

Sparse Matrices for High-Performance Graph Analytics

John R. Gilbert University of California, Santa Barbara

Chesapeake Large-Scale Analytics Conference October 17, 2013

Support: Intel, Microsoft, DOE Office of Science, NSF

Thanks

Aydin Buluc (LBL), Kevin Deweese (UCSB), Erika Duriakova (Dublin), Armando Fox (UCB), Shoaib Kamil (MIT), Jeremy Kepner (MIT), Adam Lugowski (UCSB), Tim Mattson (Intel), Lenny Oliker (LBL), Carey Priebe (JHU), Steve Reinhardt (YarcData), Lijie Ren (Google), Eric Robinson (Lincoln), Viral Shah (UIDAI), Veronika Strnadova (UCSB), Yun Teng (UCSB), Joshua Vogelstein (Duke), Drew Waranis (UCSB), Sam Williams (LBL)

Outline

- Motivation
- Sparse matrices for graph algorithms
- CombBLAS: sparse arrays and graphs on parallel machines
- KDT: attributed semantic graphs in a high-level language
- Standards for graph algorithm primitives

A few biological graph analysis problems

- Connective abnormalities in schizophrenia [van den Heuvel et al.]
 - Problem: understand disease from anatomical brain imaging
 - Tools: betweenness centrality, shortest path length
 - Results: global statistics on connection graph correlate w/ diagnosis
- Genomics for biofuels [Strnadova et al.]
 - Problem: scale to millions of markers times thousands of individuals
 - Tools: min spanning tree, customized clustering
 - Results: using much more data leads to much better genomic maps
- Alignment and matching of brain scans [Vogelstein et al.]
 - Problem: match corresponding functional regions across individuals
 - Tools: graph partitioning, clustering, and more. . .
 - Results: in progress

4

The middleware of scientific computing

Top 500 List (June 2013)

Top500 Benchmark:

Solve a large system of linear equations by Gaussian elimination

	Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
	1	National University of Defense Technology China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
	2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
	3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
	4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,659.9
	6	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
	6	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
	7	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
	8	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972
	9	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM	147,456	2,897.0	3,185.1	3,422.7
	10	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 NUDT	186,368	2,566.0	4,701.0	4,040
	1	Total Exploration Production France	Pangea - SGI ICE X, Xeon E5-2670 8C 2.600GHz, Infiniband FDR SGI	110,400	2,098.1	2,296.3	2,118

Graph 500 List (June 2013)

<u>Graph500</u> Benchmark:

Breadth-first search in a large power-law graph

No.	<u>Rank</u>	Machine	Installation Site	<u>Number</u> <u>of</u> <u>nodes</u>	<u>Number</u> of cores	<u>Problem</u> <u>scale</u>	<u>GTEPS</u>
1	1	DOE/NNSA/LLNL Sequoia (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Lawrence Livermore National Laboratory	65536	1048576	40	15363
2	2	DOE/SC/Argonne National Laboratory Mira (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Argonne National Laboratory	49152	786432	40	14328
3	3	JUQUEEN (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Forschungszentrum Juelich (FZJ)	16384	262144	38	5848
4	4	K computer (Fujitsu - Custom supercomputer)	RIKEN Advanced Institute for Computational Science (AICS)	65536	524288	40	5524.12
5	5	Fermi (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	CINECA	8192	131072	37	2567
6	6	Tianhe-2 (MilkyWay-2) (National University of Defense Technology - MPP)	Changsha, China	8192	196608	36	2061.48
7	7	Turing (IBM - BlueGene/Q, Power BQC 16C 1.60GHz)	CNRS/IDRIS-GENCI	4096	65536	36	1427
8	7	Blue Joule (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	Science and Technology Facilities Council - Daresbury Laboratory	4096	65536	36	1427
9	7	DIRAC (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	University of Edinburgh	4096	65536	36	1427

Floating-Point vs. Graphs, June 2013

33.8 Peta / 15.3 Tera is about 2200.

8

Floating-Point vs. Graphs, June 2013

Jun 2013: 33.8 Peta / 15.3 Tera ~ 2,200 *Nov 2010:* 2.5 Peta / 6.6 Giga ~ 380,000

The challenge of the software stack

 By analogy to numerical scientific computing...

Outline

Motivation

- Sparse matrices for graph algorithms
- CombBLAS: sparse arrays and graphs on parallel machines
- KDT: attributed semantic graphs in a high-level language
- Standards for graph algorithm primitives

Multiple-source breadth-first search

Multiple-source breadth-first search

- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges

Graph contraction via sparse triple product

Subgraph extraction via sparse triple product

b =	BetweennessCentrality($G = A$	$A: \mathbb{B}^N$	$V_V \times N_V$			
1	$\mathbf{b} = 0$					
2	for $1 \le r \le N_V$					O (
3	do Va	riab				Storage:
4	d = 0	Α:	sparse adja	cency matrix	B ^{S(NxN)}	O(M+N)
5	S = 0	f :	sparse fring	e vector	Z ^{S(N)}	O(N)
6	$p = 0, p_r = 1$	p :	shortest pat	h vector	Z ^N	O(N)
7	$\mathbf{f} = \mathbf{a}_{r,:}$		sparse dept		B ^{S(NxN)}	O(N)
8	while $f \neq 0$		centrality up		R ^ℕ	O(N)
9	do	ч.	contrainty up			$O(\mathbf{N})$
10	d = d + 1					
11	$\mathbf{p} = \mathbf{p} + \mathbf{f}$					
12	$\mathbf{s}_{d,:} = \mathbf{f}$					
13	$\mathbf{f} = \mathbf{f} \mathbf{A} imes \neg \mathbf{p}$					
14	while $d \ge 2$					
15	do					
16	$\mathbf{w} = \mathbf{s}_{d,:} imes (1 + \mathbf{u})$	ι) ÷ p)			
17	$\mathbf{w} = \mathbf{A}\mathbf{w}$			Storage: O/N		
18	$\mathbf{w} = \mathbf{w} imes \mathbf{s}_{d-1,:}$ >	\mathbf{p}		Storage: O(N		
19	$\mathbf{u} = \mathbf{u} + \mathbf{w}$			Time: O(MN	+ N ²)	
20	d = d - 1			•		
21	$\mathbf{b} = \mathbf{b} + \mathbf{u}$					

Graph algorithms in the language of linear algebra

- Kepner et al. study [2006]: fundamental graph algorithms including min spanning tree, shortest paths, independent set, max flow, clustering, ...
- SSCA#2 / centrality [2008]
- Basic breadth-first search / Graph500 [2010]
- Beamer et al. [2013] directionoptimizing breadth-first search, using CombBLAS

Sparse array-based primitives

Sparse matrix-matrix multiplication (SpGEMM)

Element-wise operations

Sparse matrix-dense vector multiplication

Sparse matrix indexing

Matrices over various semirings: (+.x), (min.+), (or.and), ...

Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

Traditional graph computations

Data driven, unpredictable communication.

Irregular and unstructured, poor locality of reference

Fine grained data accesses, dominated by latency

Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

Traditional graph	Graphs in the language of	
computations	linear algebra	
Data driven, unpredictable communication.	Fixed communication patterns	
Irregular and unstructured, poor locality of reference	Operations on matrix blocks exploit memory hierarchy	
Fine grained data accesses,	Coarse grained parallelism,	
dominated by latency	bandwidth limited	

Matrices over semirings

• E.g. matrix multiplication **C = AB** (or matrix/vector):

$$\mathbf{C}_{i,j} = \mathbf{A}_{i,1} \times \mathbf{B}_{1,j} + \mathbf{A}_{i,2} \times \mathbf{B}_{2,j} + \cdots + \mathbf{A}_{i,n} \times \mathbf{B}_{n,j}$$

- Replace scalar operations × and + by
 - \bigotimes : associative, distributes over \oplus
 - \oplus : associative, commutative
- Then $\mathbf{C}_{i,j} = \mathbf{A}_{i,1} \otimes \mathbf{B}_{1,j} \oplus \mathbf{A}_{i,2} \otimes \mathbf{B}_{2,j} \oplus \cdots \oplus \mathbf{A}_{i,n} \otimes \mathbf{B}_{n,j}$
- Examples: **x.+** ; and.or ; +.min ; . . .
- Same data reference pattern and control flow

Examples of semirings in graph algorithms

(R, +, x) Real Field	Standard numerical linear algebra
({0,1}, , &) Boolean Semiring	Graph traversal
(R U {∞}, min, +) Tropical Semiring	Shortest paths
(R U {∞}, min, x)	Select subgraph, or contract nodes to form quotient graph
(edge/vertex attributes, vertex data aggregation, edge data processing)	Schema for user-specified computation at vertices and edges

- Motivation
- Sparse matrices for graph algorithms
- CombBLAS: sparse arrays and graphs on parallel machines
- KDT: attributed semantic graphs in a high-level language
- Standards for graph algorithm primitives

Combinatorial BLAS: Functions

Function	Applies to	Paramete	rs	Returns	Matlab Phrasing
Spgemm	Sparse Matrix (as friend)	A , B : trA: trB:	sparse matrices transpose A if true transpose B if true	Sparse Matrix	$\mathbf{C} = \mathbf{A} * \mathbf{B}$
SpMV	Sparse Matrix (as friend)	A : x: trA:	sparse matrices sparse or dense vector(s) transpose A if true	Sparse or Dense Vector(s)	$\mathbf{y} = \mathbf{A} * \mathbf{x}$
SpEWiseX	Sparse Matrices (as friend)	A , B : notA: notB:	sparse matrices negate A if true negate B if true	Sparse Matrix	$\mathbf{C} = \mathbf{A} * \mathbf{B}$
Reduce	Any Matrix (as method)	dim: binop:	dimension to reduce reduction operator	Dense Vector	sum(A)
SpRef	Sparse Matrix (as method)	р: q:	row indices vector column indices vector	Sparse Matrix	$\mathbf{B}=\mathbf{A}(\mathbf{p},\mathbf{q})$
SpAsgn	Sparse Matrix (as method)	р: q: В:	row indices vector column indices vector matrix to assign	none	$\mathbf{A}(\mathbf{p},\mathbf{q})=\mathbf{B}$
Scale	Any Matrix (as method)	rhs:	any object (except a sparse matrix)	none	Check guiding principles 3 and 4
Scale	Any Vector (as method)	rhs:	any vector	none	none
Apply	Any Object (as method)	unop:	unary operator (applied to non-zeros)	None	none UC

Combinatorial BLAS: Distributed-memory reference implementation

2D layout for sparse matrices & vectors

Matrix/vector distributions, interleaved on each other.

Default distribution in **Combinatorial BLAS**.

Scalable with increasing number of processes

- 2D matrix layout wins over 1D with large core counts and with limited bandwidth/compute
- 2D vector layout sometimes important for load balance

Parallel sparse matrix-matrix multiplication algorithm

2D algorithm: Sparse SUMMA (based on dense SUMMA) General implementation that handles rectangular matrices

1D vs. 2D scaling for sparse matrix-matrix multiplication

(a) R-MAT \times R-MAT product (scale 21).

(b) Multiplication of an R-MAT matrix of scale 23 with the restriction operator of order 8.

- 1-D data layout
- 2-D data layout (Combinatorial BLAS)

Almost linear scaling until bandwidth costs starts to dominate

Combinatorial BLAS users (Sep 2013)

- IBM (T.J. Watson, Zurich, & Tokyo)
- Microsoft
- Intel
- Cray
- Stanford
- UC Berkeley
- Carnegie-Mellon
- Georgia Tech
- Ohio State
- Columbia
- U Minnesota

- King Fahd U
- Tokyo Inst of Technology
- Chinese Academy of Sciences
- U Ghent (Belgium)
- Bilkent U (Turkey)
- U Canterbury (New Zealand)
- Purdue
- Indiana U
- Mississippi State
- UC Merced

- Motivation
- Sparse matrices for graph algorithms
- CombBLAS: sparse arrays and graphs on parallel machines
- KDT: attributed semantic graphs in a high-level language
- Standards for graph algorithm primitives

Parallel graph analysis software

Parallel graph analysis software

Combinatorial BLAS is for performance

Domain expert vs. graph expert

- (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (e.g., degree())
 - vectors
- Clustering / components
- Centrality / authority: betweenness centrality, PageRank

- Hypergraphs and sparse matrices
- Graph primitives (*e.g.*, bfsTree())
- SpMV / SpGEMM on semirings

Domain expert vs. graph expert

- (Semantic) directed graphs
 - constructors, I/O
 - basic graph metrics (e.g., degree
 - vectors
- Clustering / components
- Centrality / authority: betweenness centrality, PageR # visualize

- Hypergraphs and sparse matrices
- Graph primitives (*e.g.*, bfsTree())
- SpMV / SpGEMM on semirings

Domain expert vs. graph expert

- constructors, I/O
- basic graph metrics (e.g., degree
- vectors
- Clustering / components
- Centrality / authority: betweenness centrality, PageR # visualize

- Hypergraphs and sparse matrices
- Graph primitives (e.g., bfsTree $\begin{bmatrix} L \\ J \end{bmatrix}$ = G.toSpParMat()
- SpMV / SpGEMM on semirings L =

```
d = L.sum(kdt.SpParMat.Column)
L = -L
L.setDiag(d)
M = kdt.SpParMat.eye(G.nvert()) - mu*L
pos = kdt.ParVec.rand(G.nvert())
for i in range(nsteps):
    pos = M.SpMV(pos)
```

[...]

1 2 3 4 5 6 7

Knowledge Discovery Toolbox http://kdt.sourceforge.net/

A general graph library with operations based on linear algebraic primitives

- Aimed at domain experts who know their problem well but don't know how to program a supercomputer
- Easy-to-use Python interface
- Runs on a laptop as well as a cluster with 10,000 processors
- Open source software (New BSD license)
- V0.3 release April 2013

A few KDT applications

variable; the converged mean-value vector

approximates the actual solution.

Attributed semantic graphs and filters

Example:

- Vertex types: Person, Phone, Camera, Gene, Pathway
- Edge types: PhoneCall, TextMessage, CoLocation, SequenceSimilarity
- Edge attributes: Time, Duration
- Calculate centrality just for emails among engineers sent between given start and end times

```
def onlyEngineers (self):
    return self.position == Engineer

def timedEmail (self, sTime, eTime):
    return ((self.type == email) and
        (self.Time > sTime) and
        (self.Time < eTime))</pre>
```

```
G.addVFilter(onlyEngineers)
G.addEFilter(timedEmail(start, end))
```

```
# rank via centrality based on recent
email transactions among engineers
```

```
bc = G.rank('approxBC')
```

SEJITS for filter/semiring acceleration

Standard KDT

SEJITS for filter/semiring acceleration

Embedded DSL: Python for the whole application

- Introspect, translate Python to equivalent C++ code
- Call compiled/optimized C++ instead of Python

Filtered BFS with SEJITS

Time (in seconds) for a single BFS iteration on scale 25 RMAT (33M vertices, 500M edges) with 10% of elements passing filter. Machine is NERSC's Hopper.

Outline

- Motivation
- Sparse matrices for graph algorithms
- CombBLAS: sparse arrays and graphs on parallel machines
- KDT: attributed semantic graphs in a high-level language
- Standards for graph algorithm primitives

History of **BLAS**

The Basic Linear Algebra Subroutines had a revolutionary impact on computational linear algebra.

BLAS 1	vector ops	Lawson, Hanson, Kincaid, Krogh, 1979	LINPACK
BLAS 2	matrix-vector ops	Dongarra, Du Croz, Hammarling, Hanson, 1988	LINPACK on vector machines
BLAS 3	matrix-matrix ops	Dongarra, Du Croz, Hammarling, Hanson, 1990	LAPACK on cache based machines

- Separation of concerns:
 - Experts in mapping algorithms onto hardware tuned BLAS to specific platforms.
 - Experts in linear algebra built software on top of the BLAS to obtain high performance "for free".
- Today every computer, phone, etc. comes with /usr/lib/libblas

Can we define and standardize the "Graph BLAS"?

- No, it is not reasonable to define a universal set of graph algorithm building blocks:
 - Huge diversity in matching algorithms to hardware platforms.
 - No consensus on data structures and linguistic primitives.
 - Lots of graph algorithms remain to be discovered.
 - Early standardization can inhibit innovation.
- Yes, it is reasonable to define a common set of graph algorithm building blocks ... for Graphs as Linear Algebra:
 - Representing graphs in the language of linear algebra is a mature field.
 - Algorithms, high level interfaces, and implementations vary.
 - But the core primitives are well established.

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee), Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert (University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation), Andrew Yoo (Lawrence Livermore National Laboratory)

> Abstract— It is our view that the state of the art in constructing a large collection of graph algorithms in terms of linear algebraic operations is mature enough to support the emergence of a standard set of primitive building blocks. This paper is a position paper defining the problem and announcing our intention to launch an open effort to define this standard.

Conclusion

- It helps to look at things from two directions.
- Sparse arrays and matrices yield useful primitives and algorithms for high-performance graph computation.
- Graphs in the language of linear algebra are sufficiently mature to support a standard set of BLAS.

