_new (&desc) ;
Aydmn Bulug, Timothy Mattson, Scott McMillan, José Moreira, Carl Yang known f ampe-scale Hraph Tenerafion Wi iy G, Rogw REs, GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ;
roperties Validation of Diverse Triangle Statistics at
prop Timothy La Fond and Jeremy Kepner
. B : Ed, d Vertic =
Operation Name Mathematical Notation gHon bool successor
mxm CM,z) = Co As.9B Lunch (12-1:30pm)
mxv w(m,z) = WO A®.®u
T T — T T Patterns of GraphBLAS Algorithms: Tales M
vxm wi(m',z) = WO u 3. QA g = Scott McMillian with the
eWiseMult CM,z) = CoA®B 5 e e T
W(Il'l, Z> = w @ u®v - e L AS @ AT Jose Moreira, Manoj Kumar aj
. (1:30pm-3pm) mplementing the Grap!
eWiseAdd CM,z) = Co A®B S William Horn
GraphBLAS
w(m, Z> = w O ugv . :ap o PyGB: GraphBLAS DSL in Pyth - Jesse Chamberlin, Marcin Zalew:
. . Implement ns s apl mn on Wil
reduce (row) w(m,z) = w O [BA(])] Scott McMillan and Andy | i
d 1 Al i Dynamic Compilation into Efficient C++ nput
reduce (scalar) s = s O [@ijA(,) Lumsdaine Features
5= 5 © [®u(d)] Afternoon Break (3-3:30pm) Yo
apply CM,z) = C o fu(A)
A Survey of Modern Analysis on Graphs:
w(m,z) = w © fu(u) 3 Y Y 5 Chris Long
Open Problems
transpose C(M,z) = C o AT (3:30pm-5pm) S
— 5 a 2o Panelists: Jose Moreira, Chris Lol
extract C(M,z) = Cco A(_"-J) GraphBuilding |). Graph Building Blocks in Graph A Marcin Zalowski
w(m,z) = w © u(z) SoIMECEZIer A
assi

User Guide for SuiteSparse:GraphBLAS

Timothy A. Davis
davis@tamu.edu, Texas A&M University.

http://www.suitesparse.com and http://aldenmath.com

VERSION 2.0.1, Mar 15, 2018

Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for cre-
ating graph algorithms based on the elegant mathematics of sparse

57

matrix operations on a semiring.

M Purten
"ermence Exvaee ¢

Home

2017

Motivation

Graph Challenge Champions

Champions

o Fast Linear Algebra-Based Triangle Counting with Kok

B GraphChallenge

Computng

Challenges | Data Sets | Scenarios | Submit

Analysis of all Triangle Counting Submissions

Hammond, Sivasankaran Rajamanickam (Sandia)

Tt e) £ 0% vt v ey e Ol I £ vwrvvmdh o vt Ooarels 92

Fast Linear Algebra-Based Triangle Counting
with KokkosKernels

Hidden Layers

y2 Output

Categories
Y4

Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, Simon D. Hammond, Sivasankaran Rajamanickam

Center for Computing Research,
Albuquerque,

Sandia National Laboratories
NM 87185

{mmwolf,mndevec jberry,sdhammo,srajama} @sandia.gov

Abstraci—Triangle counting serves as a key building block for
a set of important graph algorithms in network science. In this
paper, we address the IEEE HPEC Static Graph Challenge prob-
lem of triangle counting, focusing on obtaining the best parallel
performance on a single multicore node. Our implementation
uses a linear algebra-based approach to triangle counting that
has grown out of work related to our miniTri data analytics
miniapplication [1] and our efforts to pose graph algorithms in
the language of linear algebra. We leverage KokkosKernels to
implement this approach efficiently on multicore architectures.
Our performance results are competitive with the fastest known
graph t I-based and are faster

to pose graph algorithms in the language of linear algebra.
We focus on triangle counting on a single compute node,

ing KokkosKernels [14] to i this approach
efficiently. We obtain results that are competitive with the
fastest known graph traversal-based approaches.

B. Linear Algebra Primitives for Graph Algorithms

The Graph BLAS [15], [16] community has been working
to standardize a set of building blocks to solve graph prob-
lems in the language of sparse linear algebra. Many graph

than the Graph Challenge reference up to
670,000 times faster than the C++ reference and 10,000 times
faster than the Python reference on a single Intel Haswell node.

can be y written in terms of lincar alge-
bra [17], including breadth-first search, betweenness centrality,
and triangle counti ion [1], [18] (di further

In the years 2019 —

What do we hope for in the future?

. More basic capabilities
— Streaming and dynamic-graph algorithms
— “Priority queue” algorithms: strong components, top k vertices, etc.
— Not materializing intermediate results (eg, incidence matrix methods)

— Laplacian paradigm for graph algorithms

59

Question: Not materializing big matrix products

In sparse Gaussian elimination, for nonsymmetric A, one can find . ..
— column nested dissection or min degree permutation
— column elimination tree T(ATA)
— row and column counts for G*(ATA)
— supernodes of G*(ATA)
— nonzero structure of G*(ATA)

. . . efficiently, without ever forming ATA explicitly.

. How generally can we do graph algorithms in linear
algebra without storing intermediate results?

. Can we do fine-grained scheduling of vertex and edge
operations to break out of bulk synchronous execution?

. Can we reason directly about products of sparse

matrices? U C S B

60

Storing A, operating implicitly on ATA

CombBLAS represents graphs as adjacency matrices.

D4M represents graphs as incidence matrices;
matrix A represents G(ATA):

D4M 2.0 SCHEMA FOR TWITTER DATA

TedgeDeg” Row Key
[Deoree Pl T FL L T BIF T
TedgeTxt text
T T —— e
& | 08822929613220092 null
x|,

Source: D4M 20 Schema: A General Purpose High Performance Schema for the Accumulo Database, Kepner et. al., HPEC 2013

61

Storing A, operating implicitly on ATA

« Many other cases:
— Optimization: KKT systems, interior point methods.
— Automatic differentiation: distance-2 coloring.

— Linear equations: QR factorization, structure prediction
for LU factorization with partial pivoting.

e Question: What can you do fast on G(ATA) just from G(A)?

UCSB

62

Statistics for ATA itself are harder!

« nnz(ATA) seems to be as hard as computing ATA.

— but randomized estimate is possible [Cohen 1998]

« Sampling algorithms are possible too, e.g. diamond

sampling for k largest elements of ATA (or B*C in general)
[Ballard/Kolda/Pinar/Seshadri 2015]

() O @
O O O O O @
XD A KD A D
No © g0 Ny C
® Q5 O o\o O
o © 90" g o©
(gl,)i)sircngzi (b) Sample j € NB (c) Sample k' € NA U C S B

63 Ballard et al. ICDM 2015 P g—

What do we hope for in the future?

. More basic capabilities
— Streaming and dynamic algorithms
— “Priority queue” algorithms: strong components, top k vertices, etc.
— Not materializing intermediate results (eg, incidence matrix methods)

— Laplacian paradigm for graph algorithms

64

Laplacian matrix of a graph

65

Graph Laplacian: Symmetric, positive semidefinite, weighted.

Laplacian paradigm: Use Ax = b as a subroutine in graph algorithms
[Kelner, Teng, many others]

Laplacian eigenvectors for partitioning, embedding, and clustering
[Fiedler, Pothen/Simon, Spielman/Teng, many others]

Interesting new ideas coming from theoretical computer science.

UCSB

What do we hope for in the future?

. More basic capabilities
— Streaming and dynamic algorithms
— “Priority queue” algorithms: strong components, top k vertices, etc.
— Not materializing intermediate results (eg, incidence matrix methods)

— Laplacian paradigm for graph algorithms

66

What do we hope for in the future?

67

More basic capabilities

— Streaming and dynamic algorithms

— “Priority queue” algorithms: strong components, top k vertices, etc.

— Not materializing intermediate results (eg, incidence matrix methods)
— Laplacian paradigm for graph algorithms

More directions

— Integration with numerical matrix libraries

— Statistical perspective: random objects, stochastic graphs, etc.

— Deep neural networks (more)

— Signal processing on graphs

What do we hope for in the future?

. More basic capabilities
— Streaming and dynamic algorithms
— “Priority queue” algorithms: strong components, top k vertices, etc.
— Not materializing intermediate results (eg, incidence matrix methods)
— Laplacian paradigm for graph algorithms
. More directions
— Integration with numerical matrix libraries
— Statistical perspective: random objects, stochastic graphs, etc.
— Deep neural networks (more)
— Signal processing on graphs
. More uptake

— By hardware vendors

— By software vendors U C S B

68

Summary: Past 60 Years

As the “middleware”
of scientific computing,
linear algebra has given us:

Continuous
Physical Modeling

Mathematical tools

l

High-level primitives

Linear Algebra

|

High-quality software libraries

High-performance kernels
for computer architectures

Interactive environments

UCSB

69

Continuous
Physical Modeling

Discrete
Structure Analysis

l l

Linear Algebra Graph Theory

l |

70

Continuous
Physical Modeling

Discrete
Structure Analysis

l |

Linear Algebra & Graph Theory

l |

71

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra Graph Theory

| | l
Comom D) Commed Comome

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra Graph Theory Statistics ?

| | l
Comom D) Commed Comome

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra Graph Theory Deep Learning ?

| | l
Comom D) Commed Comome

UCSB

74

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra Graph Theory Neuromorphics ?

| | l
Comom D) Commed Comome

UCSB

75

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra Graph Theory ??7?

| | l
Comom D) Commed Comome

76 R e

Extracting Sense
from Data

Discrete
Structure Analysis

Continuous
Physical Modeling

l l l

Linear Algebra & Graph Theory & 27?7

| | l
Comom D) Commed Comome

Ariful Azad, David Bader, Jon Berry, Eric Boman, Aydin
Buluc, Ben Chang, John Conroy, Tim Davis, Kevin
Deweese, Erika Duriakova, Assefaw Gebremedhin, Shoaib
Kamil, Jeremy Kepner, Tammy Kolda, Tristan Konolige,
Manoj Kumar, Adam Lugowski, Tim Mattson, Scott
McMillan, Henning Meyerhenke, Jose Moreira, Esmond
Ng, Lenny Oliker, Weimin Ouyang, Ali Pinar, Alex
Pothen, Carey Priebe, Steve Reinhardt, Lijie Ren, Eric
Robinson, Viral Shah, Veronika Strnadova-Neeley, Blair
Sullivan, Shang-Hua Teng, Yun Teng, Sam Williams

78 ... and Intel, Microsoft, NSF, DOE Office of Science U C S B

