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Combinatorial Scientific Computing

“I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were ‘sparse’ 
in the matrix, and that typically the 
triangular matrices associated with 
the forward and back solution 
provided by Gaussian elimination 
would remain sparse if pivot 
elements were chosen with care”

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won 
the 1990 Nobel Prize for Economics
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Graphs and Sparse Matrices:  Cholesky factorization
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Symmetric Gaussian elimination:

for j = 1 to n
add edges between j’s
higher-numbered neighbors

Fill: new nonzeros in factor
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Elimination tree with nested dissection

Fill-reducing matrix permutations

• Theory: approx optimal separators => approx optimal fill and op count

• Orderings: nested dissection, minimum degree, hybrids

• Graph partitioning: spectral, geometric, multilevel

Vertex separator in graph of matrix
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Combinatorial Scientific Computing:
The development, application and analysis of combinatorial 

algorithms to enable scientific and engineering computations

Combinatorial Scientific Computing

Computer Science         Computational Science 
& Engineering

Algorithmics

What’s in the intersection?
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CSC:  What’s in a name?

• Deeper origins in …
– Sparse direct methods community (1950s & onward)

– Statistical physics: graphs and Ising models (1940s & 50s)

– Chemical classification (1800s, Cayley)

– Common esthetic, techniques, and goals among researchers 
who were far apart in traditional scientific taxonomy

• “Combinatorial scientific computing” chosen in 2002
– After lengthy email discussion among ~ 30 people.

– Now > 70,000 Google hits for “combinatorial scientific computing” 

• Recognition by scientific community & funding agencies
– 5 major CSC workshops since 2004, plus many minisymposia

– DOE “CSCapes” institute formed 2006
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Lead Principal Investigator:  Alex Pothen, Purdue

www.cscapes.org

DOE CSCapes Institute

http://www.cscapes.org/�
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A Brief Tour of 
Applications
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• Goals:  balance load, reduce data movement

• Approaches:  geometric, spectral, multilevel

• Geometric meshes are easier than general 
sparse structures!

• Graphs  =>  hypergraphs, more detailed models

• Partitioning in parallel:  how to bootstrap?

Partitioning data for parallel computation

Image courtesy of Mark Adams

Image courtesy of 
Umit Catalyurek
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Coloring for parallel nonsymmetric 
preconditioning   [Aggarwal et al.]

• Level set method for multiphase 
interface problems in 3D.

• Nonsymmetric-structure,  
second-order-accurate octree discretization.

• BiCGSTAB preconditioned by parallel triangular solves.

263 million DOF
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Coloring for evaluation of sparse Jacobians
[Pothen et al., courtesy CSCapes]

• Goal:  compute (sparse) matrix J of partial derivatives,  J(i,j) =  ∂yi / ∂xj

• Finite differences give one column at a time …

• … but nonoverlapping columns can be computed together.

• Many variations, extensions, generalizations.
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• Technique to convert a (complicated) program that computes f(x)
into a program that computes   ∂fi / ∂xj   for all i and j

• Represent  a computation as a DAG; vertices are elementary operations

• Label edges with partial derivatives of elementary ops

Function Derivatives

Automatic Differentiation of Programs
[Hovland et al., courtesy CSCapes]
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Automatic Differentiation

• Label edges with partial derivatives of elementary ops

• Using the chain rule, eliminate internal vertices

• End up with partial derivatives of outputs with respect to inputs

Derivatives
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Automatic Differentiation

• Used in practice on very large programs => large computational graphs

• Work depends on elimination order; best order is NP-hard

• Checkpointing to trade time for memory; many combinatorial problems

Derivatives

www.autodiff.org

http://www.autodiff.org/�
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Landscape connectivity modeling
[Shah et al.]

• Habitat quality, gene flow, 
corridor identification, 
conservation planning 

• Pumas in southern California: 
12 million nodes, < 1 hour

• Targeting larger problems:             
Yellowstone-to-Yukon corridor

Figures courtesy of Brad McRae
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Circuitscape  [McRae, Shah]

• Predicting gene flow with resistive networks

• Matlab, Python, and Star-P (parallel) implementations

• Combinatorics:
– Initial discrete grid: ideally 100m resolution (for pumas)

– Partition landscape into connected components

– Graph contraction: habitats become nodes in resistive network

• Numerics:
– Resistance computations for pairs of habitats in the landscape

– Iterative linear solvers invoked via Star-P: Hypre (PCG+AMG)
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• How strongly does each transcription
factor activate or repress expression 
of each gene?

• Factorize observation matrix  E as  P × A

• Topological constraints on  A

• Possible nonnegativity constraint on  P

• Regularized alternating least squares, etc.

Reverse-engineering genetic transcription
[Abdur-Rahim, dePuit, Yuraszeck after Liao etc.]

Liao et al. 2003,  PNAS  

Observed gene 
expression data EUnknown 

transcription factor 
activities  P

Microarray ->

DNA makes RNA, regulated by 
proteins called transcription factors.

Unknown 
connectivity 
strengths A
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A Few Challenges in 
Combinatorial Scientific 

Computing



24

The Challenge of 
Architecture 

and Algorithms



25

The Architecture & Algorithms Challenge

Oak Ridge / Cray Jaguar
> 1.75 PFLOPS

Two Nvidia 
8800 GPUs
> 1 TFLOPS

Intel 80-
core chip
> 1 TFLOPS Parallelism is no longer optional…

… in every part of a computation.
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High-performance architecture

 Most high-performance 
computer designs allocate 
resources to optimize 
Gaussian elimination on 
large, dense matrices.

 Originally, because linear 
algebra is the middleware 
of scientific computing.

 Nowadays, largely for 
bragging rights.

= xP A L U
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Strongly connected components

• Symmetric permutation to block triangular form

• Diagonal blocks are strong Hall  (irreducible / strongly connected) 

• Sequential:  linear time by depth-first search  [Tarjan]

• Parallel: divide & conquer, work and span depend on input
[Fleischer, Hendrickson, Pinar]
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Architectural impact on algorithms

Matrix multiplication:  C = A * B
C = 0;

for  i = 1 : n

for  j = 1 : n

for  k = 1 : n

C(i,j) = C(i,j) + A(i,k) * B(k,j);

O(n3) operations
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Architectural impact on algorithms
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Naïve algorithm is O(N5) time under UMH model.
BLAS-3 DGEMM and recursive blocked algorithms are O(N3). 

Size 2000 took 5 days

12000 would take
1095 years

Diagram from Larry Carter

Naïve 3-loop matrix multiply [Alpern et al., 1992]:



30

 A big opportunity exists for computer architecture to 
influence combinatorial algorithms.

 (Maybe even vice versa.)

The architecture & algorithms challenge



31

The Challenge 
of Primitives
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An analogy?

As the “middleware” 
of scientific computing, 

linear algebra has supplied
or enabled:

• Mathematical tools

• “Impedance match” to 
computer operations

• High-level primitives

• High-quality software libraries

• Ways to extract performance
from computer architecture

• Interactive environments

Computers

Continuous
physical modeling

Linear algebra
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An analogy?  

Computers

Continuous
physical modeling

Linear algebra

Discrete
structure analysis

Graph theory

Computers
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An analogy?  Well, we’re not there yet ….  

Discrete
structure analysis

Graph theory

Computers

√ Mathematical tools

? “Impedance match” to 
computer operations

? High-level primitives 

? High-quality software libs

? Ways to extract performance
from computer architecture

? Interactive environments
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Primitives should…

• Supply a common notation to express computations

• Have broad scope but fit into a concise framework

• Allow programming at the appropriate level of
abstraction and granularity

• Scale seamlessly from desktop to supercomputer

• Hide architecture-specific details from users
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Frameworks for graph primitives

Many possibilities; none completely satisfactory; 
little work on common frameworks or interoperability.

• Visitor-based, distributed-memory:  PBGL
• Visitor-based, multithreaded:  MTGL
• Heterogeneous, tuned kernels:  SNAP
• Scan-based vectorized:  NESL
• Map-reduce:  lots of visibility
• Sparse array-based:  Matlab *P-KDT, CBLAS
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The Case for 
Sparse Matrices
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Identification of Primitives

Sparse matrix-matrix 
multiplication (SpGEMM)

Element-wise operations

x

Matrices on various semirings:    (x, +)   ,   (and, or)   ,   (+, min)   ,   …

Sparse matrix-dense 
vector multiplication

Sparse matrix indexing

x

.*

Sparse array-based primitives
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Multiple-source breadth-first search

X

1 2

3

4 7

6

5

AT



40

XAT ATX
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Multiple-source breadth-first search
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• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Load balance depends on SpGEMM implementation

XAT ATX


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5

Multiple-source breadth-first search
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Why focus on SpGEMM?

• Graph clustering (Markov, peer pressure)
• Subgraph / submatrix indexing
• Shortest path calculations 
• Betweenness centrality
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in 

finite element computations
• Context-free parsing ...

1
1

1
1

1 x x

SpGEMM: Sparse Matrix x Sparse Matrix 
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Distributed-memory sparse matrix-matrix 
multiplication

j

* =i

k
k

Cij

Cij += Aik * Bkj 

 2D block layout
 Outer product formulation
 Sequential “hypersparse” kernel

• Scales well to hundreds of processors

• Betweenness centrality benchmark:  
over 200 MTEPS

• Experiments: TACC Lonestar cluster

Time vs Number of cores -- 1M-vertex RMAT
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A Parallel Library:  
Combinatorial BLAS
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• By analogy to 
numerical 
scientific 
computing. . .

• What should the 
combinatorial 
BLAS look like?

The Primitives Challenge

C  =  A*B

y  =  A*x

μ =  xT y

Basic Linear Algebra Subroutines (BLAS):
Speed  (MFlops) vs. Matrix Size (n)
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Applications and Algorithms

Betweenness Centrality (BC)
What fraction of shortest paths 
pass through this node?

Brandes’ algorithm

Software stack for an application of 
the Combinatorial BLAS

The Combinatorial BLAS:  Example of use
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BC performance in distributed memory 

• TEPS = Traversed Edges Per Second

• One page of code using CBLAS
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The Education Challenge

 How do you teach this stuff?

 Where do you go to take courses in

 Graph algorithms …

 … on massive data sets …

 … in the presence of uncertainty …

 … analyzed on parallel computers …

 … applied to a domain science?
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Final thoughts

• Combinatorial algorithms are pervasive in scientific 
computing and will become more so.

• Linear algebra and combinatorics can support each 
other in computation as well as in theory.

• A big opportunity exists for computer architecture to 
influence combinatorial algorithms.

• This is a great time to be doing research in 
combinatorial scientific computing!
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