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Graphs and sparse matrix computation

(philosophical digression)
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Nested dissection and graph partitioning

[George 1971, then many papers]

Matrix reordered by nested dissection

X

Vertex separator in graph of matrix

Elimination tree with nested dissection

nz = 844

. Find a small vertex separator, number it last, recurse on subgraphs

. Approx optimal separators => approx optimal fill & flop count
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Graph algorithms in sparse matrix computation

Many, many graph algorithms have been used, invented, and
implemented at large scale for sparse matrix computation:

Symmetric problems: elimination tree, nonzero structure
prediction, sparse triangular solve, sparse matrix-matrix
multiplication, min-height etree, ...

Nonsymmetric problems: sparse topological solve, bipartite
matching (weighted and unweighted), Dulmage-Mendelsohn
decomposition / strong components, ...

lterative methods: graph partitioning again, independent sets,
low-stretch spanning trees, ...
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Nested dissection and graph partitioning
[George 1971, then many papers]

Matrix reordered by nested dissection

X

Vertex separator in graph of matrix

Elimination tree with nested dissection
nz = 844

Find a small vertex separator, number it last, recurse on subgraphs

Approx optimal separators => approx optimal fill & flop count

It took more than 20 years for nested dissection to become
the method of choice for sparse GE in practice. UCSB



Combinatorial Laplacian algorithms

(partial list)

«  Vaidya 1990: O(n'"°)

«  Spielman/Teng 2004: O(n log® n)

«  Koutis/Miller/Peng 2010: O(n log n log log n)

«  Kelner/Orecchia/Sidford/Zhu 2013: O(n log?n log log n)

(for sparse graphs, fixed ¢)



Combinatorial Laplacian algorithms

(partial list)

«  Vaidya 1990: O(n'"°)

«  Spielman/Teng 2004: O(n log® n)

«  Koutis/Miller/Peng 2010: O(n log n log log n)

«  Kelner/Orecchia/Sidford/Zhu 2013: O(n log?n log log n)

(for sparse graphs, fixed ¢)

Okay, it's been more than 20 years now ...
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The Laplacian World Championships

Why should you participate?
« What would make you more likely to?

« How can we incent team leaders,
members, HPC experts, ... ?

« What are the right metrics?
Single-core time; parallel time;
anything not based on timings?

« Can “you implement, we measure”
work for anything besides just
single-core time?

« Thoughts on test graphs?
Collections, generators, graphs
supplied by contestants?

Should code from entries be
available for wider use?

What's the right schedule?

What's the right venue for the
workshop?

Other comments? Questions?

How can we make this succeed?
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Comparing empirical complexity to theory

« Just counting things, not measuring time

— a stepping stone between O( ) and running time

« Here: K/O/S/Z SimpleSolver (henceforth “RK”)

— log n off of their FullSolver

A whole bunch of sample matrices
—  UF collection, DIMACS, BTER, etc.



Kelner/Orecchia/Sidford/Zhu algorithm

@ Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis.

@ Update flows around
cycle.




Number of projections to convergence

Used
Prescribed

« More optimistic than the bound by a factor of 5 or 10.

0.22

___Required Projections

0.20 |

0.18 |

0.16 |-

0.14

0.12

0.10

0.08 |-

0.06

10?

10

Graph Size (Edges)

0

107



30

caling of work
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Empirical complexity of RK compared to PCG

« PCG = conjugate gradient preconditioned by Jacobi
« PCG does about iters * (m+n) “edge touches”

Count the cost of an RK projection in four different ways:

— cycle length (naive)
— lgn (fast fundamental cycle data structure)
— g (cycle length) (unwarranted optimism)
— 1 (surely a lower bound)



Update Cost
PCG Update Cost

Randomized Kaczmarz compared to PCG with Jacobi
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How about expanding the available projections?

« Add some cycles to basis
 Potentially gain parallelism in updates

 Maybe add flexibility with non-fundamental cycles

More of the projection cost metrics are fantasy now,
since we don’t have fast update algorithms in general.
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Example: non-fundamental cycles on a square grid

« Edge-disjoint
cycles can be
updated in
parallel.




Example: non-fundamental cycles on a square grid
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Work and span for square grid example
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Tree shortcut cycles

@ Select an off-tree edge.

@ Search for a shortcut
between endpoints of
this edge.

- Only search edges
closer to root of tree.

- Truncate search to
control cost.

@ Replace tree cycle with
shortcut cycle.
- Cycle space
dimension remains
the same.




Local greedy cycles

@ Select an unmarked
edge.

@ Find smallest cycle
containing this edge.

- Truncate search to
control cost.

- |f found mark all the
used edges.

@ This setis not
guaranteed to span the
cycle space.



Comparing cycle sets: work and parallel work
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Comparing cycle sets: work and parallel work
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The Laplacian World Championships
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Why should you participate?
What would make you more likely to?

How can we incent team leaders,
members, HPC experts, ... ?

What are the right metrics?
Single-core time; parallel time;
anything not based on timings?

Can “you implement, we measure”
work for anything besides just
single-core time?

Thoughts on test graphs?
Collections, generators, graphs
supplied by contestants?

Should code from entries be
available for wider use?

What's the right schedule?

What's the right venue for the
workshop?

Other comments? Questions?

How can we make this succeed?
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