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Combinatorics in the service of linear algebra

“I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were 
‘sparse’ in the matrix, and that 
typically the triangular matrices 
associated with the forward and back 
solution provided by Gaussian 
elimination would remain sparse if 
pivot elements were chosen with 
care”

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won 
the 1990 Nobel Prize for Economics
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Cholesky factorization:  A  =  LLT 
[Parter, Rose]
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G(A) G+(A)
[chordal]

Symmetric Gaussian elimination:

for j = 1 to n
add edges between j’s
higher-numbered neighbors

Fill: new nonzeros in factor
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Chordal graphs and trees:  Elimination tree
[Duff, Schreiber]
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T(A) :   parent(j) = min { i > j : (i, j) in G+(A) }

parent(col j) = first nonzero row below diagonal in L

• T describes dependencies among columns of factor
• Can compute T from G(A) in almost linear time
• Can compute filled graph G+(A) easily from T
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Sparse Gaussian elimination and chordal completion
[Parter, Rose]

Repeat:
Choose a vertex v and mark it;
Add edges between unmarked neighbors of v;

Until: Every vertex is marked

Goal: End up with as few edges as possible.

Equivalently:  Add as few edges as possible to make the graph chordal.

(Note for later:  “Fewest edges” is not the only interesting objective.)
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(PAPT) (Px) = (Pb)

Ax = b

PAPT = L2L2
T

A = L1L1
T

13

2
4

5

13

2
4

5

25

3
4

1

25

3
4

1

Sparse Gaussian elimination and chordal completion
[Parter, Rose]
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Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1973, many extensions]

• Minimum-size chordal completion is NP-complete [Yannakakis]

• Heuristic: Find small vertex separator, put it last, recurse on subgraphs

• Theory:  approx optimal separators  =>  approx optimal fill
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Matrix reordered by nested dissection

Vertex separator in graph of matrix
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Chordal graphs and data movement

• A chordal graph can be represented as a tree of 
overlapping cliques (complete subgraphs).

• A complete subgraph is a dense submatrix.

• Dense matrix ops do n3 work for n2 data movement.

• Most of the ops in Gaussian elimination can be done 
within dense matrix primitives, esp. DGEMM.



Supernodes for Gaussian elimination

• Supernode-column update:  k sparse vector ops become
1 dense triangular solve

+ 1 dense matrix * vector
+ 1 sparse vector add

• Sparse BLAS 1 => Dense BLAS 2
• Supernode-panel or multifrontal updates => Dense BLAS 3

{

• Supernode = group of 
adjacent columns of L with 
same nonzero structure

• Related to clique structure
of filled graph G+(A)
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Aside:  Matrix structure prediction

• Computing the nonzero structure of Cholesky factor L is 
much cheaper than computing L itself.

• Computing nnz(L) is nearly linear in nnz(A).  [G, Ng, Peyton]

Not so for sparse matrix product (SpGEMM); computing nnz(B*C) 
seems to be as hard as computing B*C.

Can estimate nnz(B*C) accurately in time linear in nnz(B, C)! [E. 
Cohen 1998]

Lots of cool recent work on sampling algorithms to estimate 
statistics of matrix functions.
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Complexity measures for chordal completion

• Nonzeros =  edges       =  Σj dj (moment 1)

• Work        =   flops        =  Σj (dj)2 (moment 2)

• Front size =  treewidth =  maxj dj (moment ∞)
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G+(A)

Elimination degree:

dj = # higher neighbors of j in G+

d = (2, 2, 2, 2, 2, 2, 1, 2, 1, 0)

Treewidth shows up in lots of other graph algorithms…
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Treewidth and Fixed-Parameter-Tractable problems   
[Downey/Fellows, Arnborg/Proskurowski,
Sullivan, many others]

• Many NP-hard problems on graphs have low-order 
polynomial complexity on graphs of bounded treewidth.

• Coloring, feedback vertex set, co-path set, …

• Algebraic geometry:  Solving polynomial equations by 
chordal elimination & Gröbner bases [Cifuentes/Parrilo]  

• Bounded treewidth implies linear-time Ax = b, pretty rare!

• Treewidth of some graph classes:

– Planar:  O(sqrt(n))

– Random Erdos-Renyi (connected):  O(n)

– Random hyperbolic power law (>=3):  O(log n) or O(1)
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Network graph decompositions

• Empirical measurements of “treelike structure” in real 
graphs: [Adcock/Sullivan/Mahoney 2016 etc.] 

– Treewidth

– Hyperbolicity

– Core-periphery decomposition etc.

• “Bounded expansion”:  Contracting some disjoint 
low-diameter subgraphs leaves all subgraphs sparse 
[Demaine et al. 2014]

• Question: What can new ways of looking at the 
structure of network graphs tell us about efficient 
linear solvers and eigensolvers?
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Matroid:  Abstraction of “independent sets” and rank

• Linear matroid: 

– Rows of a matrix

– Independent set = linearly independent vectors.

– Matlab “rank”

• Matching matroid: 

– Vertices of bipartite graph

– Independent set = vertices with row-complete matching.

– Matlab “sprank”

• Often the same (under a no-cancellation assumption).

• The matching matroid is less expensive to compute with!
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Bipartite matching

• Perfect matching:  set of edges that hits each vertex exactly once
• Matrix permutation to place nonzeros (or heavy elements) on diagonal
• Efficient sequential algorithms based on augmenting paths
• No known work/span efficient parallel algorithms
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Strongly connected components

• Symmetric permutation to block triangular form

• Diagonal blocks are strong Hall  (irreducible / strongly connected) 

• Sequential:  linear time by depth-first search  [Tarjan]

• Parallel: divide & conquer, work and span depend on input
[Fleischer, Hendrickson, Pinar]

1 52 4 7 3 6
1

5

2
4
7

3
6

PAPT G(A) 

1 2

3

4 7

6

5



22

Dulmage-Mendelsohn decomposition
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Laplacian matrix of a graph

• Symmetric, positive semidefinite matrix.

• Eigenvectors for partitioning and embedding
[Fiedler, Pothen/Simon, Spielman/Teng, many others]

• Laplacian paradigm:  Use Ax = b as a subroutine in graph algorithms
[Kelner, Teng, many others]

• See tomorrow morning’s talks by Gary Miller, Elisabetta Bergamini, 
Kevin Deweese, Tristan Konolige
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Graph algorithms in sparse matrix computation

Many, many graph algorithms have been used, invented, 
implemented at large scale for sparse matrix computation:

• Symmetric problems:  elimination tree, nonzero 
structure prediction, sparse triangular solve, sparse 
matrix-matrix multiplication, min-height etree, …

• Nonsymmetric problems:  sparse triangular solve, 
bipartite matching (weighted and unweighted), 
Dulmage-Mendelsohn decomposition / strong 
components, …

• Iterative methods:  graph partitioning again, 
independent set, low-stretch spanning trees, …
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Large	graphs	are	everywhere…

WWW	snapshot,	courtesy	Y.	Hyun

Yeast	protein
interactions,

courtesy	H.	Jeong

Scientific
Data

Social Networks

Cyberspace
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• By	analogy	to	
numerical	
scientific	
computing.	.	.

• What	should	the	
combinatorial	
BLAS	look	like?

The	middleware	challenge	for	graph	analysis

C  =  A*B

y  =  A*x

μ =  xT y

Basic	Linear	Algebra	Subroutines	(BLAS):
Ops/Sec		vs.		Matrix	Size
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Sparse matrix-sparse 
matrix  multiplication

*

Sparse	matrix-sparse	
vector	multiplication

*

.*

Sparse	array	primitives	for	graphs

Element-wise	operations Sparse	matrix	indexing

Matrices	over	various	semirings: (+,	×),		(and,	or),	 (min,	+),	…
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Multiple-source	breadth-first	search
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Multiple-source	breadth-first	search

• Sparse	array	representation	=>	space	efficient

• Sparse	matrix-matrix	multiplication	=>	work	efficient

• Three	possible	levels	of	parallelism:		searches,	vertices,	edges

BAT AT B
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Examples	of	semirings in	graph	algorithms

(	“values”:				edge/vertex	attributes,
“add”:									vertex	data	aggregation,	
“multiply”:		edge data	processing	)

General	schema	for	user-specified	
computation	at	vertices	and	edges

Real	field:	 (R,	+,	*) Numerical	linear	algebra

Boolean	algebra:		({0 1},	|, &) Graph	traversal

Tropical	semiring:		(R	U	{∞},	min,	+) Shortest	paths

(S,	select,	select) Select subgraph,	or	contract	nodes	
to	form	quotient	graph



33

Counting	triangles	(clustering	coefficient)
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Clustering	coefficient:

• Pr (wedge	i-j-k	makes	a	triangle	with	edge	i-k)

• 3	*		#	triangles	/	#	wedges

• 3	*	4 /	19 =	0.63 in	example

• may	want	to	compute	for	each	vertex	j
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Clustering	coefficient:

• Pr (wedge	i-j-k	makes	a	triangle	with	edge	i-k)

• 3	*		#	triangles	/	#	wedges

• 3	*	4 /	19 =	0.63 in	example

• may	want	to	compute	for	each	vertex	j

“Cohen’s”	algorithm	to	count	triangles:	

- Count	triangles	by	lowest-degree	vertex.					

- Enumerate	“low-hinged”	wedges.

- Keep	wedges	that	close.
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Counting	triangles	(clustering	coefficient)
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A = L + U      (hi->lo  +  lo->hi)

L × U = B (wedge, low hinge)
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• Aimed	at	graph	algorithm	designers/programmers	who	are	not	
expert	in	mapping	algorithms	to	parallel	hardware.

• Flexible	templated C++	interface.
• Scalable	performance	from	laptop	to	100,000-processor	HPC.

• Open	source	software.
• Version	1.5.0	released	January,	2016.

An	extensible	distributed-memory	library	offering	a	
small	but	powerful	set	of	linear	algebraic	operations	

specifically	targeting	graph	analytics.

Combinatorial	BLAS
gauss.cs.ucsb.edu/~aydin/CombBLAS

[Azad,	Buluc,	G,	Lugowski,	…]
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Combinatorial	BLAS	“users”		(Jan	2016)

• IBM  (T.J.Watson, Zurich, & Tokyo)

• Intel
• Cray
• Microsoft
• Stanford
• MIT
• UC Berkeley
• Carnegie-Mellon
• Georgia Tech
• Purdue 
• Ohio State
• U Texas Austin
• NC State 
• UC San Diego
• UC Merced
• UC Santa Barbara

• Berkeley Lab
• Sandia Labs
• Columbia
• U Minnesota
• Duke
• Indiana U
• Mississippi State
• SEI
• Paradigm4
• Mellanox
• IHPC (Singapore)

• Tokyo Inst of Technology

• Chinese Academy of Sciences
• U Canterbury (New Zealand)

• King Fahd U (Saudi Arabia)

• Bilkent U (Turkey)

• U Ghent (Belgium)
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The	Graph	BLAS	effort

• Manifesto, 
HPEC 2013:

• Workshops at IPDPS, HPEC, SC 
• Periodic working group telecons and meetings
• Graph BLAS Forum:  http://graphblas.org

Abstract-- It is our view that the state of the art in constructing a large collection of 
graph algorithms in terms of linear algebraic operations is mature enough to 
support the emergence of a standard set of primitive building blocks. This paper is 
a position paper defining the problem and announcing our intention to launch an 
open effort to define this standard.
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HPEC 2016 GraphBLAS BoF 14 September 2016
© 2016 Carnegie Mellon University

Distribution Statement A: 
Approved for Public Release; Distribution is Unlimited

Operation Math Out Inputs
mxm C(¬M) ⊕= AT ⊕.⊗ BT C ¬, M, ⊕, A, T, ⊕.⊗, B, T
mxv (vxm) c(¬m) ⊕= AT ⊕.⊗ b c ¬, m, ⊕, A, T, ⊕.⊗, b
eWiseMult C(¬M) ⊕= AT ⊗ BT C ¬, M, ⊕, A, T,   ⊗, B, T
eWiseAdd C(¬M) ⊕= AT ⊕ BT C ¬, M, ⊕, A, T,  ⊕, B, T
reduce (row) c(¬m) ⊕= ⊕j AT(:,j) c ¬, m, ⊕, A, T, ⊕

apply C(¬M) ⊕= f(AT) C ¬, M, ⊕, A, T, f

transpose C(¬M) ⊕= AT C ¬, M, ⊕, A (T)

extract C(¬M) ⊕= AT(i,j) C ¬, M, ⊕, A, T,                     i, j

assign C(¬M) (i,j) ⊕= AT C ¬, M, ⊕, A, T,                    i, j

buildMatrix C(¬M) ⊕= mxn(i,j,v,⊕) C ¬, M, ⊕, ⊕, m, n, i, j, v 

extractTuples (i,j,v) = A(¬M) i,j,v ¬, M,       A

GraphBLAS Base Operations

Notation: i,j – index arrays, v – scalar array, m – 1D mask, other bold-lower – vector (column),
M – 2D mask, other bold-caps – matrix, T – transpose, ¬ - structural complement,
⊕ monoid/binary function, ⊕.⊗ semiring,
blue – optional parameters, red – optional modifiers (using Descriptors)
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Breadth-first	search	with	Graph	BLAS		(draft		C	API	spec)
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Storing A, operating implicitly on ATA

• CombBLAS represents graphs as adjacency matrices.

• D4M [Kepner et al.] represents graphs as incidence matrices; 
matrix A represents G(ATA):

column = vertex

row = hyperedge

A
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Distance-2 coloring for sparse Jacobians
[Gebremedhin/Manne/Pothen etc.]

• Goal:  compute (sparse) matrix J of partial derivatives,  J(i,j) =  ∂yi / ∂xj

• Nonoverlapping columns can be computed together.

• Method:  find a coloring of G(JTJ) without forming it from J.
Diagram courtesy CSCAPES
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Storing A, operating implicitly on ATA

• Many, many other cases:

– Optimization:  KKT systems, interior point methods.

– Linear equations:  QR factorization, structure prediction 
for LU factorization with partial pivoting.

• Question: What can you do fast on G(ATA) just from G(A)?  



Given the nonzero structure of (nonsymmetric) A, 
one can find . . .

• column nested dissection or min degree permutation
• column elimination tree   T(ATA)
• row and column counts for filled graph   G+(ATA)
• supernodes of    G+(ATA)
• nonzero structure of    G+(ATA)

. . . efficiently, without forming ATA.

Structure prediction for PA = LU and A = QR
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Statistics for ATA itself are harder!

• nnz(ATA) seems to be as hard as computing ATA.

– but randomized estimate is possible [Cohen 1998]

• Sampling algorithms are possible too, e.g. diamond 
sampling for k largest elements of ATA    (or B*C in general) 
[Ballard/Kolda/Pinar/Seshadri 2015]

Ballard et al. ICDM 2015
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Past	50	Years

As the “middleware” 
of scientific computing, 

linear algebra has given us:

• Mathematical tools

• High-level primitives

• High-quality software libraries

• High-performance kernels
for computer architectures

• Interactive environmentsComputers

Continuous
Physical	Modeling

Linear	Algebra
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• What can new ways of looking at the structure of network 
graphs tell us about Ax = b and Ax = λx ?

• What else can you do fast on G(ATA) just from G(A) ?  
(Especially with sampling & approximation)

• What will be the middleware for making sense of big data?

Matrix computation is beginning to repay 
a 50-year debt to graph algorithms.

It helps to look at things from two directions.

This is a great time to be doing research in CSC…
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