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George Pólya on how to give a mathematical talk

“Pólya’s recipe was as follows:  
The first quarter should be 

understandable to absolutely 
everyone, the second quarter should 

include kind words about your 
friends (especially those in the 

audience), and then it doesn’t matter 
what you say in the last half hour.”

(as described by John Todd)



3

George Pólya on how to give a mathematical talk

“Pólya’s recipe was as follows:  
The first quarter should be 

understandable to absolutely 
everyone, the second quarter should 

include kind words about your 
friends (especially those in the 

audience), and then it doesn’t matter 
what you say in the last half hour.”

“I [Todd] adjust this by adding, 
sit down after a quarter hour.”

(as described by John Todd)
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In the year 1961 ...

Prehistory



5

Prehistory: A 1-person game on graphs
[S. Parter 1961]
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Prehistory: A 1-person game on graphs

• Mark a vertex.
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Vertex elimination game (or chordal completion)
[Parter, Rose]

Repeat:

Choose a vertex v and mark it;

Add edges between unmarked neighbors of v;

Until: Every vertex is marked

Goal:  End up with as few edges as possible.

• Best play is NP-complete [Yannakakis 1981]

• The final graph is always chordal (every cycle has a shortcut edge).

• Perfect play is possible iff the initial graph is chordal.

• Changing “fewest edges” to “smallest complete subgraph” gives the 

graph’s treewidth, which shows up in lots of graph algorithms.
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Combinatorics in the service of linear algebra

�I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were 
�sparse� in the matrix, and that 
typically the triangular matrices 
associated with the forward and back 
solution provided by Gaussian 
elimination would remain sparse if 
pivot elements were chosen with 
care�

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won 
the 1990 Nobel Prize for Economics
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Cholesky factorization:  A  =  LLT 

[Parter, Rose]
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G(A) G+(A)
[chordal]

Symmetric Gaussian elimination:

for j = 1 to n
add edges between j�s
higher-numbered neighbors

Fill: new nonzeros in factor
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Complexity measures for chordal completion

• Nonzeros =  edges            =  Σj dj (moment 1)

• Work        =  flops              =  Σj (dj)2 (moment 2)

• Front size ~  fast memory  =  maxj dj (moment ∞)

(minimum possible front size is the same as treewidth)
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Elimination degree:

dj = # higher neighbors of j in G+

d = (2, 2, 2, 2, 2, 2, 1, 2, 1, 0)
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Aside:  Matrix structure prediction

• Computing the nonzero structure of Cholesky factor L is 

much cheaper than computing L itself.

• Cost to compute nnz(L) is almost linear in nnz(A). [G, Ng, Peyton]

Not so for sparse matrix product (SpGEMM); computing nnz(B*C) 

seems to be as hard as computing B*C.

Can estimate nnz(B*C) accurately in time linear in nnz(B, C)! [E. 
Cohen 1998]

Lots of cool recent work on sampling algorithms to estimate 

statistics of matrix functions.
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(PAPT) (Px) = (Pb)

Ax = b

PAPT = L2L2
T

A = L1L1
T
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Orderings for sparse Gaussian elimination
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Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1973, many extensions]

• Heuristic:  Find small vertex separator, put it last, recurse on subgraphs

• Theory:  Approx optimal separators  =>  approx optimal fill

• Practice:  Lots of work on heuristics for graph partitioning!
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Matrix reordered by nested dissection

Vertex separator in graph of matrix
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Prehistory: Graph algorithms for sparse matrices

Many, many graph algorithms have been used, invented, 
implemented at large scale for sparse matrix computation:

• Symmetric problems:  elimination tree, nonzero 
structure prediction, sparse triangular solve, sparse 
matrix-matrix multiplication, min-height etree, …

• Nonsymmetric problems:  sparse triangular solve, 
bipartite matching (weighted and unweighted), 
Dulmage-Mendelsohn decomposition / strong 
components, …

• Iterative methods:  graph partitioning again, 
independent set, low-stretch spanning trees, …
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In the year 1992 ...

History
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• Both for nested dissection and for parallel sparse matvec

• Spectral partitioning: Laplacian eigenvectors

• Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

• ...

History: Mesh partitioning for scientific computing,    
circa 1992
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• Both for nested dissection and for parallel sparse matvec

• Spectral partitioning: Laplacian eigenvectors

• Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

• Geometric partitioning: Shang-Hua Teng’s PhD thesis ...

• ... and sparse matrices had just been added to Matlab ...

History: Mesh partitioning for scientific computing,    

circa 1992
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Geometric partitioning in Matlab [G, Miller, Teng]

1. Original Mesh

2. Mesh Points

3.Stereographic Projection

4. Conformal Mapping

5. Projected Back Down

Projected                D

6. Partitioned Mesh

Projected D

Projected D

ted D
Projected D
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In the year 2002 
(and soon after) ...

History
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In the year 2002 
(and soon after) ...

(In 2002, JRG shared an office with Jeremy Kepner at MIT.)

History
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• Many tight clusters, loosely interconnected
• Input data is edge triples  < i, j, a >
• Vertices and edges permuted randomly

First draft of HPCS graph analysis benchmark
[circa 2004]
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Greedy clustering by breadth-first search

% Grow each seed to vertices 
%    reached by at least k
%    paths of length 1 or 2

C = sparse(seeds, 1:ns, 1, n, ns);
C = A * C;
C = C + A * C;
C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

• Cluster vertices connected by many short paths
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Multiple-source breadth-first search
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Multiple-source breadth-first search

• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Three possible levels of parallelism:  searches, vertices, edges

BAT AT B

à
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6
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Multiple-source breadth-first search

The final HPCS graph analysis benchmark (SSCA2) was 
betweenness centrality, not clustering -- but the main 
primitive was still multiple-source breadth-first search!

BAT AT B

à
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In the year 2010

(and soon after) ...

History
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Matrix-based graph processor design at MIT-LL
[Song, Kepner, et al. 2010]



• Aimed at graph algorithm designers/programmers who are not 
expert in mapping algorithms to parallel hardware.

• Flexible templated C++ interface.
• Scalable performance from laptop to 100,000-processor HPC.

• Open source software.
• Version 1.6.2 released April 2018.

An extensible distributed-memory library offering a 
small but powerful set of linear algebraic operations 

specifically targeting graph analytics.

Combinatorial BLAS [2010]

gauss.cs.ucsb.edu/~aydin/CombBLAS
[Azad, Buluc, G, Lugowski, …]
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Sparse matrix-sparse 
matrix  multiplication

*

Sparse matrix-sparse 
vector multiplication

*

.*

Sparse array primitives for graphs

Element-wise operations Sparse matrix indexing

Matrices over various semirings:  (+, ×),  (and, or),  (min, +), …
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Examples of semirings in graph algorithms

“values”:     edge/vertex attributes,
“add”:          vertex data aggregation, 
“multiply”:   edge data processing 

General schema for user-specified 
computation at vertices and edges

Real field: (R, +, *) Numerical linear algebra

Boolean algebra:  ({0 1}, |, &) Graph traversal

Tropical semiring:  (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes 
to form quotient graph
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Graph algorithms in the language of linear algebra

• Kepner et al. study [2006]: 
fundamental graph algorithms 
including min spanning tree, 
shortest paths, independent 
set, max flow, clustering, …

• SSCA#2 / centrality [2008]

• Basic breadth-first search /  
Graph500 [2010]

• Combinatorial BLAS [2010]
[2011]
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History: D4M and Graphulo [Kepner et al., MIT & UW 2011 - 2015]

Linear algebra on associative 
arrays for heterogeneous 

distributed databases & graphs
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History: Jon Berry challenge problems   [2013]

• Clustering coefficient (triangle counting)

• Connected components (bully algorithm)

• Maximum independent set (NP-hard)

• Maximal independent set (Luby algorithm)

• Single-source shortest paths

• Special betweenness (for subgraph isomorphism)
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Counting triangles (clustering coefficient)

A

5

6

3

1 2

4

Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 *  # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j
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Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 *  # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

“Cohen’s” algorithm to count triangles: 

- Count triangles by lowest-degree vertex.     

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo

hi hi
lo

hihi
lo

Counting triangles (clustering coefficient)
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A L U
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C

A = L + U      (hi->lo  +  lo->hi)

L � U = B (wedge, low hinge)

A � B = C       (closed wedge)

sum(C)/2  =     4 triangles
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54

A L U
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A = L + U      (hi->lo  +  lo->hi)

L � U = B (wedge, low hinge)

A � B = C       (closed wedge)

sum(C)/2  =     4 triangles
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Counting triangles (clustering coefficient)

Spoiler: (L � L) ^ L works better in practice [Wolf et al. 2017]
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History: The Graph BLAS Forum

Abstract-- It is our view that the state of the art in constructing a large collection of 
graph algorithms in terms of linear algebraic operations is mature enough to 
support the emergence of a standard set of primitive building blocks. This paper is 
a position paper defining the problem and announcing our intention to launch an 
open effort to define this standard.

http://graphblas.org

• Manifesto, 
HPEC 2013:

• Foundations,
HPEC 2016:
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In the year 2018 ....

The Present
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The Present GABB 2018 Talks
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In the years 2019 —

The Future
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• More basic capabilities

– Streaming and dynamic-graph algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

What do we hope for in the future?
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In sparse Gaussian elimination, for nonsymmetric A, one can find . . .
– column nested dissection or min degree permutation

– column elimination tree   T(ATA)

– row and column counts for  G+(ATA)

– supernodes of   G+(ATA)

– nonzero structure of  G+(ATA)

. . . efficiently, without ever forming ATA explicitly.

• How generally can we do graph algorithms in linear 

algebra without storing intermediate results?

• Can we do fine-grained scheduling of vertex and edge 

operations to break out of bulk synchronous execution?

• Can we reason directly about products of sparse 

matrices?

Question:  Not materializing big matrix products  
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Storing A, operating implicitly on ATA

• CombBLAS represents graphs as adjacency matrices.

• D4M represents graphs as incidence matrices; 
matrix A represents G(ATA):

column = vertex

row = hyperedge

A
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Storing A, operating implicitly on ATA

• Many other cases:

– Optimization:  KKT systems, interior point methods.

– Automatic differentiation: distance-2 coloring.

– Linear equations:  QR factorization, structure prediction 
for LU factorization with partial pivoting.

• Question: What can you do fast on G(ATA) just from G(A)?  
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Statistics for ATA itself are harder!

• nnz(ATA) seems to be as hard as computing ATA.

– but randomized estimate is possible [Cohen 1998]

• Sampling algorithms are possible too, e.g. diamond 
sampling for k largest elements of ATA    (or B*C in general) 
[Ballard/Kolda/Pinar/Seshadri 2015]

Ballard et al. ICDM 2015
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• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

What do we hope for in the future?



65

Laplacian matrix of a graph

• Graph Laplacian: Symmetric, positive semidefinite, weighted.

• Laplacian paradigm:  Use Ax = b as a subroutine in graph algorithms
[Kelner, Teng, many others]

• Laplacian eigenvectors for partitioning, embedding, and clustering
[Fiedler, Pothen/Simon, Spielman/Teng, many others]

• Interesting new ideas coming from theoretical computer science.
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• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

• More directions

– Integration with numerical matrix libraries

– Statistical perspective: random objects, stochastic graphs, etc.

– Deep neural networks (more)

– Signal processing on graphs

• More uptake

– By hardware vendors

– By software vendors

What do we hope for in the future?



69

Summary: Past 60 Years

As the “middleware” 
of scientific computing, 

linear algebra has given us:

• Mathematical tools

• High-level primitives

• High-quality software libraries

• High-performance kernels
for computer architectures

• Interactive environmentsComputers

Continuous
Physical Modeling

Linear Algebra
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Computers

Continuous
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Linear Algebra        & Graph Theory         & ???            
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Structure Analysis

Computers

Tomorrow

Computers

Extracting Sense
from Data
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