Sparse Matrices for High-Performance
Graph Analytics

John R. Gilbert

University of California, Santa Barbara

Chesapeake Large-Scale Analytics Conference
October 17, 2013 E—

Support: Intel, Microsoft, DOE Office of Science, NSF

Aydin Buluc (LBL), Kevin Deweese (UCSB),
Erika Duriakova (Dublin), Armando Fox (UCB),
Shoaib Kamil (MIT), Jeremy Kepner (MIT),
Adam Lugowski (UCSB), Tim Mattson (Intel),
Lenny Oliker (LBL), Carey Priebe (JHU),
Steve Reinhardt (YarcData), Lijie Ren (Google),
Eric Robinson (Lincoln), Viral Shah (UIDAI),
Veronika Strnadova (UCSB), Yun Teng (UCSB),
Joshua Vogelstein (Duke), Drew Waranis (UCSB),
Sam Williams (LBL) UCSR

Motivation

Sparse matrices for graph algorithms
CombBLAS: sparse arrays and graphs on parallel machines
KDT: attributed semantic graphs in a high-level language

Standards for graph algorithm primitives

A few biological graph analysis problems

Connective abnormalities in schizophrenia [van den Heuvel et al.]
— Problem: understand disease from anatomical brain imaging

— Tools: betweenness centrality, shortest path length

— Results: global statistics on connection graph correlate w/ diagnosis

Genomics for biofuels [Strnadova et al.]

— Problem: scale to millions of markers times thousands of individuals
— Tools: min spanning tree, customized clustering
— Results: using much more data leads to much better genomic maps

« Alignment and matching of brain scans [Vogelstein et al.]
— Problem: match corresponding functional regions across individuals
— Tools: graph partitioning, clustering, and more. . .
— Results: in progress

UCSB

The middleware of scientific computing

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

Top 500 List (June 2013)

Top500 Benchmark:

Solve a large system
of linear equations
by Gaussian elimination

Rank

]

Site

National University of Defense
Technology
China

DOE/SC/Oak Ridge National Laboratory

United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National Laboratory

United States

Texas Advanced Computing Center/Univ.

of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

DOE/NNSA/LLNL
United States

Leibniz Rechenzentrum
Germany

National Supercomputing Center in
Tianjin

China

Total Exploration Production
France

System

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,
Cray Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60
GHz, Custom
1BM

K computer, SPARC64 Vllifx 2.0GHz, Tofu
interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz,
Custom
1BM

Stampede - PowerEdge C8220, Xeon ES-2680 8C
2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q, Power BQC 16C
1.600GHz, Custom Interconnect
1BM

Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz,
Custom Interconnect
IBM

SuperMUC - iDataPlex DX360M4, Xeon E5-2680
8C 2.70GHz, Infiniband FDR
1BM

Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93
GHz, NVIDIA 2050
NUDT

Pangea - SGI ICE X, Xeon E5-2670 8C 2.600GHz,
Infiniband FDR
SGI

Cores

3,120,000 33,862.7

560,640

1,572,864 17,173.2

705,024

786,432

462,462

458,752

393,216

147,456

186,368

110,400

SUPERCOMPUTER SITES

Rmax Rpeak Power
(TFlop/s) (TFlopls) (kW)
54,9024 17,808
17,580.0 27,1125 8,208
20,132.7 7,890
10,5100 11,2804 12,659.9
8,586.6 10,066.3 3,945
5,168.1 8,520.1 4,510
5,008.9 5,872.0 2,301
4,293.3 5,033.2 1,972
2,897.0 3,185.1 3,422.7
2,566.0 4,701.0 4,040
2,098.1 2,296.3 2,118

UCSB

B &5 _aB

Graph 500 List (June 2013)

Graph500
Benchmark:

Breadth-first search
In a large
power-law graph

k
Machine

DOE/NNSA/LLNL
Sequoia (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

DOE/SC/Argonne
National Laboratory
Mira (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

JUQUEEN (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

K computer (Fujitsu
Custom
supercomputer)

Fermi (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

Tianhe-2
(MilkyWay-2)
(National University
of Defense
Technology - MPP)

Turing (IBM -
BlueGene/Q, Power
BQC 16C 1.60GHz)

Blue Joule (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

DIRAC (IBM -
BlueGene/Q, Power
BQC 16C 1.60 GHz)

Installation Site

Lawrence Livermore
Nationzal Laboratory

Argonne National
Laboratory

Forschungszentrum
Juelich (FZJ)

RIKEN Advanced
Institute for

Computational Science

(AICS)

CINECA

Changsha, China

CNRS/IDRIS-GENCI

Science and
Technology Facilities
Council - Daresbury
Laboratory

University of
Edinburgh

65536

49152

16384

65536

8192

8192

4096

4096

4096

1048576

786432

262144

524288

131072

196608

65536

65536

65536

40

40

38

40

37

36

36

36

36

15363

14328

5848

5524.12

2567

2061.48

1427

1427

1427

Floating-Point vs. Graphs, June 2013

33.8 Petaflops 15.3 Terateps

P[A 3¢

Floating-Point vs. Graphs, June 2013

33.8 Petaflops 15.3 Terateps

P[A 3¢

Jun 2013: 33.8 Peta / 15.3 Tera ~ 2,200
Nov 2010: 2.5 Peta / 6.6 Giga ~ 380,000

The challenge of the software stack

* By ana_logy to Basic Linear Algebra Subroutines (BLAS):
numerical Ops/Sec vs. Matrix Size
scientific T T
computing. . . Ic = A*B
gm- |y = A*x
= xT
« What should the so/ I y
combinatorial %/ T T
BLAS IOOk Iike? Order of vectorsmatrices

10 B o5 _aB

Sparse matrices for graph algorithms

1

Multiple-source breadth-first search

12

Multiple-source breadth-first search

® o o
o o
o ® O o o
o o o 9 o
[] o
o o o
[]
Al X ATX

. Sparse array representation => space efficient

. Sparse matrix-matrix multiplication => work efficient

. Three possible levels of parallelism: searches, vertices, edges

13

Graph contraction via

sparse triple product

Contract @
i > H
“ A3
& (r)—»)
1 2 3 4 5 6 1 2 3 4 5 6
111 1 1 ° ° 1 ®
2 1 1 X 2@ ° X |1 = | @ ®
3 1 1 3] @ o0 1 ot
4 ° ° 1
5@ @ 1
6 ° 1

Subgraph extraction via

sparse triple product

Extract
| >
5
12 3 4 5 6 1 2 3 4 5 6
1 1 1 ® ° ®
2 1 X 2@ ° X = |® ®
3 1 3] @ e e 1 o
4 ° ° 1
5@ °
6 ° 1

Betweenness centrality [Robinson 2008]

b = BETWEENNESSCENTRALITY(G = A : BNv*Nv)

1 b=0
9 . , N -
2 for 1 ior S Variables: Storage:
4 d=0 A: sparse adjacency matrix B™N O(M+N)
5 S =0 f: sparse fringe vector Z5™ O(N)
6 p=0.p, = p : shortest path vector ZN O(N)
4 f=a,, S : sparse depth matrix BS™NN O(N)
g Wh"gi 70 u: centrality update vector RN O(N)
10 d=d+1
11 p=p+f
12 sg. =1
13 f =fA < —p
14 while d > 2
15 do
16 w=s4.%x(1l4u)+p
17 w=Aw
18 W=W X84 1:XP Storage: O(M+N)
19 u=u+w Time: O(MN + N?)
20 d = (l —1
21 b=b+u

Graph algorithms in the language of linear algebra

Kepner et al. study [2006]:
fundamental graph algorithms
inCIUding min Spanning tree’ Jeremy Ke ii]rt:?mohn Gilbert
shortest paths, independent ' \
set, max flow, clustering, ...

° =

° SSCA#2 / Centra“ty [2008] Graph Aléorithms in the

Language of Linear Algebra

. Basic breadth-first search /
Graph500 [2010] H H

. Beamer et al. [2013] direction-

optimizing breadth-first search,
using CombBLAS

) UCSB

Sparse array-based primitives

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® O ® o ® o

® ® ®

XQ o ® o .xQ
® ©o o ®
o o

Element-wise operations

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices over various semirings: (+.x), (min.+), (or.and), ...

UCsSB

18

The case for sparse matrix graph primitives

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph
computations

Data driven,
unpredictable communication.

Irregular and unstructured,
poor locality of reference

Fine grained data accesses,
dominated by latency

The case for sparse matrix graph primitives

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph Graphs in the language of

computations linear algebra

Data driven, Fixed communication patterns
unpredictable communication.

Irregular and unstructured, Operations on matrix blocks exploit
poor locality of reference memory hierarchy
Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

Matrices over semirings

E.g. matrix multiplication C = AB (or matrix/vector):
Ci,j - Ai,1XB1,j + Ai,ZXBZ,j + e + Ai,nXBn,j

 Replace scalar operations x and + by

® : associative, distributes over @

@ : associative, commutative
o Then Ci,j = Ai,1®B1,j @ Ai,2®Bz,j @ =" @ Ai,n®Bn,j
« Examples: x.+; and.or; +.min; ...

« Same data reference pattern and control flow

UCSB

21 ”

Examples of semirings in graph algorithms

22

(R, +, X) Standard numerical linear algebra
Real Field
({0,1}, |, &) Graph traversal

Boolean Semiring

(R U {00}, min, +)
Tropical Semiring

Shortest paths

(R U {0}, min, x)

Select subgraph, or contract nodes
to form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

UCSB

« CombBLAS: sparse arrays and graphs on parallel machines

23

24

Combinatorial BLAS: Functions

Function Applies to Parameters Returns Matlab Phrasing
Sparse Matrix A B: sparse matrices
SPGEMM (as friend) trA: transpose A if true Sparse Matrix C=A=xB
trB: transpose B if true
SPMV Sparse Matrix A: sparse matrices
(as friend) x: sparse or dense vector(s) Sparse or Dense y=Axx
trA: transpose A if true Vector(s)
Sparse Matrices A, B: sparse matrices
SPEWIsEX (as friend) notA: negate A if true Sparse Matrix C=A=xB
notB: negate B if true
Any Matrix dim: dimension to reduce
Rebuce (as method) binop: reduction operator Dense Vector sum(A)
Sparse Matrix p: row indices vector
SPREF (as method) q column indices vector Sparse Matrix B=A(p, q)
Sparse Matrix p: row indices vector
SPAsGN (as method) q: column indices vector none A(p,q) =B
B: matrix to assign
Any Matrix rhs: any object Check guiding
ScaLe (as method) (except a sparse matrix) none principles 3 and 4
Any Vector rhs: any vector none none
ScALE (as method)
Any Object unop: unary operator
APPLY (as method) (applied to non-zeros) None

- UCSB

Combinatorial BLAS: Distributed-memory reference

implementation

Combinatorial BLAS
functions and operators

_— S

DistMat @ CommGrid ® FullyDistVec
... HAS A
/A\ /‘{lymorphism
DenseDistMat SpDistMat &—— SpMat SpDistVec DenseDistVec

Enforces interface only

DCSC CSC Triples CSB

2D layout for sparse matrices & vectors

l X1
n/pr Al,l Al’z 'A1’3 Matrlx/vector dlStFIbUl’IOhS,
........................... l . Interleaved on eaCh Other.
T 5
Ay, Az l A 22 De au.td|str.|but|on n
X Combinatorial BLAS.
' X31
Ao | Ae A | v Scalable with increasing
I X, number of processes

- 2D matrix layout wins over 1D with large core counts
and with limited bandwidth/compute
- 2D vector layout sometimes important for load balance

Parallel sparse matrix-matrix

multiplication algorithm

C; += HyperSparseGEMM(Arew, Breev)
[

\

4-?-5-,5---> \
. IOOK . 5K$ 4;? \\\
EZSK \\
N
| -
N\
\ —
X g 100k = Vo1
~ / \
Z NN (TIC. [
— / ‘\\ l:j ll’
Mo ’
5K A B 7 C

2D algorithm: Sparse SUMMA (based on dense SUMMA)
General implementation that handles rectangular matrices

1D vs. 2D scaling for sparse

matrix-matrix multiplication

35 T T T
SpSUMMA ——

X
EpetraExt ----%--- 66 1

30

25

20

Seconds
Seconds

15

10

121 150 180 256
Number of Cores

(a) R-MAT x R-MAT product (scale 21).

70

60

50

40

30

20

10

'SpSUMMA —+— 65X .4
EpetraExt --%-- T
323)((,,,,
x“ ll'
“3.9X-- ¥
A
49 16 36 64 121

Number of Cores

23 with the restriction operator of order 8.

« 1-D data layout

(b) Multiplication of an R-MAT matrix of scale

Scaling to more processors...

Almost linear scaling until bandwidth costs starts to dominate

Seconds

0.5

0.25

0.125

"" | Scale-21 ——t—
Compute bound ====s====
Bandwidth-bound o

Slope = -0.854

,,, S
.

,,

Number of Cores

Scaling proportional
to \p afterwards

T;'omp = O(I’l)

30

Combinatorial BLAS users (Sep 2013)

. IBM (T.J. Watson, Zurich, & Tokyo)
. Microsoft

. Intel

. Cray

. Stanford

. UC Berkeley

. Carnegie-Mellon
. Georgia Tech

. Ohio State

. Columbia

. U Minnesota

King Fahd U

Tokyo Inst of Technology
Chinese Academy of
Sciences

U Ghent (Belgium)

Bilkent U (Turkey)

U Canterbury (New Zealand)
Purdue

Indiana U

Mississippi State

UC Merced

KDT: attributed semantic graphs in a high-level language

31

Parallel graph analysis software

Discrete
structure analysis

l

Graph theory

l

Parallel graph analysis software

Domain scientists Discrete

Knowledge Discovery Toolbox (KDT) --------------------------------------

structure analysis

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

Graph algorithm
developers 1
Graph theory
HPC scientists 1
and engineers

I

Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

 KDT is higher level (graph abstractions)
 Combinatorial BLAS is for performance

Domain expert vs. graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree ())
— vectors

Clustering / components
Centrality / authority:
betweenness centrality, PageRank

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Markov
Clustering

o
o)
s
4
(‘) To %4,
! ;
o ’ \ »o\oo °
.
o
o X—— ,Do
R 0
4
o]
L
o
Graph of
° Clusters
o—o

Largest
Component

Domain expert vs. graph expert

(Semantic) directed graphs ;‘igﬁ
— constructors, I/O G =
— basic graph metrics (e.g., degree L) e
— vectors

. 1
Clustering / components o
Centrality / authority: smal

vi

betweenness centrality, PageR

= bigG.connComp ()

tComp = comp.hist () .argmax()
bigG. subgraph (comp==giantComp)

ters = G.cluster (*Markov’)

Nedge = G.nedge(clusters)
1G = G.contract (clusters)

sualize

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Domain expert vs. graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree
— vectors

Clustering / components
Centrality / authority:

betweenness centrality, PageR

comp = bigG.connComp ()

giantComp = comp.hist () .argmax()

G = bigG.subgraph (comp==giantComp)
clusters = G.cluster (*Markov’)
clusNedge = G.nedge (clusters)
smallG = G.contract (clusters)

visualize

Hypergraphs and sparse matri
Graph primitives (e.g., bfsTree
SpMV / SpGEMM on semirings

[...]

L = G.toSpParMat ()

d = L.sum(kdt.SpParMat.Column)

L = -L

L.setDiag (d)

M = kdt.SpParMat.eye (G.nvert()) — mu*L

pos = kdt.ParVec.rand(G.nvert ())
for 1 in range (nsteps):
pos = M.SpMV (pos)

12 3 45 6 7

Discovery

N o A WN
[]
® 0 O

Toolbox

http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

* Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

e Easy-to-use Python interface

 Runson alaptop as well as a cluster with 10,000 processors

e Open source software (New BSD license)
* V0.3 release April 2013

—

e

A few KDT applications

Markov Clustering

A

$ i

&

image courtesy Stijn van Dongen

Markov Clustering (MCL) finds clusters by
postulating that a random walk that visits
a dense cluster will probably visit many of
its vertices before leaving.

We use a Markov chain for the random
walk. This process is reinforced by adding
an inflation step that uses the Hadamard
product and rescaling.

-

J

38

(—[Betweenness Centrality]—\

77
Rocchini

Betweenness Centrality says that a vertex
is important if it appears on many
shortest paths between other vertices.
An exact computation requires a BFS for
every vertex. A good approximation can
be achieved by sampling starting vertices.

\§

J

—

o
PageRank €

courtesy Felipe Micaroni Lalli

—

PageRank

PageRank says a
vertex is important
if other important
vertices link to it.

5

Each vertex (webpage) votes by splitting
its PageRank score evenly among its out
edges (links). This broadcast (an SpMV) is
followed by a normalization step
(ColWise). Repeat until convergence.

PageRank is the stationary distribution of a
Markov Chain that simulates a "random

J

_ surfer”.

(—[Belief Propagation]—\

P& ;0
QO AT
Sum-up:
p= Pn+ZkEN(i) Py,
1= 151_1(131'1/11@ + ZkeN(i) Priping), Vi
Update i’s messages to its neighbors
Py = *;'112]' (P = Py),
tij = (Pifts — Pjipegi) [Aij.
Gaussian belief propagation (GaBP) is an
iterative algorithm for solving the linear
system of equations Ax = b, where A is
symmetric positive definite.
GaBP assumes each variable follows a
normal distribution. It iteratively calculates
the precision P and mean value u of each

variable; the converged mean-value vector

_ approximates the actual solution.

Attributed semantic graphs and filters

Example:

Vertex types: Person, Phone,
Camera, Gene, Pathway

Edge types: PhoneCall, TextMessage,
Colocation, SequenceSimilarity

Edge attributes: Time, Duration

Calculate centrality just for emails
among engineers sent between given
start and end times

def onlyEngineers (self):
return self.position == Engineer

def timedEmail (self, sTime, eTime):

return ((self.type == email) and
(self.Time > sTime) and
(self.Time < eTime))

G.addVFilter (onlyEngineers)
G.addEFilter (timedEmail (start, end))

rank via centrality based on recent
email transactions among engineers

bc = G.rank (' approxBC’)

SEJITS for filter/semiring acceleration

Standard KDT

Filter (Py)

Semiring (Py)

Python | KDT Algorithm

!

C++ CombBLAS
Primitive

SEJITS for filter/semiring acceleration

Standard KDT KDT+SEJITS

[pr———— X

Filter (Py) I Filter (Py) :

| |

Semiring (Py) 1 | Semiring (Py) | !

Python | KDT Algorithm KDT Algorithm | (-7 I ——— !
l l SEJITS ITransIation

C++ CombBLAS CombBLAS [—— oo \

Primitive Primitive Filter (C++) | |

I

: Semiring (C++) :

N e e e e = —— -

Embedded DSL: Python for the whole application
* Introspect, translate Python to equivalent C++ code
e Call compiled/optimized C++ instead of Python

Filtered BFS with SEJITS

«O=KDT =i=SEJITS+KDT “***CombBLAS

64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50

Mean BFS time

i

025 I I T T 1
121 256 576 1024 2025

Number of MPI processes

Time (in seconds) for a single BFS iteration on scale 25 RMAT (33M vertices,
500M edges) with 10% of elements passing filter. Machine is NERSC’s Hopper.

Standards for graph algorithm primitives

43

History of BLAS

The Basic Linear Algebra Subroutines
had a revolutionary impact
on computational linear algebra.

BLAS 1 | vector ops Lawson, Hanson, Kincaid, LINPACK
Krogh, 1979

BLAS 2 | matrix-vector ops | Dongarra, Du Croz, LINPACK on
Hammarling, Hanson, 1988 vector machines

BLAS 3 | matrix-matrix ops | Dongarra, Du Croz, LAPACK on
Hammarling, Hanson, 1990 | cache based machines

« Separation of concerns:
« Experts in mapping algorithms onto hardware tuned BLAS to specific platforms.

» Experts in linear algebra built software on top of the BLAS to obtain high
performance “for free”.

« Today every computer, phone, etc. comes with /usr/1ib/1libblas

UCSB

44

45

Can we define and standardize

the “Graph BLAS™?

No, it is not reasonable to define a universal set of graph
algorithm building blocks:

Huge diversity in matching algorithms to hardware platforms.
No consensus on data structures and linguistic primitives.
Lots of graph algorithms remain to be discovered.

Early standardization can inhibit innovation.

Yes, it is reasonable to define a common set of graph
algorithm building blocks ... for Graphs as Linear Algebra:

Representing graphs in the language of linear algebra is a mature
field.

Algorithms, high level interfaces, and implementations vary.

But the core primitives are well established.

UCSB

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation). David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory). Jack Dongarra (University of Tennessee).
Christos Faloutsos (Carnegie Melon University). John Feo (Pacific Northwest National Laboratory). John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley). Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University). David Padua (University
of Illinois at Urbana-Champaign). Stephen Poole (Oak Ridge National Laboratory). Steve Reinhardt (Cray
Corporation). Mike Stonebraker (Massachusetts Institute of Technology). Steve Wallach (Convey Corporation).
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract— It is our view that the state of the art in
constructing a large collection of graph algorithms in
terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive
building blocks. This paper is a position paper defining
the problem and announcing our intention to launch an
open effort to define this standard.

47

It helps to look at things from two directions.

Sparse arrays and matrices yield useful primitives and
algorithms for high-performance graph computation.

Graphs in the language of linear algebra are
sufficiently mature to support a standard set of BLAS.

UCSB

