
1

Sparse	Matrices	for		
High	Performance	Graph	Analy8cs	

John	R.	Gilbert	
University	of	California,	Santa	Barbara	
	
	
	
Purdue	University	
January	27,	2016	

Support at UCSB: Intel, Microsoft, DOE Office of Science, NSF	

2

 Thanks …

 Ariful Azad, David Bader, Lucas Bang, Jon Berry, Eric
Boman, Aydin Buluc, John Conroy, Kevin Deweese,

Erika Duriakova, Armando Fox, Joey Gonzalez, Shoaib
Kamil, Jeremy Kepner, Tristan Konolige, Manoj Kumar,
Adam Lugowski, Tim Mattson, Brad McRae, Henning
Meyerhenke, Dave Mizell, Jose Moreira, Lenny Oliker,

Carey Priebe, Steve Reinhardt, Lijie Ren, Eric Robinson,
Viral Shah, Veronika Strnadova-Neely, Yun Teng,
Joshua Vogelstein, Drew Waranis, Sam Williams

3

Outline	

•  Mo8va8on:		Graph	applica8ons	

•  Mathema8cs:		Sparse	matrices	for	graph	algorithms	

•  SoLware:		CombBLAS,	KDT,	QuadMat	

•  Standards:		The	Graph	BLAS	effort	

4

Computa8onal	models	of	the	physical	world	

Cortical
bone"

Trabecular
bone"

5

Large	graphs	are	everywhere…	

WWW	snapshot,	courtesy	Y.	Hyun	 Yeast	protein	interac8on	network,	courtesy	H.	Jeong	

•  Internet	structure	
• 	Social	interac8ons	

• 	Scien8fic	datasets:	biological,	chemical,	
cosmological,	ecological,	…	

6

Co-author	graph		
from	1993		

Householder	
symposium	

Social	network	analysis	(1993)	

7

Facebook	graph:		
>	1,200,000,000		ver8ces			

Social	network	analysis	(2016)	

8

Computers	

Con,nuous	
physical	modeling	

Linear	algebra	

Discrete	
structure	analysis	

Graph	theory	

Computers	

The	middleware	challenge	for	graph	analysis	

9

Top 500 List (November 2015)

=	 x P	A L	 U

Top500 Benchmark:
Solve a large system
of linear equations

by Gaussian elimination

10

Graph 500 List (November 2015)

Graph500
Benchmark:

Breadth-first search
in a large

power-law graph

1 2

3

4 7

6

5

11

Floating-Point vs. Graphs, November 2015

=	 x P	 A L	 U	
1 2

3

4 7

6

5

34 Peta / 38 Tera is about 900.

34 Petaflops 38 Terateps

12

Nov 2015: 34 Peta / 38 Tera ~ 900
 Nov 2010: 2.5 Peta / 6.6 Giga ~ 380,000

Floating-Point vs. Graphs, November 2015

=	 x P	 A L	 U	
1 2

3

4 7

6

5

34 Petaflops 38 Terateps

13

•  By	analogy	to	
numerical		
scien8fic	
compu8ng.	.	.	

	

•  What	should	the	
combinatorial	
BLAS	look	like?	

The	middleware	challenge	for	graph	analysis	

C = A*B

y = A*x

µ = xT y

Basic	Linear	Algebra	Subrou,nes	(BLAS):	
Ops/Sec		vs.		Matrix	Size	

The	case	for	sparse	matrices	

Coarse-grained parallelism can be exploited
by abstractions at the right level.

Vertex/edge	graph	
computa,ons

Graphs	in	the	language	of	
linear	algebra

Unpredictable,	data-driven	
communica8on	paberns

Fixed	communica8on	paberns

Irregular	data	accesses,		
with	poor	locality

Matrix	block	opera8ons	exploit	
memory	hierarchy

Fine	grained	data	accesses,	
dominated	by	latency

Coarse	grained	parallelism,	limited	
by	bandwidth	not	latency

Sparse	matrix-sparse	
matrix		mul8plica8on	

*	

Sparse	matrix-sparse	
vector	mul8plica8on	

	
	
	
	

									

*	

.*	

Sparse	array	primi8ves	for	graphs	

Element-wise	opera8ons	 Sparse	matrix	indexing	

Matrices	over	various	semirings:		(+,	×),		(and,	or),		(min,	+),	…	
	

16

Mul8ple-source	breadth-first	search	

B	

1 2

3

4 7

6

5

AT	

17

Mul8ple-source	breadth-first	search	

•  Sparse	array	representa8on	=>	space	efficient	

•  Sparse	matrix-matrix	mul8plica8on	=>	work	efficient	

•  Three	possible	levels	of	parallelism:		searches,	ver8ces,	edges	

B	AT	 AT B	

à

1 2

3

4 7

6

5

18

Examples	of	semirings	in	graph	algorithms	

(“values”:				edge/vertex	abributes,		
		“add”:									vertex	data	aggrega8on,		
	“mul8ply”:		edge	data	processing)	
	

General	schema	for	user-specified	
computa8on	at	ver8ces	and	edges	
	

Real	field:		(R,	+,	*)	 Numerical	linear	algebra	

Boolean	algebra:		({0	1},	|,	&)	
	

Graph	traversal	
	

Tropical	semiring:		(R	U	{∞},	min,	+)	
	

Shortest	paths	
	

(S,	select,	select)	
	

Select	subgraph,	or	contract	nodes	
to	form	quo8ent	graph	
	

Graph	contrac8on	via	sparse	triple	product		

5

6

3

1 2

4

A1	

A3	
A2	

A1	

A2	 A3	

Contract

1 5 2 3 4 6
1

5

2
3
4

6

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0
1 1
1 1

0 0 1

x	 x	 =	

1 5 2 3 4 6
1
2
3

Subgraph	extrac8on	via	sparse	triple	product	

5

6

3

1 2

4

Extract 3

1
2

1 5 2 3 4 6
1

5

2
3
4

6

1 1 1	 00 0
0 0 1 11 0
0 0 0 01 1

1 1 0
1 0 1
1 1 0
1 1
1 1

0 0 1

x	 x	 =	

1 5 2 3 4 6
1
2
3

21

Coun8ng	triangles	(clustering	coefficient)	

A	

5

6

3

1 2

4

Clustering	coefficient:	

•  Pr	(wedge	i-j-k	makes	a	triangle	with	edge	i-k)	

•  3	*		#	triangles	/	#	wedges	

•  3	*	4	/	19	=	0.63	in	example	

•  may	want	to	compute	for	each	vertex	j	

22

A	

5

6

3

1 2

4

Clustering	coefficient:	

•  Pr	(wedge	i-j-k	makes	a	triangle	with	edge	i-k)	

•  3	*		#	triangles	/	#	wedges	

•  3	*	4	/	19	=	0.63	in	example	

•  may	want	to	compute	for	each	vertex	j	

“Cohen’s”	algorithm	to	count	triangles:		

 -	Count	triangles	by	lowest-degree	vertex.						

 - Enumerate	“low-hinged”	wedges.	

 -	Keep	wedges	that	close.	

hi	 hi	
lo	

hi	 hi	
lo	

hi	hi	
lo	

Coun8ng	triangles	(clustering	coefficient)	

23

A	 L	 U	

1
2

1
1
1 2

C	

A = L + U (hi->lo + lo->hi) 	
L × U = B (wedge, low hinge)	
A ∧	B = C (closed wedge)	
sum(C)/2 = 4 triangles 	

A	

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C	

Coun8ng	triangles	(clustering	coefficient)	

•  Aimed	at	graph	algorithm	designers/programmers	who	are	
not	expert	in	mapping	algorithms	to	parallel	hardware.	

•  Flexible,	templated	C++	interface.	
•  Scalable	performance	from	laptop	to	100,000-processor	HPC.	
	
	

•  Open	source	soLware,	version	1.5.0	released	January	2016.	

An	extensible	distributed-memory	library	offering	a	
small	but	powerful	set	of	linear	algebraic	opera8ons	

specifically	targe8ng	graph	analy8cs.	

Combinatorial	BLAS	
	

hbp://gauss.cs.ucsb.edu/~aydin/CombBLAS	

Combinatorial	BLAS	in	distributed	memory	

CommGrid	

DCSC	 CSC	 CSB	Triples	

SpMat	SpDistMat	DenseDistMat	

DistMat	

Enforces	interface	only	

Combinatorial	BLAS		
func7ons	and	operators	

DenseDistVec	SpDistVec	

FullyDistVec	
...	HAS	A	

Polymorphism	

Matrix/vector	distribu8ons,		
interleaved	on	each	other.		

5

8

€

x1,1

€

x1,2

€

x1,3

€

x2,1

€

x2,2

€

x2,3

€

x3,1

€

x3,2

€

x3,3

€

A1,1

€

A1,2

€

A1,3

€

A2,1

€

A2,2

€

A2,3

€

A3,1

€

A3,2

€

A3,3

€

n pr
€

n pc

2D	Layout	for	Sparse	Matrices	&	Vectors	

-	2D	matrix	layout	wins	over	1D	with	large	core	counts		
													and	with		limited	bandwidth/compute	
-	2D	vector	layout	some8mes	important	for	load	balance	

Default	distribu8on	in	
Combinatorial BLAS.	
	
Scalable	with	increasing	
number	of	processes	
		

Benchmarking	graph	analy8cs	frameworks	

Combinatorial	BLAS	was	fastest		
among	all	tested		

graph	processing	frameworks		
on	3	out	of	4	benchmarks	

in	an	independent	study	by	Intel.		
	
	

Sa8sh	et	al.	"Naviga8ng	the	Maze	of	Graph	Analy8cs	
Frameworks	using	Massive	Graph	Datasets”,		
in	SIGMOD’14	

28

Combinatorial	BLAS	“users”		(Jan	2016)	

•  IBM (T.J.Watson, Zurich, & Tokyo)
•  Intel
•  Cray
•  Microsoft
•  Stanford
•  MIT
•  UC Berkeley
•  Carnegie-Mellon
•  Georgia Tech
•  Purdue
•  Ohio State
•  U Texas Austin
•  NC State
•  UC San Diego
•  UC Merced
•  UC Santa Barbara

•  Berkeley Lab
•  Sandia Labs
•  Columbia
•  U Minnesota
•  Duke
•  Indiana U
•  Mississippi State
•  SEI
•  Paradigm4
•  Mellanox
•  IHPC (Singapore)

•  Tokyo Inst of Technology

•  Chinese Academy of Sciences
•  U Canterbury (New Zealand)

•  King Fahd U (Saudi Arabia)
•  Bilkent U (Turkey)

•  U Ghent (Belgium)

•  Aimed	at	domain	experts	who	know	their	problem	well	but	
don’t	know	how	to	program	a	supercomputer	

•  Easy-to-use	Python	interface	
•  Runs	on	a	laptop	as	well	as	a	cluster	with	10,000	processors	

•  Open	source	soLware	(New	BSD	license)		

A	general	graph	library	with	
opera8ons	based	on	linear	

algebraic	primi8ves	

Knowledge	
Discovery	
Toolbox	
hbp://kdt.sourceforge.net/	

Example:	
•  Vertex	types:		Person,	Phone,	

Camera,	Gene,	Pathway	
•  Edge	types:		PhoneCall,	TextMessage,	

CoLoca8on,	SequenceSimilarity	
•  Edge	abributes:		Time,	Dura8on	

•  Calculate	centrality	just	for	emails	
among	engineers	sent	between	given	
start	and	end	8mes	

Abributed	seman8c	graphs	and	filters	

def onlyEngineers (self):
 return self.position == Engineer

def timedEmail (self, sTime, eTime):
 return ((self.type == email) and
 (self.Time > sTime) and
 (self.Time < eTime))

G.addVFilter(onlyEngineers)
G.addEFilter(timedEmail(start, end))

rank via centrality based on recent
email transactions among engineers

bc = G.rank(’approxBC’)

KDT$Algorithm$

CombBLAS$
Primi4ve$

Filter(Py)

Python'

C++'

Semiring(Py)
KDT$Algorithm$

CombBLAS$
Primi4ve$ Filter$(C++)$

Semiring$(C++)$

StandardKDT KDT+SEJITS$

SEJITS$$$$Transla4on$

Filter(Py)

Semiring(Py)

SEJITS	for	filter/semiring	accelera8on	

Embedded	DSL:	Python	for	the	whole	applica8on	
•  Introspect,	translate	Python	to	equivalent	C++	code	
•  Call	compiled/op8mized	C++	instead	of	Python	

Filtered	BFS	with	SEJITS	

!"#$%
!"$!%
&"!!%
#"!!%
'"!!%
("!!%
&)"!!%
*#"!!%
)'"!!%

&#&% #$)% $+)% &!#'% #!#$%

!
"#
$%
&'

(%
)*

"%

+,*-".%/0%!12%3./4"55"5%

,-.% /012./3,-.% 456789:/%

Time	(in	seconds)	for	a	single	BFS	itera8on	on	scale	25	RMAT	(33M	ver8ces,	
500M	edges)	with	10%	of	elements	passing	filter.	Machine	is	NERSC’s	Hopper.	

33

A	few	other	graph	algorithms	we’ve	implemented		
		in	linear	algebraic	style	

•  Maximal	independent	set	(KDT/SEJITS)	[BDFGKLOW	2013]	

•  Peer-pressure	clustering	(SPARQL)		[DGLMR	2013]	

•  Time-dependent	shortest	paths	(CombBLAS)	[Ren	2012]	

•  Gaussian	belief	propaga8on	(KDT)	[LABGRTW	2011]	

•  Markoff	clustering	(CombBLAS,	KDT)	[BG	2011,	LABGRTW	2011]	

•  Betweenness	centrality	(CombBLAS)	[BG	2011]	

•  Geometric	mesh	par88oning	(Matlab	J)	[GMT	1998]	

34

The	(original)	BLAS	

•  Experts	in	mapping	algorithms	to	hardware	tune	BLAS	for	specific	pla�orms.	

•  Experts	in	numerical	linear	algebra	build	soLware	on	top	of	the	BLAS	to	get		
				high	performance	“for	free.”	

	

Today	every	computer,	phone,	etc.	comes	with		/usr/lib/libblas!

The	Basic	Linear	Algebra	Subrou8nes	
	had	a	revolu8onary	impact		

on	computa8onal	linear	algebra.	

BLAS	1	 vector	ops	 Lawson,	Hanson,	Kincaid,	
Krogh,	1979	

LINPACK	

BLAS	2	 matrix-vector	
ops	

Dongarra,	Du	Croz,	
Hammarling,	Hanson,	1988	

LINPACK	on		
vector	machines	

BLAS	3	 matrix-matrix	
ops	

Dongarra,	Du	Croz,	Duff,	
Hammarling,	1990	

LAPACK	on		
cache	based	machines	

Can	we	standardize	a	“Graph	BLAS”?	

Can	we	standardize	a	“Graph	BLAS”?	

No, it’s not reasonable to define a universal set

of building blocks.

•  Huge diversity in matching graph algorithms to hardware platforms.
•  No consensus on data structures or linguistic primitives.
•  Lots of graph algorithms remain to be discovered.
•  Early standardization can inhibit innovation.

	

Can	we	standardize	a	“Graph	BLAS”?	

Yes, it is reasonable to define a universal set

of building blocks…

… for graphs as linear algebra.

•  Representing graphs in the language of linear algebra is a mature field.
•  Algorithms, high level interfaces, and implementations vary.
•  But the core primitives are well established.

	

The	Graph	BLAS	effort	

•  Manifesto, �

HPEC 2013:

•  Workshops at IPDPS and HPEC – next in May 2016

•  Periodic working group telecons and meetings

•  Graph BLAS Forum: http://graphblas.org

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

Some	Graph	BLAS	basic	func8ons		
(names	not	final)	

Func,on	
(CombBLAS	equiv)	

Parameters	 Returns	 Matlab	nota,on	

matmul	
(SpGEMM)	

-	sparse	matrices	A	and	B	
-	op8onal	unary	functs	

sparse	matrix	 C	=	A	*	B	

matvec	
(SpM{Sp}V)	

-	sparse	matrix	A		
-	sparse/dense	vector	x	

sparse/dense	vector	 y	=	A	*	x	

ewisemult,	add,	…	
(SpEWiseX)	

-	sparse	matrices	or	vectors	
-	binary	funct,	op8onal	unarys	

in	place	or	sparse	
matrix/vector	

C	=	A	.*	B	
C	=	A	+	B	

reduce	
(Reduce)	

-	sparse	matrix	A	and	funct	 dense	vector	 y	=	sum(A,	op)	

extract	
(SpRef)	

-	sparse	matrix	A	
-	index	vectors	p	and	q	

sparse	matrix	 B	=	A(p,	q)	

assign	
(SpAsgn)	

-	sparse	matrices	A	and	B	
-	index	vectors	p	and	q	

none	 A(p,	q)	=	B	
	

buildMatrix	
(Sparse)	

-	list	of	edges/triples	(i,	j,	v)	
	

sparse	matrix	 A	=	sparse(i,	j,	v,	m,	n)	
	

getTuples	
(Find)	

-	sparse	matrix	A	
	

edge	list	 [i,	j,	v]	=	find(A)	

Matrix	8mes	matrix	over	semiring	

Inputs	
 matrix A: MxN (sparse or dense)	
 matrix B: NxL (sparse or dense)	
Optional Inputs	
 matrix C: MxL (sparse or dense)	
 scalar “add” function ⊕	
 scalar “multiply” function ⊗	
 transpose flags for A, B, C	
Outputs	
 matrix C: MxL (sparse or dense)	

Specific cases and function names:	
SpGEMM: sparse matrix times sparse matrix	
SpMSpV: sparse matrix times sparse vector	
SpMV: sparse matrix times dense vector	
SpMM: sparse matrix times dense matrix	

Notes	
is the set of scalars, user-specified	
defaults to IEEE double float

⊕ defaults to floating-point +	
⊗ defaults to floating-point *	

Implements C ⊕= A ⊕.⊗ B	
	

 for j = 1 : N	
 C(i,k) = C(i,k) ⊕ (A(i,j) ⊗ B(j,k))	
	

 If input C is omitted, implements	
 C = A ⊕.⊗ B	
	

 Transpose flags specify operation �
 on AT, BT, and/or CT instead	
	

41

Breadth-first	search	with	(draL)	Graph	BLAS

Conclusions	

•  Graph	analysis	presents	challenges	in:	
–  Performance	(both	serial	and	parallel)	
–  SoLware	complexity	
–  Interoperability	

•  Implemen8ng	graph	algorithms	using	matrix-based	approaches	
provides	several	useful	solu8ons	to	these	challenges.	

•  Researchers	from	Intel,	IBM,	Nvidia,	LBL,	MIT,	UCSB,	GaTech,	KIT,	
etc.	have	joined	together	to	create	the	Graph	BLAS	standard.	

•  Several	implementa8ons	in	progress:	
–  C++:		CombBLAS	(LBL,	UCSB),	GraphMAT	(Intel)	
–  C:		Graph	Programming	Interface	(IBM),	S8nger	(GaTech)	
–  Java:		Graphulo	(MIT)	
–  Python:		NetworkKit	(KIT)	

	

43

 Thank You!

Computers

Continuous
physical modeling

Linear algebra & graph theory

Discrete
structure analysis

http://graphblas.org

