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Graphs and sparse matrix computation  
(philosophical digression) 

Symmetric Gaussian elimination: 

for j = 1 to n 
    add edges between j’s 
    higher-numbered neighbors 
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Elimination tree with nested dissection

Nested dissection and graph partitioning 
[George 1971, then many papers] 
 
 

•  Find a small vertex separator, number it last, recurse on subgraphs 

•  Approx optimal separators  =>  approx optimal fill & flop count 

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

Vertex separator in graph of matrix



4 

Graph algorithms in sparse matrix computation 

Many, many graph algorithms have been used, invented, and 
implemented at large scale for sparse matrix computation: 

•  Symmetric problems:  elimination tree, nonzero structure 
prediction, sparse triangular solve, sparse matrix-matrix 
multiplication, min-height etree, … 

•  Nonsymmetric problems:  sparse topological solve, bipartite 
matching (weighted and unweighted), Dulmage-Mendelsohn 
decomposition / strong components, … 

•  Iterative methods:  graph partitioning again, independent sets,  
low-stretch spanning trees, … 
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Elimination tree with nested dissection

Nested dissection and graph partitioning 
[George 1971, then many papers] 
 
 

•  Find a small vertex separator, number it last, recurse on subgraphs 

•  Approx optimal separators  =>  approx optimal fill & flop count 

•  It took more than 20 years for nested dissection to become 
the method of choice for sparse GE in practice. 
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Combinatorial Laplacian algorithms 
(partial list) 

•  Vaidya 1990:  O(n1.75) 

•  Spielman/Teng 2004: O(n logc n) 

•  Koutis/Miller/Peng 2010: O(n log n log log n) 

•  Kelner/Orecchia/Sidford/Zhu 2013:  O(n log2 n log log n) 
(for sparse graphs, fixed ε) 
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Combinatorial Laplacian algorithms 
(partial list) 

•  Vaidya 1990:  O(n1.75) 

•  Spielman/Teng 2004: O(n logc n) 

•  Koutis/Miller/Peng 2010: O(n log n log log n) 

•  Kelner/Orecchia/Sidford/Zhu 2013:  O(n log2 n log log n) 
(for sparse graphs, fixed ε) 

 

Okay, it’s been more than 20 years now … 
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The Laplacian World Championships 

•  Why should you participate? 

•  What would make you more likely to? 

•  How can we incent team leaders, 
members, HPC experts, … ? 

•  What are the right metrics?   
Single-core time; parallel time; 
anything not based on timings? 

•  Can “you implement, we measure” 
work for anything besides just 
single-core time? 

•  Thoughts on test graphs?  
Collections, generators, graphs 
supplied by contestants? 

 

•  Should code from entries be 
available for wider use? 

•  What’s the right schedule? 

•  What’s the right venue for the 
workshop? 

•  Other comments?  Questions? 

•  How can we make this succeed? 
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Comparing empirical complexity to theory 

•  Just counting things, not measuring time 
–  a stepping stone between O( ) and running time 

•  Here:  K/O/S/Z  SimpleSolver (henceforth “RK”) 
–  log n off of their FullSolver 

•  A whole bunch of sample matrices 
–  UF collection, DIMACS, BTER, etc. 

 



Kelner/Orecchia/Sidford/Zhu algorithm 



Number of projections to convergence 

•  More optimistic than the bound by a factor of 5 or 10. 
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Scaling of work with tree stretch 

•  Good correlation, better for some types of graphs than others. 
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Empirical complexity of RK compared to PCG 

•  PCG = conjugate gradient preconditioned by Jacobi 

•  PCG does about  iters * (m+n)  “edge touches” 

•  Count the cost of an RK projection in four different ways: 

–  cycle length                                    (naive) 

–  lg n        (fast fundamental cycle data structure) 

–  lg (cycle length)        (unwarranted optimism) 

–  1                                 (surely a lower bound) 
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How about expanding the available projections? 

•  Add some cycles to basis 

•  Potentially gain parallelism in updates 

•  Maybe add flexibility with non-fundamental cycles 

•  More of the projection cost metrics are fantasy now, 
since we don’t have fast update algorithms in general.  



Example:  non-fundamental cycles on a square grid 

•  Edge-disjoint 
cycles can be 
updated in 
parallel. 



•  Edge-disjoint 
cycles can be 
updated in 
parallel. 

Example:  non-fundamental cycles on a square grid 



Work and span for square grid example 

•  foo 

… so how about 
general graphs? 



Tree shortcut cycles 



Local greedy cycles 



Comparing cycle sets:  work and parallel work 

•  foo 



•  foo 

Comparing cycle sets:  work and parallel work 
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The Laplacian World Championships 

•  Why should you participate? 

•  What would make you more likely to? 

•  How can we incent team leaders, 
members, HPC experts, … ? 

•  What are the right metrics?   
Single-core time; parallel time; 
anything not based on timings? 

•  Can “you implement, we measure” 
work for anything besides just 
single-core time? 

•  Thoughts on test graphs?  
Collections, generators, graphs 
supplied by contestants? 

 

•  Should code from entries be 
available for wider use? 

•  What’s the right schedule? 

•  What’s the right venue for the 
workshop? 

•  Other comments?  Questions? 

•  How can we make this succeed? 

 


