
1

Combinatorial Scientific Computing:
Tutorial, Experiences, and Challenges

John R. Gilbert
University of California, Santa Barbara

Workshop on Algorithms for Modern Massive Datasets
June 15, 2010

Support: NSF, DARPA, DOE, SGI

2

Combinatorial Scientific Computing

“I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were ‘sparse’
in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

3

Graphs and Sparse Matrices: Cholesky factorization

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

G(A) G+(A)
[chordal]

Symmetric Gaussian elimination:

for j = 1 to n
add edges between j’s
higher-numbered neighbors

Fill: new nonzeros in factor

4

Elimination tree with nested dissection

Fill-reducing matrix permutations

• Theory: approx optimal separators => approx optimal fill and op count

• Orderings: nested dissection, minimum degree, hybrids

• Graph partitioning: spectral, geometric, multilevel

Vertex separator in graph of matrix

0 50 100

0

20

40

60

80

100

120

nz = 844

Matrix reordered by nested dissection

5

Combinatorial Scientific Computing:
The development, application and analysis of combinatorial

algorithms to enable scientific and engineering computations

Combinatorial Scientific Computing

Computer Science Computational Science
& Engineering

Algorithmics

What’s in the intersection?

6

CSC: What’s in a name?

• Deeper origins in …
– Sparse direct methods community (1950s & onward)

– Statistical physics: graphs and Ising models (1940s & 50s)

– Chemical classification (1800s, Cayley)

– Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy

• “Combinatorial scientific computing” chosen in 2002
– After lengthy email discussion among ~ 30 people.

– Now > 70,000 Google hits for “combinatorial scientific computing”

• Recognition by scientific community & funding agencies
– 5 major CSC workshops since 2004, plus many minisymposia

– DOE “CSCapes” institute formed 2006

7

CSC: What’s in a name?

• Deeper origins in …
– Sparse direct methods community (1950s & onward)

– Statistical physics: graphs and Ising models (1940s & 50s)

– Chemical classification (1800s, Cayley)

– Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy

• “Combinatorial scientific computing” chosen in 2002
– After lengthy email discussion among ~ 30 people.

– Now > 70,000 Google hits for “combinatorial scientific computing”

• Recognition by scientific community & funding agencies
– 5 major CSC workshops since 2004, plus many minisymposia

– DOE “CSCapes” institute formed 2006

8

CSC: What’s in a name?

• Deeper origins in …
– Sparse direct methods community (1950s & onward)

– Statistical physics: graphs and Ising models (1940s & 50s)

– Chemical classification (1800s, Cayley)

– Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy

• “Combinatorial scientific computing” chosen in 2002
– After lengthy email discussion among ~ 30 people.

– Now > 70,000 Google hits for “combinatorial scientific computing”

• Recognition by scientific community & funding agencies
– 5 major CSC workshops since 2004, plus many minisymposia

– DOE “CSCapes” institute formed 2006

9

Lead Principal Investigator: Alex Pothen, Purdue

www.cscapes.org

DOE CSCapes Institute

http://www.cscapes.org/�

10

A Brief Tour of
Applications

11

• Goals: balance load, reduce data movement

• Approaches: geometric, spectral, multilevel

• Geometric meshes are easier than general
sparse structures!

• Graphs => hypergraphs, more detailed models

• Partitioning in parallel: how to bootstrap?

Partitioning data for parallel computation

Image courtesy of Mark Adams

Image courtesy of
Umit Catalyurek

12

Coloring for parallel nonsymmetric
preconditioning [Aggarwal et al.]

• Level set method for multiphase
interface problems in 3D.

• Nonsymmetric-structure,
second-order-accurate octree discretization.

• BiCGSTAB preconditioned by parallel triangular solves.

263 million DOF

13

Coloring for evaluation of sparse Jacobians
[Pothen et al., courtesy CSCapes]

• Goal: compute (sparse) matrix J of partial derivatives, J(i,j) = ∂yi / ∂xj

• Finite differences give one column at a time …

• … but nonoverlapping columns can be computed together.

• Many variations, extensions, generalizations.

14

• Technique to convert a (complicated) program that computes f(x)
into a program that computes ∂fi / ∂xj for all i and j

• Represent a computation as a DAG; vertices are elementary operations

• Label edges with partial derivatives of elementary ops

Function Derivatives

Automatic Differentiation of Programs
[Hovland et al., courtesy CSCapes]

15

Automatic Differentiation

• Label edges with partial derivatives of elementary ops

• Using the chain rule, eliminate internal vertices

• End up with partial derivatives of outputs with respect to inputs

Derivatives

16

Automatic Differentiation

• Label edges with partial derivatives of elementary ops

• Using the chain rule, eliminate internal vertices

• End up with partial derivatives of outputs with respect to inputs

Derivatives

17

Automatic Differentiation

• Label edges with partial derivatives of elementary ops

• Using the chain rule, eliminate internal vertices

• End up with partial derivatives of outputs with respect to inputs

Derivatives

18

Automatic Differentiation

• Label edges with partial derivatives of elementary ops

• Using the chain rule, eliminate internal vertices

• End up with partial derivatives of outputs with respect to inputs

Derivatives

19

Automatic Differentiation

• Used in practice on very large programs => large computational graphs

• Work depends on elimination order; best order is NP-hard

• Checkpointing to trade time for memory; many combinatorial problems

Derivatives

www.autodiff.org

http://www.autodiff.org/�

20

Landscape connectivity modeling
[Shah et al.]

• Habitat quality, gene flow,
corridor identification,
conservation planning

• Pumas in southern California:
12 million nodes, < 1 hour

• Targeting larger problems:
Yellowstone-to-Yukon corridor

Figures courtesy of Brad McRae

21

Circuitscape [McRae, Shah]

• Predicting gene flow with resistive networks

• Matlab, Python, and Star-P (parallel) implementations

• Combinatorics:
– Initial discrete grid: ideally 100m resolution (for pumas)

– Partition landscape into connected components

– Graph contraction: habitats become nodes in resistive network

• Numerics:
– Resistance computations for pairs of habitats in the landscape

– Iterative linear solvers invoked via Star-P: Hypre (PCG+AMG)

22

• How strongly does each transcription
factor activate or repress expression
of each gene?

• Factorize observation matrix E as P × A

• Topological constraints on A

• Possible nonnegativity constraint on P

• Regularized alternating least squares, etc.

Reverse-engineering genetic transcription
[Abdur-Rahim, dePuit, Yuraszeck after Liao etc.]

Liao et al. 2003, PNAS

Observed gene
expression data EUnknown

transcription factor
activities P

Microarray ->

DNA makes RNA, regulated by
proteins called transcription factors.

Unknown
connectivity
strengths A

23

A Few Challenges in
Combinatorial Scientific

Computing

24

The Challenge of
Architecture

and Algorithms

25

The Architecture & Algorithms Challenge

Oak Ridge / Cray Jaguar
> 1.75 PFLOPS

Two Nvidia
8800 GPUs
> 1 TFLOPS

Intel 80-
core chip
> 1 TFLOPS Parallelism is no longer optional…

… in every part of a computation.

26

High-performance architecture

 Most high-performance
computer designs allocate
resources to optimize
Gaussian elimination on
large, dense matrices.

 Originally, because linear
algebra is the middleware
of scientific computing.

 Nowadays, largely for
bragging rights.

= xP A L U

27

Strongly connected components

• Symmetric permutation to block triangular form

• Diagonal blocks are strong Hall (irreducible / strongly connected)

• Sequential: linear time by depth-first search [Tarjan]

• Parallel: divide & conquer, work and span depend on input
[Fleischer, Hendrickson, Pinar]

1 52 4 7 3 6
1

5

2
4
7

3
6

PAPT G(A)

1 2

3

4 7

6

5

28

Architectural impact on algorithms

Matrix multiplication: C = A * B
C = 0;

for i = 1 : n

for j = 1 : n

for k = 1 : n

C(i,j) = C(i,j) + A(i,k) * B(k,j);

O(n3) operations

29

Architectural impact on algorithms

-1

0

1

2
3

4

5

6

0 1 2 3 4 5

log Problem Size

lo
g

cy
cl
es

/f
lo
p

T = N4.7

Naïve algorithm is O(N5) time under UMH model.
BLAS-3 DGEMM and recursive blocked algorithms are O(N3).

Size 2000 took 5 days

12000 would take
1095 years

Diagram from Larry Carter

Naïve 3-loop matrix multiply [Alpern et al., 1992]:

30

 A big opportunity exists for computer architecture to
influence combinatorial algorithms.

 (Maybe even vice versa.)

The architecture & algorithms challenge

31

The Challenge
of Primitives

32

An analogy?

As the “middleware”
of scientific computing,

linear algebra has supplied
or enabled:

• Mathematical tools

• “Impedance match” to
computer operations

• High-level primitives

• High-quality software libraries

• Ways to extract performance
from computer architecture

• Interactive environments

Computers

Continuous
physical modeling

Linear algebra

33

An analogy?

Computers

Continuous
physical modeling

Linear algebra

Discrete
structure analysis

Graph theory

Computers

34

An analogy? Well, we’re not there yet ….

Discrete
structure analysis

Graph theory

Computers

√ Mathematical tools

? “Impedance match” to
computer operations

? High-level primitives

? High-quality software libs

? Ways to extract performance
from computer architecture

? Interactive environments

35

Primitives should…

• Supply a common notation to express computations

• Have broad scope but fit into a concise framework

• Allow programming at the appropriate level of
abstraction and granularity

• Scale seamlessly from desktop to supercomputer

• Hide architecture-specific details from users

36

Frameworks for graph primitives

Many possibilities; none completely satisfactory;
little work on common frameworks or interoperability.

• Visitor-based, distributed-memory: PBGL
• Visitor-based, multithreaded: MTGL
• Heterogeneous, tuned kernels: SNAP
• Scan-based vectorized: NESL
• Map-reduce: lots of visibility
• Sparse array-based: Matlab *P-KDT, CBLAS

37

The Case for
Sparse Matrices

38

Identification of Primitives

Sparse matrix-matrix
multiplication (SpGEMM)

Element-wise operations

x

Matrices on various semirings: (x, +) , (and, or) , (+, min) , …

Sparse matrix-dense
vector multiplication

Sparse matrix indexing

x

.*

Sparse array-based primitives

39

Multiple-source breadth-first search

X

1 2

3

4 7

6

5

AT

40

XAT ATX



1 2

3

4 7

6

5

Multiple-source breadth-first search

41

• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Load balance depends on SpGEMM implementation

XAT ATX



1 2

3

4 7

6

5

Multiple-source breadth-first search

42

Why focus on SpGEMM?

• Graph clustering (Markov, peer pressure)
• Subgraph / submatrix indexing
• Shortest path calculations
• Betweenness centrality
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in

finite element computations
• Context-free parsing ...

1
1

1
1

1 x x

SpGEMM: Sparse Matrix x Sparse Matrix

43

Distributed-memory sparse matrix-matrix
multiplication

j

* =i

k
k

Cij

Cij += Aik * Bkj

 2D block layout
 Outer product formulation
 Sequential “hypersparse” kernel

• Scales well to hundreds of processors

• Betweenness centrality benchmark:
over 200 MTEPS

• Experiments: TACC Lonestar cluster

Time vs Number of cores -- 1M-vertex RMAT

44

A Parallel Library:
Combinatorial BLAS

45

• By analogy to
numerical
scientific
computing. . .

• What should the
combinatorial
BLAS look like?

The Primitives Challenge

C = A*B

y = A*x

μ = xT y

Basic Linear Algebra Subroutines (BLAS):
Speed (MFlops) vs. Matrix Size (n)

46

Applications and Algorithms

Betweenness Centrality (BC)
What fraction of shortest paths
pass through this node?

Brandes’ algorithm

Software stack for an application of
the Combinatorial BLAS

The Combinatorial BLAS: Example of use

47

BC performance in distributed memory

• TEPS = Traversed Edges Per Second

• One page of code using CBLAS

0

50

100

150

200

250

25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

TE
PS

 s
co

re
M

ill
io

ns

Number of Cores

BC performance

Scale 17

Scale 18

Scale 19

Scale 20

RMAT power-
law graph,

2Scale vertices,
avg degree 8

48

The Education Challenge

 How do you teach this stuff?

 Where do you go to take courses in

 Graph algorithms …

 … on massive data sets …

 … in the presence of uncertainty …

 … analyzed on parallel computers …

 … applied to a domain science?

49

Final thoughts

• Combinatorial algorithms are pervasive in scientific
computing and will become more so.

• Linear algebra and combinatorics can support each
other in computation as well as in theory.

• A big opportunity exists for computer architecture to
influence combinatorial algorithms.

• This is a great time to be doing research in
combinatorial scientific computing!

	Slide Number 1
	Combinatorial Scientific Computing
	Graphs and Sparse Matrices: Cholesky factorization
	Fill-reducing matrix permutations
	Combinatorial Scientific Computing
	CSC: What’s in a name?
	CSC: What’s in a name?
	CSC: What’s in a name?
	Slide Number 9
	Slide Number 10
	Partitioning data for parallel computation
	Coloring for parallel nonsymmetric preconditioning [Aggarwal et al.]
	Coloring for evaluation of sparse Jacobians�[Pothen et al., courtesy CSCapes]
	Automatic Differentiation of Programs�[Hovland et al., courtesy CSCapes]
	Automatic Differentiation
	Automatic Differentiation
	Automatic Differentiation
	Automatic Differentiation
	Automatic Differentiation
	Landscape connectivity modeling� [Shah et al.]
	Circuitscape [McRae, Shah]
	Reverse-engineering genetic transcription�[Abdur-Rahim, dePuit, Yuraszeck after Liao etc.]�
	Slide Number 23
	Slide Number 24
	The Architecture & Algorithms Challenge
	High-performance architecture
	Strongly connected components
	Architectural impact on algorithms
	Architectural impact on algorithms
	The architecture & algorithms challenge
	Slide Number 31
	An analogy?
	An analogy?
	An analogy? Well, we’re not there yet ….
	Primitives should…
	 Frameworks for graph primitives
	Slide Number 37
	Identification of Primitives
	Multiple-source breadth-first search
	Multiple-source breadth-first search
	Multiple-source breadth-first search
	Why focus on SpGEMM?
	Distributed-memory sparse matrix-matrix multiplication
	Slide Number 44
	The Primitives Challenge
	Applications and Algorithms
	BC performance in distributed memory
	The Education Challenge
	Final thoughts

