
1

GraphBLAS:
Graph Algorithms in the Language of Linear Algebra

John R. Gilbert
University of California, Santa Barbara

June 27, 2019

Support: Intel, Microsoft, DOE Office of Science, NSF

2

Multiple-source breadth-first search

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient

• Three possible levels of parallelism: searches, vertices, edges

BAT AT B

à

1 2

3

4 7

6

5

1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =

Coarsening via sparse matrix-matrix products

2

1
2 1

A. Buluç, JG. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM J. Scientific Computing, 2012.

4

A

5

6

3

1 2

4

Clustering coefficient:

• Pr (wedge i-j-k makes a triangle with edge i-k)

• 3 * # triangles / # wedges

• 3 * 4 / 19 = 0.63 in example

• may want to compute for each vertex j

Low-hinge algorithm to count triangles:

- Count triangles by lowest-degree vertex.

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo

hi hi
lo

hihi
lo

Counting triangles (clustering coefficient)

J. Cohen. Graph twiddling in a MapReduce world. IEEE CS&E, 2009.

5

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)

L � U = B (wedge, low hinge)

A � B = C (closed wedge)

sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Counting triangles (clustering coefficient)

A. Azad, A. Buluc, JG. Parallel triangle counting and
enumeration using matrix algebra. GABB, 2015.

6

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)

L � U = B (wedge, low hinge)

A � B = C (closed wedge)

sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Counting triangles (clustering coefficient)

Spoiler: (L � L) ^ L works better in practice [Wolf et al. 2017]

7

Graph algorithms in the language of linear algebra

• Kepner et al. study [2006]:
fundamental graph algorithms
including min spanning tree,
shortest paths, independent
set, max flow, clustering, …

• SSCA#2 / centrality [2008]

• Basic breadth-first search /
Graph500 [2010]

• Combinatorial BLAS [2010]
[2011]

But why do it this way in practice?

Picking the right level of abstraction:
High enough to optimize,

Low enough to be broadly useful

Vertex/edge graph
computations

Graphs in the language of
linear algebra

Unpredictable, data-driven
communication patterns

Fixed communication patterns

Irregular data accesses,
with poor locality

Matrix block operations exploit
memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism, limited
by bandwidth not latency

9

The (original) BLAS: Separation of concerns

• Experts in mapping algorithms to hardware tuned BLAS for specific platforms.

• Experts in numerical linear algebra built software on top of the BLAS to get
high performance “for free.”

Today every computer, phone, etc. comes with /usr/lib/libblas

The Basic Linear Algebra Subroutines
had a revolutionary impact

on computational linear algebra.

BLAS 1 vector ops Lawson, Hanson, Kincaid,
Krogh, 1979

LINPACK

BLAS 2 matrix-vector ops Dongarra, Du Croz,
Hammarling, Hanson, 1988

LINPACK on
vector machines

BLAS 3 matrix-matrix ops Dongarra, Du Croz, Duff,
Hammarling, 1990

LAPACK on
cache based machines

• Aimed at graph algorithm designers/programmers who are not
expert in mapping algorithms to parallel hardware.

• Flexible templated C++ interface.
• Scalable performance from laptop to 100,000-processor HPC.

• Open source software: people.eecs.berkeley.edu/~aydin/CombBLAS/html/

• Version 1.6.2 released April 2018.

An extensible distributed-memory library offering a
small but powerful set of linear algebraic operations

specifically targeting graph analytics.

Combinatorial BLAS (2010)
[Azad, Buluc, JG, Lugowski, …]

A. Buluç, JG. The Combinatorial BLAS: Design, implementation, and applications. Int. J. HPC Appl. 2011.

https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/

11

Launching the GraphBLAS effort

• Manifesto, HPEC 2013:

“ It is our view that the state of the art in constructing a large
collection of graph algorithms in terms of linear algebraic operations is
mature enough to support the emergence of a standard set of primitive
building blocks. This paper is a position paper defining the problem and

announcing our intention to launch an open effort to define this standard.”
• GraphBLAS Forum: www.graphblas.org
• Workshops at HPEC, IPDPS, SC
• Working group telecons and meetings

http://graphblas.org/

12

The GraphBLAS are born

• First the math, HPEC 2016:
www.graphblas.org

• Then the language bindings, GABB 2017:

GraphBLAS: Building blocks for graphs as linear algebra

13

• Operators: ⊕, ⊗ : semiring “add” and “multiply”, ⊙ : “accumulate”
• Objects: matrix, vector, monoid, semiring, ...

14

Examples of semirings in graph algorithms

Real field: (ℝ, +, ×) Numerical linear algebra

Boolean algebra: ({0 1}, or, and) Connectivity & traversal

Tropical semiring: (ℝ ∪ {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes
to form quotient graph

(ℝ, max, +) Graph matching &
network alignment

(ℝ, max, ×) Maximal independent set

“values”: edge/vertex attributes,
“add”: vertex data aggregation,
“multiply”: edge data processing

General schema for user-specified
computation at vertices and edges

• #include <GraphBLAS.h>

• Example: C(¬M) ⊕= AT ⊕.⊗ BT

• Opaque objects, e.g.:

A. Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. The GraphBLAS C API specification, version 1.2.0.

GrB_info GrB_mxm(GrB_Matrix *C,

const GrB_Matrix mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const GrB_Descriptor desc]);

GraphBLAS C API

GrB_Type à Scalar type for semiring

GrB_BinaryOp à Binary operation

GrB_Semiring à Packages components of a semiring

GrB_Vector à 1D (implicitly sparse) array

GrB_Matrix à 2D sparse array, with row indices, column indices, and values

Notes on the C API

• Objects are opaque
• Only GraphBLAS methods can manipulate them

• Data (matrices and vectors) are separate from operations
• Only explicitly defined elements of a sparse matrix or vector have values

• The “structural zeros” are undefined; semantics are defined so that the
“implicit zero” value does not matter (most of the time)

• Blocking and non-blocking modes
• Blocking: methods must complete before returning

• Non-blocking: methods may return early

• Facilitates operation fusion and efficient add/delete ops

• Most operations allow a “mask” parameter
• Specifies that only a subset of output values are required

• Avoids computation and materialization of intermediate objects

• Turns out to be surprisingly useful

16

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first search in
the language of matrices

0

levels:

1

7

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

levels:

Particular semiring operations
Multiply: logical and

Add: logical or

1

1

01

7 (old frontier) (new frontier)

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

Could compute parents
as well as levels (not shown)

levels:

1

1

2

2

2

01

7 (old frontier) (new frontier)

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

levels:

1

1

2

2

2

3

01

7 (old frontier) (new frontier)

Masking omits
already-reached vertices

from result

XAT

1

7

71
from

to

ATX

à

1
2

3

4 7

6

5

1

1levels:
2

2

2

3

01

7 (old frontier) (new frontier)

BFS in GraphBLAS with masks

22

BFS in GraphBLAS with masks: C code

23

T. Davis. Algorithm 9xx:
SuiteSparse:GraphBLAS. ACM
Trans. Math. Software, to appear.

BFS in GraphBLAS with masks: Python & C++

24
T. Mattson, T. Davis, M. Kumar, A. Buluc¸ S. McMillan, J. Moreira, C. Yang.

LAGraph: A community effort to collect graph algorithms built on top of the GraphBLAS. IPDPS 2019.

SuiteSparse:GraphBLAS

• From Tim Davis (Texas A&M)

• First conforming implementation of C API
• Features:
• 960 semirings built in; also user-defined semirings
• Fast incremental updates using non-blocking mode

and “zombies”
• Several sparse data structures & polyalgorithms under the hood

• Currently single-threaded
• OpenMP near release, CUDA planned, MPI contemplated

• Performance on graph benchmarks (e.g. triangles, k-truss)
comparable to highly-tuned custom C code

• Included in Debian and Ubuntu Linux distributions

• Used as computational engine in commercial RedisGraph product
25T. Davis. Algorithm 9xx: SuiteSparse:GraphBLAS. ACM Trans. Math. Software, to appear.

Other GraphBLAS implementations
• IBM GraphBLAS (IBM)
• Second fully conforming release of the GraphBLAS C API
• Descendant of IBM Graph Programming Interface

• GraphBLAS Template Library (SEI/CMU, PNNL, Indiana U)
• C++ implementation of GraphBLAS math spec
• With a C interface conforming to the GraphBLAS C API

• GraphBLAST (UC Davis)
• GraphBLAS for GPU’s, from the Gunrock graph library group

• PyGB (UW, PNNL, SEI/CMU)
• Python DSL using the C++ GraphBLAS Template Library

Friends of GraphBLAS: Linear-algebra-based graph libraries
• Combinatorial BLAS (LBNL, UCSB): C++ with MPI and OpenMP
• Graphulo (MIT): Java/Accumulo
• D4M (MIT): Matlab/Octave
• Graph Programming Interface (IBM): C
• GraphPad (Intel): C++, OpenMP, MPI 26

Industrial impact: RedisGraph graph database

• From Redis Labs, enterprise /
cloud database vendor.

• Emphasis on:
• Query speed for large graphs
• Mass insertion efficiency
• Scaling Redis beyond single-

node memory

• SuiteSparse:GraphBLAS
under the hood.

• Benchmarks: Query time
dramatically better than
competing graph databases.

27P. Cailliau, T. Davis, V. Gadepally, J. Kepner, R. Lipman, J. Lovitz, K. Ouaknine.
RedisGraph GraphBLAS enabled database. GrAPL 2019.

Sparse x
Dense
Matrix
(SpDM)

Sparse x
Sparse
Matrix

(SpGEMM)

Sparse Matrix-
Multiple

Dense Vectors
(SpMM)

Sparse
Matrix-

Dense Vector
(SpMV)

Sparse
Matrix-
Sparse
Vector

(SpMSpV)

Graph/Sparse/Dense BLAS functions (increasing arithmetic intensity)

Partial
Correlation
Estimation

(CONCORD)

Clustering
(e.g., MCL,

Spectral
Clustering)

Logistic
Regression,

Support Vector
Machines

Dimensionality
Reduction

(NMF, CX, PCA)

Higher-level machine learning tasks

Deep Learning
(Neural Nets)

Dense
Matrix-
Vector
(BLAS2)

Dense
Matrix-
Matrix
(BLAS3)

Machine Learning relies a lot on Linear Algebra too

Sparse deep neural networks with GraphBLAS

• From MIT-LL & IBM:
• DNN inference oscillates between

two semirings: (+, ×) and (max, +)
• Sparsity is at the frontier of DNN research

29

Kepner, Kumar, Moreira,
Pattnaik, Serrano, Tufo.
Enabling massive deep

neural networks with the
GraphBLAS, HPEC 2017.

•MIT/IEEE/Amazon
Graph Challenge:
Enable Large Sparse
Deep Neural Networks

• Entries not limited to
GraphBLAS solutions!

• Details at
graphchallenge.org

Markov clustering algorithm

30

Iteration 1 Iteration 2 Iteration 3Initial network

Popular and successful algorithm for discovering clusters in
protein interaction and protein similarity networks

At each iteration:
Step 1 (Expansion): Square the matrix
Step 2 (Pruning): Remove small entries and dense columns
Step 3 (Inflation): Take powers entry-wise

Naïve implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-k selection and column-wise pruning

HipMCL: High-performance Markov clustering

31

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç. HipMCL: A high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Research, 2018

x =

!"## !"$#

!### !#$#

!$## !$$#

!""#

!#"#

!$"#

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process Gridp × p

• MCL is both computationally expensive and memory hungry,
limiting the sizes of networks that can be clustered.

• HipMCL overcomes these limitations via sparse parallel algorithms,
with a combined expansion and pruning step.

• Up to 1000X times faster than original MCL with same accuracy.

LACC: Parallel Connected Components

Scientific Achievement
• LACC: Linear-Algebraic Connected Components

• New distributed-memory parallel connected

component discovery algorithm using

GraphBLAS primitives

Significance and Impact
• Finding connected components is a fundamental

primitive for computing on graphs.

• More than 2x faster connected component

identification across different scales.

• Orders of magnitude faster at large concurrencies.

Research Details
§ Based on Awerbuch-Shiloach PRAM algorithm

§ Used with the Exascale Application HipMCL

§ Proper sparsity exploitation is the key to high

performance

A. Azad and A. Buluc. LACC: A Linear-Algebraic Algorithm for Finding Connected Components in Distributed Memory. IPDPS, 2019

4096 16384 65536 262144
Number of Cores

4

16

64

256

1024

4096

16384

Ti
m

e
(s

ec
)

Metaclust50 (LACC)
iso_m100 (LACC)
Metaclust50 (ParConnect)
iso_m100 (ParConnect)

1

4

16

64

256

1024

4 16 64 256

Ti
m

e
(s

)
Number of KNL nodes (68 cores per node)

V=3M E=360M CC=160K

LACC Parconnect

Eukarya Proteins

2.3x
Eukarya

Linear-algebra-based Kokkos graph infrastructure

• From Sandia Labs & Georgia Tech
• Sparse matrix-matrix multiplication (SpGEMM) kernel in

Kokkos Kernels shared memory library
• Performance portable across architectures and parallel

language infrastructures
• Benchmark: Counting triangles / clustering coefficient
• 2-time champion (2017, 2018) of IEEE HPEC Graph Challenge

33
A. Yasary, S.Rajamanickam, M. Wolf, J. Berry, U. Catalyurek.

Fast triangle counting using Cilk. IEEE HPEC, 2018.

Push-pull, or direction optimization in search
[C. Yang PhD thesis, UC Davis]

Beamer’s direction-optimizing BFS
- Switch from top-down/push

to bottom-up/pull
- When the majority of the

vertices have been reached.
- For 5+ years, thought to be

impossible (efficiently) in the
language of linear algebra

Top-down BFS is worst-case optimal,
but pessimistic for low-diameter graphs
because when the frontier is at its peak,
almost all edge examinations fail to
claim a child.

(Push) (Pull)

• Push vs. pull corresponds
to matvec multiplication
by columns vs. rows.
• Row matvec is better for

dense vector, column is
better for sparse.
• Key insight: Masking

changes the complexity!

• Three key optimizations:
• Choose push or pull
• Efficient use of masking
• Early exit from (∧, ∨)

vector dot product

Efficient push-pull in GraphBLAS
[C. Yang PhD thesis, UC Davis]

C. Yang, A. Buluc, J. Owens. Implementing push-pull efficiently in GraphBLAS. ICPP 2018

Impact: Up to 100 MTEPS on
1 Xeon 4-core CPU plus 1 Tesla GPU.

36

Matrix-based graph processor design at MIT-LL
[Song, Kepner, et al. 2010]

International impact of GraphBLAS

•KAUST, Saudi Arabia [Jamour et al., EuroSys 2019] :
•Matrix algebra for RDF triple stores
• Demonstrated scaling to 512B triples on 2048 nodes

•CMU-Qatar / Qatar U [Ahmad et al., VLDB 2018] :
• Automatic translation of vertex-edge programs to matrix ops
• Demonstrated high performance on clouds and clusters

•Budapest U [Szarnyas, FOSDEM 2019] :
•Multiplex graph metrics with GraphBLAS and other matrix libs
• Interesting connections to complexity theory for database joins

•Huawei :
• GraphBLAS in the cloud and on the mobile phone

37

What’s next for the GraphBLAS?

38

Motivation:
Separation of

Concerns

[GrAPL 2019]

https://github.com/GraphBLAS/LAGraph

https://github.com/GraphBLAS/LAGraph

Algorithms in LAGraph today

39

File Name Algorithm
LACC_GraphBLAS Connected components
LAGraph_BF_basic Bellman-Ford single source shortest paths
LAGraph_BF_full Bellman-Ford single source shortest paths, with tree
LAGraph_allktruss All k-trusses of a graph
LAGraph_bfs_pushpull Direction optimizing breadth-first search
LAGraph_bfs_simple Conventional breadth-first search
LAGraph_dnn.c Sparse deep neural network
LAGraph_ktruss k-truss of a graph
LAGraph_lcc Local clustering coefficient
LAGraph_pagerank PageRank
LAGraph_tricount Count triangles in a graph

LAGraph is open source, and solicits:
• More algorithms and implementations
• Use cases and requests for algorithms!

40

Directions & challenges: LAGraph

• Additional practical use cases and uptake!
• Add algorithms with known linear algebraic formulations

- Centrality, clustering, subgraph counting, ...
• Investigate important graph algorithms that haven’t yet

been implemented in linear algebraic form
- A* search, branch & bound, supervised learning, ...

• Integration with numerical linear algebra libraries
- Spectral methods, Laplacian paradigm for graph
algorithms, linear equation solvers, optimization

• Statistical perspective: distributions, stochastic graphs, ...
• Moving data in and out of opaque GraphBLAS objects

- Data science workflows are often not opaque data: pandas
frames, numpy arrays, CSR matrices

41

Directions & challenges: GraphBLAS

• Moving data in and out of GraphBLAS
- Probably want import/export functions within GraphBLAS

(SuiteSparse has prototypes of this)
- Also want finer-grained operations, e.g. iterators over edges,

adjacencies, etc.
• Exploit and extend nonblocking mode for method fusion,

matrix triple product optimization, etc.
• Robust multithreading support

- Current spec hides threads inside individual GraphBlas methods
• Robust support for distributed memory

- MPI, PGAS, other models?
• Finalizing more API specs

- Extensions to C API spec for iterators, distributed execution, ...
- In progress: Language bindings for Python, C++, ...

42

Thanks …

Ariful Azad, David Bader, Jon Berry, Aydin
Buluc, Tim Davis, Kevin Deweese, Joe Eaton,

Jeremy Kepner, Manoj Kumar, Adam Lugowski,
Andrew Lumsdaine, Tim Mattson, Scott

McMillan, Henning Meyerhenke, Jose Moreira,
Veronika Neeley, John Owens, Steve Reinhardt,
Viral Shah, Bill Song, Michael Wolf, Carl Yang

… and Intel, Microsoft, NSF, DOE Office of Science

