
1

Empirical Complexity of Laplacian
Linear Solvers: Discussion

Erik Boman, Sandia National Labs
Kevin Deweese, UC Santa Barbara
John R. Gilbert, UC Santa Barbara

Simons Institute Workshop on
Fast Algorithms via Spectral Methods
December 2, 2014

Support: Intel, Microsoft, DOE Office of Science, NSF	

2

Graphs and sparse matrix computation
(philosophical digression)

Symmetric Gaussian elimination:

for j = 1 to n
 add edges between j’s
 higher-numbered neighbors

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

A L (chordal)

3

Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1971, then many papers]

•  Find a small vertex separator, number it last, recurse on subgraphs

•  Approx optimal separators => approx optimal fill & flop count

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

Vertex separator in graph of matrix

4

Graph algorithms in sparse matrix computation

Many, many graph algorithms have been used, invented, and
implemented at large scale for sparse matrix computation:

•  Symmetric problems: elimination tree, nonzero structure
prediction, sparse triangular solve, sparse matrix-matrix
multiplication, min-height etree, …

•  Nonsymmetric problems: sparse topological solve, bipartite
matching (weighted and unweighted), Dulmage-Mendelsohn
decomposition / strong components, …

•  Iterative methods: graph partitioning again, independent sets,
low-stretch spanning trees, …

5

Elimination tree with nested dissection

Nested dissection and graph partitioning
[George 1971, then many papers]

•  Find a small vertex separator, number it last, recurse on subgraphs

•  Approx optimal separators => approx optimal fill & flop count

•  It took more than 20 years for nested dissection to become
the method of choice for sparse GE in practice.

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

Vertex separator in graph of matrix

6

Combinatorial Laplacian algorithms
(partial list)

•  Vaidya 1990: O(n1.75)

•  Spielman/Teng 2004: O(n logc n)

•  Koutis/Miller/Peng 2010: O(n log n log log n)

•  Kelner/Orecchia/Sidford/Zhu 2013: O(n log2 n log log n)
(for sparse graphs, fixed ε)

7

Combinatorial Laplacian algorithms
(partial list)

•  Vaidya 1990: O(n1.75)

•  Spielman/Teng 2004: O(n logc n)

•  Koutis/Miller/Peng 2010: O(n log n log log n)

•  Kelner/Orecchia/Sidford/Zhu 2013: O(n log2 n log log n)
(for sparse graphs, fixed ε)

Okay, it’s been more than 20 years now …

8

The Laplacian World Championships

•  Why should you participate?

•  What would make you more likely to?

•  How can we incent team leaders,
members, HPC experts, … ?

•  What are the right metrics?
Single-core time; parallel time;
anything not based on timings?

•  Can “you implement, we measure”
work for anything besides just
single-core time?

•  Thoughts on test graphs?
Collections, generators, graphs
supplied by contestants?

•  Should code from entries be
available for wider use?

•  What’s the right schedule?

•  What’s the right venue for the
workshop?

•  Other comments? Questions?

•  How can we make this succeed?

9

Comparing empirical complexity to theory

•  Just counting things, not measuring time
–  a stepping stone between O() and running time

•  Here: K/O/S/Z SimpleSolver (henceforth “RK”)
–  log n off of their FullSolver

•  A whole bunch of sample matrices
–  UF collection, DIMACS, BTER, etc.

Kelner/Orecchia/Sidford/Zhu algorithm

Number of projections to convergence

•  More optimistic than the bound by a factor of 5 or 10.

102 103 104 105 106 107

Graph Size (Edges)
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

U
se

d
P

re
sc

rib
ed

Required Projections

Scaling of work with tree stretch

•  Good correlation, better for some types of graphs than others.

40000 50000 60000 70000 80000 90000 100000 110000

⌧

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

lU
pd

at
ed

E
dg

es

⇥107 email Random Trees
Random Trees
Linear Fit
m= 372.696733967
b= -13323365.9995
r2 = 0.9630495319

Random Trees w/ Greedy Cycles
Linear Fit w/ Greedy Cycles
m= 382.213467864
b= -14208795.3955
r2 = 0.960566913714

1100000 1200000 1300000 1400000 1500000 1600000 1700000 1800000

⌧

800000

850000

900000

950000

1000000

1050000

1100000

1150000

1200000

1250000

P
ro

je
ct

io
ns

lo
g(

n
✏�

1)

cti Random Trees
Random Trees
Linear Fit
m= 0.679794481632
b= 24797.8936374
r2 = 0.977670269168

30000 32000 34000 36000 38000 40000 42000

⌧

14000

15000

16000

17000

18000

19000

20000

21000

22000

P
ro

je
ct

io
ns

lo
g(

n
✏�

1)

uk Random Trees
Random Trees
Linear Fit
m= 0.479583283507
b= 188.579908427
r2 = 0.738982946206

email
interactions

road
network

physical
model

13

Empirical complexity of RK compared to PCG

•  PCG = conjugate gradient preconditioned by Jacobi

•  PCG does about iters * (m+n) “edge touches”

•  Count the cost of an RK projection in four different ways:

–  cycle length (naive)

–  lg n (fast fundamental cycle data structure)

–  lg (cycle length) (unwarranted optimism)

–  1 (surely a lower bound)

102 103 104 105 106 107

Graph Size (Edges)
10�2

10�1

100

101

102

103

104

U
pd

at
e

C
os

t
P

C
G

U
pd

at
e

C
os

t
Randomized Kaczmarz compared to PCG with Jacobi
Projections
Total Edges
log(Cycle Length)

log(n) ⇤ Projections

15

How about expanding the available projections?

•  Add some cycles to basis

•  Potentially gain parallelism in updates

•  Maybe add flexibility with non-fundamental cycles

•  More of the projection cost metrics are fantasy now,
since we don’t have fast update algorithms in general.

Example: non-fundamental cycles on a square grid

•  Edge-disjoint
cycles can be
updated in
parallel.

•  Edge-disjoint
cycles can be
updated in
parallel.

Example: non-fundamental cycles on a square grid

Work and span for square grid example

•  foo

… so how about
general graphs?

Tree shortcut cycles

Local greedy cycles

Comparing cycle sets: work and parallel work

•  foo

•  foo

Comparing cycle sets: work and parallel work

23

The Laplacian World Championships

•  Why should you participate?

•  What would make you more likely to?

•  How can we incent team leaders,
members, HPC experts, … ?

•  What are the right metrics?
Single-core time; parallel time;
anything not based on timings?

•  Can “you implement, we measure”
work for anything besides just
single-core time?

•  Thoughts on test graphs?
Collections, generators, graphs
supplied by contestants?

•  Should code from entries be
available for wider use?

•  What’s the right schedule?

•  What’s the right venue for the
workshop?

•  Other comments? Questions?

•  How can we make this succeed?

