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Combinatorial Scientific Computing

“I observed that most of the
coefficients in our matrices were

3 zero; 1.e., the nonzeros were ‘sparse’
n in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

o

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics &




Graphs and Sparse Matrices: Cholesky factorizatiop
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Fill-reducing matrix permutations

Matrix reordered by nested dissection

Vertex separator in graph of matrix

Elimination tree with nested dissection

Theory: approx optimal separators => approx optimal fill and op count
Orderings: nested dissection, minimum degree, hybrids
Graph partitioning: spectral, geometric, multilevel

UCSB



Combinatorial Scientific Computing

What's in the intersection?

Computational Science

Computer Science ) )
P & Engineering

Algorithmics

Combinatorial Scientific Computing:

The development, application and analysis of combinatorial
algorithms to enable scientific and engineering computations

UCSB



CSC: What's In a name?

« Deeperoriginsin ...

Sparse direct methods community (1950s & onward)
Statistical physics: graphs and Ising models (1940s & 50s)
Chemical classification (1800s, Cayley)

Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy



CSC: What's In a name?

« Deeperoriginsin ...
—  Sparse direct methods community (1950s & onward)
—  Statistical physics: graphs and Ising models (1940s & 50s)
—  Chemical classification (1800s, Cayley)

—  Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy

o “Combinatorial scientific computing” chosen in 2002
—  After lengthy email discussion among ~ 30 people.

—  Now > 70,000 Google hits for “combinatorial scientific computing”
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CSC: What's In a name?

« Deeperoriginsin ...
—  Sparse direct methods community (1950s & onward)
—  Statistical physics: graphs and Ising models (1940s & 50s)
—  Chemical classification (1800s, Cayley)

—  Common esthetic, techniques, and goals among researchers
who were far apart in traditional scientific taxonomy

o “Combinatorial scientific computing” chosen in 2002
—  After lengthy email discussion among ~ 30 people.
—  Now > 70,000 Google hits for “combinatorial scientific computing”

 Recognition by scientific community & funding agencies
— 5 major CSC workshops since 2004, plus many minisymposia
— DOE “CSCapes” institute formed 2006

UCSB



DOE CSCapes Institute

WWW.CSCapes.org

P U RD U E Scientific COmputing Application
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http://www.cscapes.org/�

A Brief Tour of
Applications



Partitioning data for parallel computation

Goals: balance load, reduce data movement

Approaches: geometric, spectral, multilevel

Geometric meshes are easier than general
Sparse structures!

Graphs => hypergraphs, more detailed models

Partitioning in parallel: how to bootstrap?

Image courtesy of
Umit Catalyurek
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Coloring for parallel nonsymmetric

preconditioning [Aggarwal et al.
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263 million DOF

 Level set method for multiphase

Interface problems in 3D.
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 Nonsymmetric-structure, | P T S T

second-order-accurate octree dlscretlzatlon
« BICGSTAB preconditioned by parallel triangular solves.



Coloring for evaluation of sparse Jacobians
[Pothen et al., courtesy CSCapes]
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+  Goal: compute (sparse) matrix J of partial derivatives, J(i,])) = dy; / 9x;
. Finite differences give one column at a time ...
. ... but nonoverlapping columns can be computed together.

. Many variations, extensions, generalizations. UCSB



Automatic Differentiation of Programs

[Hovland et al., courtesy CSCapes]

« Technique to convert a (complicated) program that computes f(X)
into a program that computes  df; / dx; for all Il and |

 Represent a computation as a DAG; vertices are elementary operations

« Label edges with partial derivatives of elementary ops

t0 = sin(y)
d0 = cosly)
b=10% | Function
a = exp(x)
c=a"b
f=a"c

Derivatives

sin




Automatic Differentiation

« Label edges with partial derivatives of elementary ops
« Using the chain rule, eliminate internal vertices

* End up with partial derivatives of outputs with respect to inputs

t0 = sin{y)
d0 = cos(y)
i ] b =t0"
Derivatives a = exp(x)
c=a'b
f=a'c
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Automatic Differentiation

« Label edges with partial derivatives of elementary ops
« Using the chain rule, eliminate internal vertices

* End up with partial derivatives of outputs with respect to inputs

t0 = sin(y)

d0 = cos(y)

: : b =1t0"%
Derivatives a = exp(x)
c=a"'b
f=a'c

d1 =10 + d0*y
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Automatic Differentiation

« Label edges with partial derivatives of elementary ops
« Using the chain rule, eliminate internal vertices

* End up with partial derivatives of outputs with respect to inputs

t0 = sin(y)

d0 = cos(y)

i . b =t0%

DEI’IVBIIVGS a = exp(x)
c=a'b
f=a"c
d1 =t0 + d0™y
d2 =a"a
di=c+ b"a

17
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Automatic Differentiation

« Label edges with partial derivatives of elementary ops
« Using the chain rule, eliminate internal vertices

* End up with partial derivatives of outputs with respect to inputs

f t0 = sin(y)

d0 = cos(y)

b =t0"%

a = exp(x)

c=a'b

f=a"c

d1 =10 +d0"y

dicly d2 =a*a

di=c+ b"a

Va dfdy =d1*d2

Derivatives

d3

18
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Automatic Differentiation

www.autodiff.org

« Used in practice on very large programs => large computational graphs
 Work depends on elimination order; best order is NP-hard

» Checkpointing to trade time for memory; many combinatorial problems

f t0 = sin(y)
d0 = cos(y)

: : b =t0"y
Derivatives a = exp(x)
c=a"'b
f=a'c

d1 =10 + d0*y
d2 =a"a
di=c+ b"a
dfdy =d1*d2
dfdx = a*d3

19 5 mults 2 adds S B
>


http://www.autodiff.org/�

Landscape connectivity modeling

[Shah et al.]

20

corridor identification,
conservation planning

Pumas in southern California:
12 million nodes, < 1 hour

Targeting larger problems:
Yellowstone-to-Yukon corridor

Flevatsors Withis ¥2Y:

\ NUNAVUT

Yellowstone To Yukon
Ecoregion with Elevations
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Circuitscape [McRae, Shah]

Predicting gene flow with resistive networks

Matlab, Python, and Star-P (parallel) implementations

« Combinatorics:
— Initial discrete grid: ideally 100m resolution (for pumas)
—  Partition landscape into connected components

—  Graph contraction: habitats become nodes in resistive network

Numerics:

— Resistance computations for pairs of habitats in the landscape

— lterative linear solvers invoked via Star-P: Hypre (PCG+AMG)

UCSB



Reverse-engineering genetic transcription

[Abdur-Rahim, dePuit, Yuraszeck after Liao etc.] Microarray ->

DNA makes RNA, regulated by Observed gene

proteins called transcription factors. Unknown expression data E
transcription factor

RINA,

activities P
T 0.8 7&
et L
b Jdeder n g g ag
Template strand } u
* How strongly does each transcription
factor activate or repress expression "\
of each gene? e
g - ' 1.5
» Factorize observation matrix E as P x A Unknown #M
_ _ connectivity
* Topological constraints on A strengths A
* Possible nonnegativity constraint on P Liao et al. 2003, PNAS

« Regularized alternating least squares, etc. UCSB
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A Few Challenges In
Combinatorial Scientific
Computing



The Challenge of
Architecture
and Algorithms



The Architecture & Algorithms Challenge

Two Nvidia
8800 GPUs
> 1 TFLOPS

>1.75 PFLOPS

Intel 80-
core chip
= Parallelism is no longer optional... > 1 TFLOPS

= ... In every part of a computation.

UCSB
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High-performance architecture

» Most high-performance
computer designs allocate P A
resources to optimize
Gaussian elimination on
large, dense matrices.

|
—

l'

Sl

» Originally, because linear EDD@
algebra is the middleware ol
of scientific computing. Renk  Site  Mamufacturer  Computer

Roadrunner - BladeCen

1 [DOEMMSATLAML BM 0822/ 521
[0ak Ridge Mational Llaguar - Cray XTS5 QiC 2
» Nowadays, largely for 2 [PakRidge cray ne. 29!
1 HASA!/Ames Research Gl Pleiades - SGI Altix ICE
bl’agglng rlghts Center/MAS [5 [B200EX
’ 4 |DOE/NMSATLLML FEM leSer'.rer Blue Gene Sol
Argonne Mational .
5 ) aboratory LEM Blue GenelP Soluticn
Texas Advanced
6 [Computing Center! |Sun Ranger - SunBlade x84
[Univ. of Texas
26 .
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Strongly connected components
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. Symmetric permutation to block triangular form
. Diagonal blocks are strong Hall (irreducible / strongly connected)
. Sequential: linear time by depth-first search [Tarjan]

. Parallel: divide & conquer, work and span depend on input
[Fleischer, Hendrickson, Pinar]
UCSB
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Architectural impact on algorithms

Matrix multiplication: C=A*B
C =0;

for i=1:n
for j=1:n
for k=1:n
C(1,)) = C(1.]) + A(1,K) * B(K,));

O(n3) operations

28



Architectural impact on algorithms

Naive 3-loop matrix multiply [Alpern et al., 1992]:
T = N47

12000 would take

/ 1095 years
P

/

™~

log cycles/flop

Size 2000 took 5 days

log Problem Size

Naive algorithm is O(N®) time under UMH model.
BLAS-3 DGEMM and recursive blocked algorithms are O(N3).

00 Diagram from Larry Carter

UCSB



The architecture & algorithms challenge

» A big opportunity exists for computer architecture to
iInfluence combinatorial algorithms.

» (Maybe even vice versa.)

30



The Challenge
of Primitives



An analogy?

As the “middleware”

of scientific computing,
linear algebra has supplied
or enabled:

Continuous
physical modeling

Mathematical tools

l  “Impedance match” to
computer operations

Linear algebra

|

High-level primitives

High-quality software libraries

Ways to extract performance
from computer architecture

Interactive environments

Uucss
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An analogy?

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |

33



An analogy? Well, we're not there yet ....

Discrete
structure analysis

\ Mathematical tools

? “Impedance match” to
computer operations l

? High-level primitives

Graph theory

? High-quality software libs

? Ways to extract performance l
from computer architecture

? Interactive environments

UCSB
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Primitives should...

«  Supply a common notation to express computations
« Have broad scope but fit into a concise framework

e Allow programming at the appropriate level of
abstraction and granularity

« Scale seamlessly from desktop to supercomputer

 Hide architecture-specific detalls from users

UCSB
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Frameworks for graph primitives

Many possibilities; none completely satisfactory;
little work on common frameworks or interoperability.

 Visitor-based, distributed-memory. PBGL
 Visitor-based, multithreaded: MTGL

« Heterogeneous, tuned kernels: SNAP

« Scan-based vectorized: NESL

« Map-reduce: lots of visibility

e Sparse array-based: Matlab *P-KDT, CBLAS

UCSB
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The Case for
Sparse Matrices



Sparse array-based primitives

Sparse matrix-matrix Sparse maFrb_(-de_nse
multiplication (SpGEMM) vector multiplication
® ® ® ® o ® ® ® Py
® o L o
e o ® X ® ® ® o ) X :
® o ® © ® o ®
o ®
Element-wise operations Sparse matrix indexing
® ® ® ® ® ) ® ®
® ®| ° o ® o o o °®
e o ®| ® © o ® o <« e o )
® o ® ® o ® o

Matrices on various semirings: (X,+) , (and,or) , (+ min) |,

UcsB
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Multiple-source breadth-first search

39



Multiple-source breadth-first search

40



Multiple-source breadth-first search

o o o ® o
® O o
® O o O o
o o o o 9 :0.
o o o
o ® O o
o o
AT X ATX

. Sparse array representation => space efficient
. Sparse matrix-matrix multiplication => work efficient
. Load balance depends on SpGEMM implementation

41



SpGEMM: Sparse Matrix x Sparse Matrix

. Graph clustering (Markov, peer pressure)
. Subgraph / submatrix indexing

. Shortest path calculations

. Betweenness centrality

. Graph contraction

. Cycle detection
. Multigrid interpolation & restriction

. Colored intersection searching

-

=

«  Applying constraints in 1
finite element computations

. Context-free parsing ...

UA

—~d =T ~al———

42



Distributed-memory sparse matrix-matrix

multiplication

= 2D block layout S K
. N, * "'."‘ —

- Outer product formulation i( IR B

- Sequential “hypersparse” kernel 1

;-
—_ *
Cij += Ay " By

Parallel PSpGEMM Scalability, Rmat-Scale20

20000 e Scales well to hundreds of processors
I\ .
%,15-000 \  Betweenness centrality benchmark:
; over 200 MTEPS
E 10.000
: \ « Experiments: TACC Lonestar cluster
5.000 \
. , ‘ :

1 4 16 64 256

Time vs Number of cores -- 1M-vertex RMAT

UCSB
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A Parallel Library:
Combinatorial BLAS



The Primitives Challenge

By analogy to
numerical
scientific
computing. . .

« What should the
combinatorial
BLAS look like?

45

Basic Linear Algebra Subroutines (BLAYS):
Speed (MFlops) vs. Matrix Size (n)

300

2501

Epeed in Megaflops
o = o =
=] =] (=] [=]

=]

G

Q 100 200 300 400 500

arder of vestarsmatrices

600

= A*B




The Combinatorial BLAS: Example of use

Applications

Netwiork Vulnerabily Anaysi
Combinatorial Algorithms

Betweenness Centrality || Graph Clustering

Betweenness Centrality (BC)

Parallel Combinatorial BLAS

pass through this node?

Software stack for an application of Cp(v) = Z Tst(V)

What fraction of shortest paths

the Combinatorial BLAS T ot

sFEvFELEW
sFt

Brandes’ algorithm

Uucss
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BC performance in distributed memory

RMAT power-
law graph,
25cale yertices,
avg degree 8

BC performance

250

Millions

200

150

—+—Scale 17
100 -#-Scale 18

-+-Scale 19

TEPS score

50

—=<Scale 20

I O «w < OO O un
00 O N <« O O
™I = = = = N

n O© O <
N Nn < O

256
289
324
361
400 |
441
484

Number of Cores

« TEPS = Traversed Edges Per Second

* One page of code using CBLAS

47



The Education Challenge

48

» How do you teach this stuff?

» Where do you go to take courses in

» Graph algorithms ...

>

>
>
>

.. 0N massive data sets ...
.. In the presence of uncertainty ...

.. analyzed on parallel computers ...
.. applied to a domain science?




Final thoughts

 Combinatorial algorithms are pervasive in scientific
computing and will become more so.

e Linear algebra and combinatorics can support each
other in computation as well as in theory.

e A big opportunity exists for computer architecture to
Influence combinatorial algorithms.

e Thisis agreat time to be doing research in

combinatorial scientific computing!
UCSB
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