
1

Graph Algorithms in the Language of Linear Algebra:
How did we get here, where do we go next?

John R. Gilbert
University of California, Santa Barbara

IPDPS Graph Algorithms Building Blocks
May 21, 2018

Support: Intel, Microsoft, DOE Office of Science, NSF

2

George Pólya on how to give a mathematical talk

“Pólya’s recipe was as follows:
The first quarter should be

understandable to absolutely
everyone, the second quarter should

include kind words about your
friends (especially those in the

audience), and then it doesn’t matter
what you say in the last half hour.”

(as described by John Todd)

3

George Pólya on how to give a mathematical talk

“Pólya’s recipe was as follows:
The first quarter should be

understandable to absolutely
everyone, the second quarter should

include kind words about your
friends (especially those in the

audience), and then it doesn’t matter
what you say in the last half hour.”

“I [Todd] adjust this by adding,
sit down after a quarter hour.”

(as described by John Todd)

4

In the year 1961 ...

Prehistory

5

Prehistory: A 1-person game on graphs
[S. Parter 1961]

6

Prehistory: A 1-person game on graphs

• Mark a vertex.

7

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

8

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

9

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

10

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

11

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

12

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

13

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

14

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

15

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

16

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

17

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

18

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

19

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

20

Prehistory: A 1-person game on graphs

• Mark a vertex.

• Connect its unmarked neighbors.

• Repeat.

Goal: End up with as few edges as possible.

21

Vertex elimination game (or chordal completion)
[Parter, Rose]

Repeat:

Choose a vertex v and mark it;

Add edges between unmarked neighbors of v;

Until: Every vertex is marked

Goal: End up with as few edges as possible.

• Best play is NP-complete [Yannakakis 1981]

• The final graph is always chordal (every cycle has a shortcut edge).

• Perfect play is possible iff the initial graph is chordal.

• Changing “fewest edges” to “smallest complete subgraph” gives the

graph’s treewidth, which shows up in lots of graph algorithms.

22

Combinatorics in the service of linear algebra

�I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were
�sparse� in the matrix, and that
typically the triangular matrices
associated with the forward and back
solution provided by Gaussian
elimination would remain sparse if
pivot elements were chosen with
care�

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

23

Cholesky factorization: A = LLT

[Parter, Rose]

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

G(A) G+(A)
[chordal]

Symmetric Gaussian elimination:

for j = 1 to n
add edges between j�s
higher-numbered neighbors

Fill: new nonzeros in factor

24

Complexity measures for chordal completion

• Nonzeros = edges = Σj dj (moment 1)

• Work = flops = Σj (dj)2 (moment 2)

• Front size ~ fast memory = maxj dj (moment ∞)

(minimum possible front size is the same as treewidth)

10

1 3

2

4

5

6

7

8

9

G+(A)

Elimination degree:

dj = # higher neighbors of j in G+

d = (2, 2, 2, 2, 2, 2, 1, 2, 1, 0)

25

Aside: Matrix structure prediction

• Computing the nonzero structure of Cholesky factor L is

much cheaper than computing L itself.

• Cost to compute nnz(L) is almost linear in nnz(A). [G, Ng, Peyton]

Not so for sparse matrix product (SpGEMM); computing nnz(B*C)

seems to be as hard as computing B*C.

Can estimate nnz(B*C) accurately in time linear in nnz(B, C)! [E.
Cohen 1998]

Lots of cool recent work on sampling algorithms to estimate

statistics of matrix functions.

26

Aside: Matrix structure prediction

• Computing the nonzero structure of Cholesky factor L is

much cheaper than computing L itself.

• Cost to compute nnz(L) is almost linear in nnz(A). [G, Ng, Peyton]

• Not so for sparse matrix product (SpGEMM); computing

nnz(B*C) seems to be as hard as computing B*C.

Can estimate nnz(B*C) accurately in time linear in nnz(B, C)! [E.
Cohen 1998]

Lots of cool recent work on sampling algorithms to estimate

statistics of matrix functions.

27

Aside: Matrix structure prediction

• Computing the nonzero structure of Cholesky factor L is

much cheaper than computing L itself.

• Cost to compute nnz(L) is almost linear in nnz(A). [G, Ng, Peyton]

• Not so for sparse matrix product (SpGEMM); computing

nnz(B*C) seems to be as hard as computing B*C.

• Can estimate nnz(B*C) accurately in time linear in nnz(B, C)!

[E. Cohen 1998]

• Lots of cool recent work on sampling algorithms to estimate

statistics of matrix functions.

28

(PAPT) (Px) = (Pb)

Ax = b

PAPT = L2L2
T

A = L1L1
T

13

2
4

5

13

2
4

5

25

3
4

1

25

3
4

1

Orderings for sparse Gaussian elimination

29

Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1973, many extensions]

• Heuristic: Find small vertex separator, put it last, recurse on subgraphs

• Theory: Approx optimal separators => approx optimal fill

• Practice: Lots of work on heuristics for graph partitioning!

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

Vertex separator in graph of matrix

30

Prehistory: Graph algorithms for sparse matrices

Many, many graph algorithms have been used, invented,
implemented at large scale for sparse matrix computation:

• Symmetric problems: elimination tree, nonzero
structure prediction, sparse triangular solve, sparse
matrix-matrix multiplication, min-height etree, …

• Nonsymmetric problems: sparse triangular solve,
bipartite matching (weighted and unweighted),
Dulmage-Mendelsohn decomposition / strong
components, …

• Iterative methods: graph partitioning again,
independent set, low-stretch spanning trees, …

31

In the year 1992 ...

History

32

• Both for nested dissection and for parallel sparse matvec

• Spectral partitioning: Laplacian eigenvectors

• Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

• ...

History: Mesh partitioning for scientific computing,
circa 1992

33

• Both for nested dissection and for parallel sparse matvec

• Spectral partitioning: Laplacian eigenvectors

• Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

• Geometric partitioning: Shang-Hua Teng’s PhD thesis ...

History: Mesh partitioning for scientific computing,
circa 1992

34

• Both for nested dissection and for parallel sparse matvec

• Spectral partitioning: Laplacian eigenvectors

• Recursive coarsening: Chaco [Hendrickson/Leland], Metis [Karypis/Kumar]

• Geometric partitioning: Shang-Hua Teng’s PhD thesis ...

• ... and sparse matrices had just been added to Matlab ...

History: Mesh partitioning for scientific computing,

circa 1992

35

Geometric partitioning in Matlab [G, Miller, Teng]

1. Original Mesh

2. Mesh Points

3.Stereographic Projection

4. Conformal Mapping

5. Projected Back Down

Projected D

6. Partitioned Mesh

Projected D

Projected D

ted D
Projected D

36

In the year 2002
(and soon after) ...

History

37

In the year 2002
(and soon after) ...

(In 2002, JRG shared an office with Jeremy Kepner at MIT.)

History

38

• Many tight clusters, loosely interconnected
• Input data is edge triples < i, j, a >
• Vertices and edges permuted randomly

First draft of HPCS graph analysis benchmark
[circa 2004]

39

Greedy clustering by breadth-first search

% Grow each seed to vertices
% reached by at least k
% paths of length 1 or 2

C = sparse(seeds, 1:ns, 1, n, ns);
C = A * C;
C = C + A * C;
C = C >= k;

• Grow local clusters from many seeds in parallel

• Breadth-first search by sparse matrix * matrix

• Cluster vertices connected by many short paths

40

Multiple-source breadth-first search

B

1 2

3

4 7

6

5

AT

41

Multiple-source breadth-first search

• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Three possible levels of parallelism: searches, vertices, edges

BAT AT B

à

1 2

3

4 7

6

5

42

Multiple-source breadth-first search

The final HPCS graph analysis benchmark (SSCA2) was
betweenness centrality, not clustering -- but the main
primitive was still multiple-source breadth-first search!

BAT AT B

à

1 2

3

4 7

6

5

43

In the year 2010

(and soon after) ...

History

44

Matrix-based graph processor design at MIT-LL
[Song, Kepner, et al. 2010]

• Aimed at graph algorithm designers/programmers who are not
expert in mapping algorithms to parallel hardware.

• Flexible templated C++ interface.
• Scalable performance from laptop to 100,000-processor HPC.

• Open source software.
• Version 1.6.2 released April 2018.

An extensible distributed-memory library offering a
small but powerful set of linear algebraic operations

specifically targeting graph analytics.

Combinatorial BLAS [2010]

gauss.cs.ucsb.edu/~aydin/CombBLAS
[Azad, Buluc, G, Lugowski, …]

46

Sparse matrix-sparse
matrix multiplication

*

Sparse matrix-sparse
vector multiplication

*

.*

Sparse array primitives for graphs

Element-wise operations Sparse matrix indexing

Matrices over various semirings: (+, ×), (and, or), (min, +), …

47

Examples of semirings in graph algorithms

“values”: edge/vertex attributes,
“add”: vertex data aggregation,
“multiply”: edge data processing

General schema for user-specified
computation at vertices and edges

Real field: (R, +, *) Numerical linear algebra

Boolean algebra: ({0 1}, |, &) Graph traversal

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes
to form quotient graph

48

Graph algorithms in the language of linear algebra

• Kepner et al. study [2006]:
fundamental graph algorithms
including min spanning tree,
shortest paths, independent
set, max flow, clustering, …

• SSCA#2 / centrality [2008]

• Basic breadth-first search /
Graph500 [2010]

• Combinatorial BLAS [2010]
[2011]

49

History: D4M and Graphulo [Kepner et al., MIT & UW 2011 - 2015]

Linear algebra on associative
arrays for heterogeneous

distributed databases & graphs

50

History: Jon Berry challenge problems [2013]

• Clustering coefficient (triangle counting)

• Connected components (bully algorithm)

• Maximum independent set (NP-hard)

• Maximal independent set (Luby algorithm)

• Single-source shortest paths

• Special betweenness (for subgraph isomorphism)

51

Counting triangles (clustering coefficient)

A

5

6

3

1 2

4

Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 * # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

52

A

5

6

3

1 2

4

Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 * # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

“Cohen’s” algorithm to count triangles:

- Count triangles by lowest-degree vertex.

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo

hi hi
lo

hihi
lo

Counting triangles (clustering coefficient)

53

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)

L � U = B (wedge, low hinge)

A � B = C (closed wedge)

sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Counting triangles (clustering coefficient)

54

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)

L � U = B (wedge, low hinge)

A � B = C (closed wedge)

sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Counting triangles (clustering coefficient)

Spoiler: (L � L) ^ L works better in practice [Wolf et al. 2017]

55

History: The Graph BLAS Forum

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

http://graphblas.org

• Manifesto,
HPEC 2013:

• Foundations,
HPEC 2016:

56

In the year 2018

The Present

57

The Present GABB 2018 Talks

58

In the years 2019 —

The Future

59

• More basic capabilities

– Streaming and dynamic-graph algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

What do we hope for in the future?

60

In sparse Gaussian elimination, for nonsymmetric A, one can find . . .
– column nested dissection or min degree permutation

– column elimination tree T(ATA)

– row and column counts for G+(ATA)

– supernodes of G+(ATA)

– nonzero structure of G+(ATA)

. . . efficiently, without ever forming ATA explicitly.

• How generally can we do graph algorithms in linear

algebra without storing intermediate results?

• Can we do fine-grained scheduling of vertex and edge

operations to break out of bulk synchronous execution?

• Can we reason directly about products of sparse

matrices?

Question: Not materializing big matrix products

61

Storing A, operating implicitly on ATA

• CombBLAS represents graphs as adjacency matrices.

• D4M represents graphs as incidence matrices;
matrix A represents G(ATA):

column = vertex

row = hyperedge

A

62

Storing A, operating implicitly on ATA

• Many other cases:

– Optimization: KKT systems, interior point methods.

– Automatic differentiation: distance-2 coloring.

– Linear equations: QR factorization, structure prediction
for LU factorization with partial pivoting.

• Question: What can you do fast on G(ATA) just from G(A)?

63

Statistics for ATA itself are harder!

• nnz(ATA) seems to be as hard as computing ATA.

– but randomized estimate is possible [Cohen 1998]

• Sampling algorithms are possible too, e.g. diamond
sampling for k largest elements of ATA (or B*C in general)
[Ballard/Kolda/Pinar/Seshadri 2015]

Ballard et al. ICDM 2015

64

• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

What do we hope for in the future?

65

Laplacian matrix of a graph

• Graph Laplacian: Symmetric, positive semidefinite, weighted.

• Laplacian paradigm: Use Ax = b as a subroutine in graph algorithms
[Kelner, Teng, many others]

• Laplacian eigenvectors for partitioning, embedding, and clustering
[Fiedler, Pothen/Simon, Spielman/Teng, many others]

• Interesting new ideas coming from theoretical computer science.

66

• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

What do we hope for in the future?

67

• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

• More directions

– Integration with numerical matrix libraries

– Statistical perspective: random objects, stochastic graphs, etc.

– Deep neural networks (more)

– Signal processing on graphs

What do we hope for in the future?

68

• More basic capabilities

– Streaming and dynamic algorithms

– “Priority queue” algorithms: strong components, top k vertices, etc.

– Not materializing intermediate results (eg, incidence matrix methods)

– Laplacian paradigm for graph algorithms

• More directions

– Integration with numerical matrix libraries

– Statistical perspective: random objects, stochastic graphs, etc.

– Deep neural networks (more)

– Signal processing on graphs

• More uptake

– By hardware vendors

– By software vendors

What do we hope for in the future?

69

Summary: Past 60 Years

As the “middleware”
of scientific computing,

linear algebra has given us:

• Mathematical tools

• High-level primitives

• High-quality software libraries

• High-performance kernels
for computer architectures

• Interactive environmentsComputers

Continuous
Physical Modeling

Linear Algebra

70

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Today

71

Computers

Continuous
Physical Modeling

Linear Algebra & Graph Theory

Discrete
Structure Analysis

Computers

Today

72

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Tomorrow

Extracting Sense
from Data

Mae Learning?

Computers

73

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Tomorrow

Statistics ?

Computers

Extracting Sense
from Data

74

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Tomorrow

Deep Learning ?

Computers

Extracting Sense
from Data

75

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Tomorrow

Neuromorphics ?

Computers

Extracting Sense
from Data

76

Computers

Continuous
Physical Modeling

Linear Algebra

Discrete
Structure Analysis

Graph Theory

Computers

Tomorrow

xxaine???earngx

Computers

Extracting Sense
from Data

77

Computers

Continuous
Physical Modeling

Linear Algebra & Graph Theory & ???

Discrete
Structure Analysis

Computers

Tomorrow

Computers

Extracting Sense
from Data

78

Thanks …

Ariful Azad, David Bader, Jon Berry, Eric Boman, Aydin
Buluc, Ben Chang, John Conroy, Tim Davis, Kevin

Deweese, Erika Duriakova, Assefaw Gebremedhin, Shoaib
Kamil, Jeremy Kepner, Tammy Kolda, Tristan Konolige,

Manoj Kumar, Adam Lugowski, Tim Mattson, Scott
McMillan, Henning Meyerhenke, Jose Moreira, Esmond

Ng, Lenny Oliker, Weimin Ouyang, Ali Pinar, Alex
Pothen, Carey Priebe, Steve Reinhardt, Lijie Ren, Eric

Robinson, Viral Shah, Veronika Strnadova-Neeley, Blair
Sullivan, Shang-Hua Teng, Yun Teng, Sam Williams

… and Intel, Microsoft, NSF, DOE Office of Science

