Sparse Matrices for High-Performance
Graph Computation

John R. Gilbert

University of California, Santa Barbara

with Aydin Buluc, LBNL; Armando Fox, UCB; Shoaib Kamil, MIT;
Adam Lugowski, UCSB; Lenny Oliker, LBNL, Sam Williams, LBNL
ENS Lyon

September 25, 2012 -

Support: Intel, Microsoft, DOE Office of Science, NSF

Motivation

Sparse matrices for graph algorithms
CombBLAS: sparse arrays and graphs on parallel machines
KDT: attributed semantic graphs in a high-level language

Specialization: getting the best of both worlds

Large graphs are everywhere...

* Internet structure * Scientific datasets: biological,

. Social interactions chemical, cosmological, ecological, ...

WWW snapshot, courtesy Y. Hyun Yeast protein interaction network, courtesy H. Jeong

UCSB

An analogy?

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

SUPERCOMPUTER SITES

Top 500 List (June 2012)

Rank Site Computer/Year Vendor Cores Rmax
Sequoia - BlueGene/Q, Power BQC 16C
1 DOE/NNSALLNL 1.60 GHz, Custom / 2011 1572864 16324.75
United States BM
RIKEN Advanced Institute for K computer, SPARC64 VllIfx 2.0GHz, Tofu
- 2 Computational Science (AICS) interconnect / 2011 705024 10510.00
op encnmark. Japan Fuiitsu
DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C
3 Laboratory 1.60GHz, Custom / 2012 786432 8162.38
Solve a large system Unted Sates
. . 4 SuperMUC - iDataPlex DX360M4, Xeon
4 s E5-2680 8C 2.70GHz, Infiniband FDR /2012 147456 2897.00
OT linear equations Germany BM
H H . H National Supercomputing Center in Tianhe-1A - NUDT YH MPP, Xeon X5670
y aussian eln ||nat|0n 5 Tianjin 6C 2.93 GHz, NVIDIA 2050 / 2010 186368 2566.00
China NUDT
DOE/SC/Oak Ridge National e SR Ol
2.200GHz, Cray Gemini interconnect,
6 Laboratory NVIDIA 2090 / 2009 298592 1941.00
United States
Cray Inc.
CINECA Fermi - BlueGene/Q, Power BQC 16C
7 Ital 1.60GHz, Custom /2012 163840 1725.49
Y
1BM
; JUQUEEN - BlueGene/Q, Power BQC 16C
— X [] 8 Forschungszentrum Juelich (FZJ) 3 60GHz, Custom / 2012 131072 1380.39
— Germany 1BM
Curie thin nodes - Bullx B510, Xeon
9 CEA/TGCC-GENCI E5-2680 8C 2.700GHz, Infiniband QDR / 77184 1359.00
France 2012
Bull
. ; - Nebulae - Dawning TC3600 Blade System,
National Supercomputing Centre in ,
Xeon X5650 6C 2.66GHz, Infiniband QDR,
10 g:l?nnamen (NSCS) NVIDIA 2050 / 2010 120640 1271.00
Dawning

Pleiades - SG| Altix ICE X/8200EX/8400EX,
1 NASA/Ames Research Center/NAS Xeon 54xx 3.0/5570/5670/E5-2670 2.93/2.6
5 United States /3.06/3.0 Ghz, Infiniband QDR/FDR /2011
SGI

125980 1243.00

Graph 500 List (June 2012)

Graph500
Benchmark:

Breadth-first search
In a large
power-law graph

Installation Site Machine

DOE/SC/Argonne

Mira/BI
National Laboratory ira/BlueGene/Q
! e Sequoia/Blue Gene/Q

DARPA Trial Subset, Power 775, POWER7

2 IBM. Devglopment 8C 3.836 GHz
Engineering
Information

3 Technology Center, Oakleaf-FX (Fujitsu
The University of PRIMEHPC FX 10)
Tokyo
GSIC Center, Tokyo HP Cluster Platform

4 Institute of SL390s G7 (three
Technology Tesla cards per node)
Brookhaven National

N
5 Laboratory BLUE GENE/Q
g DOE/SC/Argonne o /BlueGene/Q

National Laboratory

Pleiades - SGI ICE-X,
dual plane hypercube
FDR infiniband,
E5-2670 "sandybridge”

NASA-Ames / Parallel
7 Computing Lab, Intel
Labs

8 NERSC/LBNL XE6

NNSA and IBM
9 Research, T.J.
Watson

NNSA/SC Blue Gene/Q
Prototype II

GSIC Center, Tokyo
10 Institute of
Technology

TSUBAME 2.0 (CPU
only)

32768

1024

4800

1366

1024

1024

1024

4817

4096

1366

524288

524288

32768

76800

16392

16384

16384

16384

115600

65536

16392

38

38

35

38

35

34

34

34

35

32

36

3541

3541

508.05

358.1

317.09

294.293

292.363

270.33

254.074

236

202.68

Floating-Point vs. Graphs, June 2012

16.3 Petaflops 3.54 Terateps

plA ST

The challenge of the software stack

* By ana_logy to Basic Linear Algebra Subroutines (BLAS):
numerical Speed (MFlops) vs. Matrix Size (n)
scientific T T
computing. . . Ic = A*B

gm- |y = A*x
= xT

« What should the so/ I y
combinatorial %/ T T
BLAS IOOk Iike? Order of vectors/matrices

Sparse matrices for graph algorithms

Sparse array-based primitives

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® o ® ® ® ®

® ® ®

XQ o ® © .xQ
® ©o o o
o o

Element-wise operations

Sparse matrix indexing

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices on various semirings: (x,+) , (and,or) , (+ min) ,

Multiple-source breadth-first search

1

Multiple-source breadth-first search

® o o
o o
o ® O o o
o o o 9 o
[] o
o o o
[]
Al X ATX

. Sparse array representation => space efficient

. Sparse matrix-matrix multiplication => work efficient

. Three possible levels of parallelism: searches, vertices, edges

12

Indexing sparse arrays in parallel

(extract subgraphs, coarsen grids, etc.)

SpRref: B = A(I,)J) A,B: sparse matrices
SpAsgn: B(I,J) = A I,J: vectorsofindices
SpExpAdd: B(I,J) += A

length(J)

0/1/0/0 1/0(0
/ —
Iength(){0001 X X 0l110 =
— 0|01
" olofo]r"

SpRef using mixed-mode sparse matrix-matrix
multiplication (SpGEMM). Ex: B = A([2,4], [1,2,3])

13

Graph contraction via

sparse triple product

Contract @
i > H
“ A3
& (r)—»)
1 2 3 4 5 6 1 2 3 4 5 6
111 1 1 ° ° 1 ®
2 1 1 X 2@ ° X |1 = | @ ®
3 1 1 3] @ o0 1 ot
4 ° ° 1
5@ @ 1
6 ° 1

Subgraph extraction via

sparse triple product

Extract
| >
5
12 3 4 5 6 1 2 3 4 5 6
1 1 1 ® ° ®
2 1 X 2@ ° X = |® ®
3 1 3] @ e e 1 o
4 ° ° 1
5@ °
6 ° 1

16

The case for sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph Graphs in the language of
computations linear algebra
Data driven, Fixed communication patterns
unpredictable communication.
Irregular and unstructured, Operations on matrix blocks
poor locality of reference exploit memory hierarchy

Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

UCSB

« CombBLAS: sparse arrays and graphs on parallel machines

17

18

Some Combinatorial BLAS functions

Function Applies to Parameters Returns Matlab Phrasing
Sparse Matrix A, B: sparse matrices
SPGEMM (as friend) trA: transpose A if true Sparse Matrix C=A=xB
trB: transpose B if true
SPMV Sparse Matrix A: sparse matrices
(as friend) x: sparse or dense vector(s) Sparse or Dense y=Axx
trA: transpose A if true Vector(s)
Sparse Matrices A, B: sparse matrices
SPEWIsEX (as friend) notA: negate A if true Sparse Matrix C=A=xB
notB: negate B if true
Any Matrix dim: dimension to reduce
Rebuce (as method) binop: reduction operator Dense Vector sum(A)
Sparse Matrix p: row indices vector
SPREF (as method) q: column indices vector Sparse Matrix B=A(p.q)
Sparse Matrix p: row indices vector
SPAsGN (as method) q: column indices vector none A(p,q) =B
B: matrix to assign
Any Matrix rhs: any object Check guiding
ScaLe (as method) (except a sparse matrix) none principles 3 and 4
Any Vector rhs: any vector none none
ScALE (as method)
Any Object unop: unary operator
APPLY (as method) (applied to non-zeros) None

~ UCSB

2D layout for sparse matrices & vectors

l X1
n/pr Al,l Al’z 'A1’3 Matrlx/vector dlStFIbUl’IOhS,
........................... l . Interleaved on eaCh Other.
T 5
Ay, Az l A 22 De au.td|str.|but|on n
X Combinatorial BLAS.
' X31
Ao | Ae A | v Scalable with increasing
I X, number of processes

- 2D matrix layout wins over 1D with large core counts
and with limited bandwidth/compute
- 2D vector layout sometimes important for load balance

BFS in “vanilla” MPlI Combinatorial BLA

GTEPS

w ~ 00 O N

1225 2500 5041
Number of cores

. Graph500 benchmark at scale 29, C++ (or KDT) calling CombBLAS
. NERSC “Hopper” machine (Cray XEG)

UCSB

20

trong scaling of vertex relabeling

“*Time (secs) =#=Speedup

60 120
50 100
» 40 80 o
E 3
9 30 60 ¢
g a
20 40 ¥
10 20

0 - T T T - 0

1 4 16 64 256 1024
Cores

symmetric permutation < relabeling graph vertices
 RMAT Scale 22; edge factor=8; a=.6, b=c=d=.4/3
* Franklin/NERSC, each node is a quad-core AMD Budapest

1D vs. 2D scaling for sparse

matrix-matrix multiplication

35 T T T 70

' SpSUMMA —— 66X A SpSUMMA —— 65X..+
EpetraExt ----w---- EpetraExt ----e-
30 B0 e
25 50 aax.
dzi;,
8 20 x § 40 ;
S S
Q (0]
o 15 o 30
x].GX x','
10 % 20 [
, / ggx _________ "
5 10
---------------- «3.1X \
0 Il Il Il 1 Il 1 0 Il 1 1 Il 1
9 36 64 121 150 180 256 4 9 16 36 64 121
Number of Cores Number of Cores

(a) R-MAT x R-MAT product (scale 21). (b) Multiplication of an R-MAT matrix of scale
23 with the restriction operator of order 8.

SpSUMMA = 2-D data layout (Combinatorial BLAS)
EpetraExt = 1-D data layout (Trilinos)

In practice, 2D algorithms have the potential to scale, but not linearly
T, (2D)= ap\/; + ﬁcn\/; T, (optimal) = c’n

Parallel sparse matrix-matrix

multiplication algorithms

C; += HyperSparseGEMM(Arew, Breev)
[

\

25K

X pd 100k = v

l\
A)
P4
N\

AP

L

5K ' C
A B
2D algorithm: Sparse SUMMA (based on dense SUMMA)

General implementation that handles rectangular matrices

Sequential “hypersparse” kernel

Operates on the strictly O(nnz) DCSC data structure
Sparse outer-product formulation with multi-way merging
Efficient in parallel, i.e. T(1) = p T(p)

- e e 5 Time complexity:
e ¢ x = e O(flops -1gni + nzc(A) + nzr(B))
. - ° ® o ® - independent of dimension

Space complexity:
/ \ O(nnz(A)+nnz(B) +nnz(C))
,/ \, - independent of flops

Square sparse matrix multiplication

Almost linear scaling until bandwidth costs starts to dominate

A
168, R ~ Scale-21 —e— 1 Scaling proportional
Compute bound ====s===- \/
PN . NS S Bandwidth-bound e | to Vp afterwards
4 ,,

Seconds

T, = P[P + Beny/p

......... . _ 2
0.25 b Y,] 7-vcomp (Optlmal) =Cn

¥
4,
.
2

05

0125 boe

Number of Cores

KDT: attributed semantic graphs in a high-level language

26

Parallel Graph Analysis Software

Discrete
structure analysis

l

Graph theory

l

Parallel Graph Analysis Software

Discrete
structure analysis

Domain scientists

KnoWIedge Discovery Toolbox (KDT) --------------------------------------

Graph algorithm
developers 1
Graph theory
Distributed Combinatorial BLAS
HPC scientists 1
and engineers

Shared-address space

Combinatorial BLAS o
I’ Communication Support

(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

Parallel Graph Analysis Software

Domain scientists Discrete

Knowledge Discovery Toolbox (KDT) --------------------------------------

structure analysis

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

Graph algorithm
developers 1
Graph theory
HPC scientists 1
and engineers

I

Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

 KDT is higher level (graph abstractions)
 Combinatorial BLAS is for performance

Domain expert vs. Graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree ())
— vectors

Clustering / components
Centrality / authority:
betweenness centrality, PageRank

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Markov
Clustering

o
o)
s
4
(‘) To %4,
! ;
o ’ \ »o\oo °
.
o
o X—— ,Do
R 0
4
o]
L
o
Graph of
° Clusters
o—o

Largest
Component

Domain expert vs. Graph expert

(Semantic) directed graphs ;‘igﬁ
— constructors, I/O G =
— basic graph metrics (e.g., degree L) e
— vectors

. 1
Clustering / components o
Centrality / authority: smal

vi

betweenness centrality, PageR

= bigG.connComp ()

tComp = comp.hist () .argmax()
bigG. subgraph (comp==giantComp)

ters = G.cluster (*Markov’)

Nedge = G.nedge(clusters)
1G = G.contract (clusters)

sualize

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Domain expert vs. Graph expert

(Semantic) directed graphs
— constructors, I/O
— basic graph metrics (e.g., degree
— vectors

Clustering / components
Centrality / authority:

betweenness centrality, PageR

comp = bigG.connComp ()

giantComp = comp.hist () .argmax()

G = bigG.subgraph (comp==giantComp)
clusters = G.cluster (*Markov’)
clusNedge = G.nedge (clusters)
smallG = G.contract (clusters)

visualize

Hypergraphs and sparse matri
Graph primitives (e.g., bfsTree
SpMV / SpGEMM on semirings

[...]

L = G.toSpParMat ()

d = L.sum(kdt.SpParMat.Column)

L = -L

L.setDiag (d)

M = kdt.SpParMat.eye (G.nvert()) — mu*L

pos = kdt.ParVec.rand(G.nvert ())
for 1 in range (nsteps):
pos = M.SpMV (pos)

Knowledge 1 e

Discovery @5 o
Toolbox T |-
http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer
Easy-to-use Python interface

Runs on a laptop as well as a cluster with 10,000 processors

Open source software (New BSD license)
V0.2 released March 2012

—

e

A few KDT applications

Markov Clustering

A

$ i

&

image courtesy Stijn van Dongen

Markov Clustering (MCL) finds clusters by
postulating that a random walk that visits
a dense cluster will probably visit many of
its vertices before leaving.

We use a Markov chain for the random
walk. This process is reinforced by adding
an inflation step that uses the Hadamard
product and rescaling.

-

J

34

(—[Betweenness Centrality]—\

77
Rocchini

Betweenness Centrality says that a vertex
is important if it appears on many
shortest paths between other vertices.
An exact computation requires a BFS for
every vertex. A good approximation can
be achieved by sampling starting vertices.

\§

J

—

o
PageRank €

courtesy Felipe Micaroni Lalli

—

PageRank

PageRank says a
vertex is important
if other important
vertices link to it.

5

Each vertex (webpage) votes by splitting
its PageRank score evenly among its out
edges (links). This broadcast (an SpMV) is
followed by a normalization step
(ColWise). Repeat until convergence.

PageRank is the stationary distribution of a
Markov Chain that simulates a "random

J

_ surfer”.

(—[Belief Propagation]—\

P& ;0
QO AT
Sum-up:
p= Pn+ZkEN(i) Py,
1= 151_1(131'1/11@ + ZkeN(i) Priping), Vi
Update i’s messages to its neighbors
Py = *;'112]' (P = Py),
tij = (Pifts — Pjipegi) [Aij.
Gaussian belief propagation (GaBP) is an
iterative algorithm for solving the linear
system of equations Ax = b, where A is
symmetric positive definite.
GaBP assumes each variable follows a
normal distribution. It iteratively calculates
the precision P and mean value u of each

variable; the converged mean-value vector

_ approximates the actual solution.

The need for filters

Graph of text Betweenness
& phone calls centrality
o \ O
o) o
o} o -
0 i 0
Betweenness Betweenness o RIS
. . $ 0
centrality on centralityon .)
e} o
text messages phone calls) o
o 0}

Attributed semantic graphs and filters

Example:

Vertex types: Person, Phone,
Camera, Gene, Pathway

Edge types: PhoneCall, TextMessage,
Colocation, Sequence Similarity

Edge attributes: StartTime, EndTime

Calculate centrality just for emails
among engineers sent between times
sTime and eTime

def onlyEngineers (self):
return self.position == Engineer

def timedEmail (self, sTime, eTime):

return ((self.type == email) and
(self.Time > sTime) and
(self.Time < eTime))

start = dt.now() - dt.timedelta (days=30)
end = dt.now()

G denotes the graph
G.addVFilter (onlyEngineers)
G.addEFilter (timedEmail (start, end))

rank via centrality based on recent
email transactions among engineers
bec = G.rank ('’ approxBC’)

Filter options and implementation

* Filter defined as unary predicates, checked in order they

were added

* Each KDT object maintains a stack of filter predicates

* All operations respect filters, enabling filter-ignorant

algorithm design

On-the-fly filters

Materialized filters

Edges are retained

Edges are pruned on copy

Check predicate on each
edge/vertex traversal

Check predicate once on
materialization

Cheap but done on each run

Expensive but done once

Specialization: getting the best of both worlds

38

On-the-fly filter performance issues

C++

CombBLAS

. Write filters as semiring ops in C, wrap in Python
— Good performance but hard to write new filters

. Write filters in Python and call back from CombBLAS
— Flexible and easy but runs slow

. The issue is local computation, not parallelism or comms

. All user-written semirings face the same issue.
39

UCSB

Solution: Just-in-time specialization (SEJITS)

o

/

, : Translate
e A 4
C++ T > C++
- Filter
CombBLAS

. On first call, translate Python filter or semiring op to C++
. Compile with GCC
. Call the compiled code thereafter

. (Lots of details omitted)

40

Filtered BFS with SEJITS

e=fuoKDT @==SEJ|ITS+KDT “**CombBLAS

256
128
64
32
16

Mean BFS time

1 2 4 8 16 32 64
Number of MPI processes

Time (in seconds) for a single BFS iteration on Scale 23 RMAT (8M vertices,
130M edges) with 10% of elements passing filter. Machine is Mirasol.

42

Sparse arrays and matrices supply useful primitives, and
algorithms, for high-performance graph computation.

A CSC moral: Things are always clearer when you look at
them from two directions.

Just-in-time specialization is key to performance of flexible
user-programmable graph analytics.

kdt.sourceforge.net/

gauss.cs.ucsb.edu/~aydin/CombBLAS/

UCSB

