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Large graphs are everywhere...

* Internet structure * Scientific datasets: biological,

. Social interactions chemical, cosmological, ecological, ...

WWW snapshot, courtesy Y. Hyun Yeast protein interaction network, courtesy H. Jeong

UCSB



An analogy?

Continuous
physical modeling

Discrete
structure analysis

l l

Linear algebra Graph theory

| |




Top 500 List (June 2011)

Top500 Benchmark:

Solve a large system
of linear equations
by Gaussian elimination

L

xN\U

Rank

Site

RIKEN Advanced
Institute for
Computational
Science (AICS)
Japan

National
Supercomputing
Center in Tianjin
China

DOE/SC/Oak Ridge
National Laboratory
United States

National
Supercomputing
Centre in Shenzhen
(NSCS)

China

GSIC Center, Tokyo
Institute of
Technology

Japan

DOE/NNSA
/LANL/SNL
United States

NASA/Ames
Research
Center/NAS
United States

DOE/SC
/LBNL/NERSC
United States

Computer/Year
Vendor

K computer, SPARCG64
VIlIfx 2.0GHz, Tofu
interconnect / 2011
Fujitsu

Tianhe-1A - NUDT TH
MPP, X5670 2.93Ghz
6C, NVIDIA GPU,
FT-1000 8C /2010
NUDT

Jaguar - Cray XT5-HE
Opteron 6-core 2.6 GHz
/ 2009

Cray Inc.

Nebulae - Dawning
TC3600 Blade, Intel
X5650, NVidia Tesla
C2050 GPU /2010
Dawning

TSUBAME 2.0 - HP
ProLiant SL390s G7
Xeon 6C X5670, Nvidia
GPU, Linux/Windows /
2010

NEC/HP

Cielo - Cray XE6 8-core
2.4 GHz /2011
Cray Inc.

Pleiades - SGI Altix ICE
8200EX/8400EX, Xeon
HT QC 3.0/Xeon
5570/5670 2.93 Ghz,
Infiniband / 2011

SGl

Hopper - Cray XE6
12-core 2.1 GHz / 2010
Cray Inc.

SUPERCOMPUTER SITES

Cores

548352

186368

224162

120640

73278

142272

111104

153408

Rmax

8162.00

2566.00

1759.00

1271.00

1192.00

1110.00

1088.00

1054.00



Graph 500 List (June 2011)

Graph500
Benchmark:

Breadth-first search
In a large
power-law graph

1

Rank Machine

Intrepid (IBM Blue Gene/P,
32,768 nodes / 131,072 cores)
Jugene (IBM Blue Gene/P, 32,768 Forschungszentrum

ANL

nodes / 131,072 cores) Julich
Lomonosov (MPP, 4096 nodes / Moscow State
8192 cores) University

Hopper (Cray XE6, 1800 nodes /
43,200 cores)

Franklin (Cray XT4, 4000 nodes / LB
16,000 cores)

Lonestar (Dell PowerEdge M610,

512 nodes / 6144 cores)

Kraken (Appro, 1 node / 32 cores
/ Fusion I/0)

Red Sky (Sun, 512 nodes / 4096
cores)

Endeavor (Westmere X5670, 256
processors / 3072 cores)

SGI Altix UV 1000 (2048 cores) SGI

IBM BlueGene/P, 2048 nodes/ Moscow State

LBL

L

TACC

LLNL

SNL

Intel

8192 cores University
Blacklight (SGI Altix UV 1000, SIZPSC
processors)

Problem Size

38
38
37
37
36
34
34

33

33 (Toy MPI
Simple)
32

32

32 (Small)

GR

HIERS

18,508,000,000

18,416,700,000
43,471,500,000
25,075,200,000
19,955,100,000
8,080,000,000
55,948,453
9,470,000,000

6,860,000,000
10,161,300,000
6,930,560,000

4,452,270,000

UCSB




Floating-Point vs. Graphs, June 2011

8.1 Petaflops 43 Gigateps

P[A-2¢
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The challenge of the software stack

* By ana_logy to Basic Linear Algebra Subroutines (BLAS):
numerical Speed (MFlops) vs. Matrix Size (n)
scientific T T
computing. . . Ic = A*B

gm- |y = A*x
= xT

« What should the so/ I y
combinatorial %/ T T
BLAS IOOk Iike? Order of vectors/matrices

10 B o5 _aB



Sparse array-based primitives

Sparse matrix-dense

Sparse matrix-matrix
vector multiplication

multiplication (SpGEMM)

® o ® ® ® ®

® ® ®

XQ o ® © .xQ
® ©o o o
o o

Element-wise operations

Sparse matrix indexing

® ® ®
K ® ® ® & o
" e 0 o ® ® e ®
{ ® o
Matrices on various semirings: (x,+) , (and,or) , (+, min) ,



Multiple-source breadth-first search

12



Multiple-source breadth-first search

® o o
o o
o ® O o o
o o o 9 o
[ ] o
o o o
[ ]
Al X ATX

. Sparse array representation => space efficient

. Sparse matrix-matrix multiplication => work efficient

. Three possible levels of parallelism: searches, vertices, edges

13
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The case for sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited
by abstractions at the proper level.

Traditional graph Graphs in the language of
computations linear algebra
Data driven, Fixed communication patterns
unpredictable communication.
Irregular and unstructured, Operations on matrix blocks
poor locality of reference exploit memory hierarchy

Fine grained data accesses, Coarse grained parallelism,

dominated by latency bandwidth limited

UCSB



Combinatorial BLAS: A matrix-based graph libra

CommGrid —— e DistMat

SpMat —— e SpDistMat DenseDistMat

CSC DCSC Triples CSB

Architecture of matrix classes

» Also sparse & dense vectors, distributed and local

« Matrix operations over user-defined (and some built-in) semirings

« Highly templated C++

- Reference implementation in MPI UCSB
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Some Combinatorial BLAS functions

Function Applies to Parameters Returns Matlab Phrasing
Sparse Matrix A, B: sparse matrices
SPGEMM (as friend) trA: transpose A if true Sparse Matrix C=A=xB
trB: transpose B if true
SPMV Sparse Matrix A: sparse matrices
(as friend) x: sparse or dense vector(s) Sparse or Dense y=Axx
trA: transpose A if true Vector(s)
Sparse Matrices A, B: sparse matrices
SPEWIsEX (as friend) notA: negate A if true Sparse Matrix C=A=xB
notB: negate B if true
Any Matrix dim: dimension to reduce
Rebuce (as method) binop: reduction operator Dense Vector sum(A)
Sparse Matrix p: row indices vector
SPREF (as method) q: column indices vector Sparse Matrix B=A(p.q)
Sparse Matrix p: row indices vector
SPAsGN (as method) q: column indices vector none A(p,q) =B
B: matrix to assign
Any Matrix rhs: any object Check guiding
ScaLe (as method) (except a sparse matrix) none principles 3 and 4
Any Vector rhs: any vector none none
ScALE (as method)
Any Object unop: unary operator
APPLY (as method) (applied to non-zeros) None

~ UCSB



BFS in “vanilla” MPlI Combinatorial BLA

GTEPS

w ~ 00 O N

1225 2500 5041
Number of cores

. Graph500 benchmark at scale 29, C++ (or KDT) calling CombBLAS
. NERSC “Hopper” machine (Cray XEG)

. [Bulu¢ & Madduri]: New hybrid CombBLAS MPI + OpenMP
gets 17.8 GTEPS at scale 32 on 40,000 cores of Hopper

UCSB
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http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives



Knowledge e

Discovery @
Toolbox T

http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

N O U A WN =
°
® 0 0

Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

Easy-to-use Python interface

Runs on a laptop as well as a cluster with 10,000 processors



Knowledge e I
Discovery @5 o
Toolbox T L™
http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

Aimed at domain experts who know their problem well but
don’t know how to program a supercomputer

Easy-to-use Python interface

Runs on a laptop as well as a cluster with 10,000 processors

A collaboration among UCSB, Lawrence Berkeley National Lab,
and Microsoft Technical Computing

Open source software, released under New BSD license
v0.1 released March 2011; v0.2 expected October 2011



Domain Expert vs. Graph Expert

(Semantic) directed graphs
— constructors, I/0
— basic graph metrics (e.g., degree ())

— vectors
Clustering / components

Centrality / authority: betweenness
centrality, PageRank

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings



Domain Expert vs. Graph Expert

(Semantic) directed graphs

constructors, |/O

basic graph metrics (e.g., degree
vectors

Clustering / components

Centrality / authority: betwee
centrality, PageRank

# bigG contains the input graph
comp = bigG.connComp ()

giantComp = comp.hist () .argmax()

G = bigG.subgraph (comp==giantComp)

clus = G.cluster (*Markov’)

clusNedge = G.nedge(clus)
smallG = G.contract (clus)

# visualize

Hypergraphs and sparse matrices

Graph primitives (e.g., bfsTree ())

SpMV / SpGEMM on semirings




Domain Expert vs. Graph Expert

(Semantic) directed graphs #

— constructors, I/0 gil
— basic graph metrics (e.g., degree §
— vectors cl
Clustering / components o1

Centrality / authority: betwee
centrality, PageRank

Sm

Hypergraphs and sparse matrices
Graph primitives (e.g., bfsTree ())
SpMV / SpGEMM on semirings

Largest
Component

Markov
Clustering

\/’

Graph of
Clusters




Domain Expert vs. Graph Expert

(Semantic) directed graphs
constructors, |/O

basic graph metrics (e.g., degree

vectors

Clustering / components

Centrality / authority: betwee
centrality, PageRank

CcO ’
g]_ Markov
Clustering

o o
y
o o
5
) o
.
.
.
Y
/o
o

cl
Graph of

Clusters
Largest

Component

cl

Sm

Hypergraphs and sparse matri
Graph primitives (e.g., bfsTree
SpMV / SpGEMM on semirings

[...]
= G.toSpParMat ()

= L.sum(kdt.SpParMat.Column)

= -L

.setDiag (d)

= kdt.SpParMat.eye (G.nvert ())
pos = kdt.ParVec.rand(G.nvert())
for 1 in range (nsteps):

pos = M.SpMV (pos)

o e B s B O P

- mu*L




Real applications

Applets

Graph API (VOZ) New for v0.2
Community Network
Detection Vulnerability Analysis

Building .
blocks DiGraph

HyGraph

bfsTree, isBfsTree bfsTree, isBfsTree
plus utility (e.g., DiGraph,nvert, | |plus utility (e.g., HyGraph,nvert,
toParVec,degree,load,UFget,+,*,| | toParVec,degree,load,UFget)
sum,subgraph,reverseEdges)

(Sp)ParVec
(e.qg., +,*,|,&,>==51],
abs,max,sum,range,
norm, hist,randPerm,

scale, topK)

SpParMat
(e.g., +,*, SpMM,
SpMV, SpRef,
SpAsgn)

CombBLAS SpMV,
SpMM, etc.
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A few KDT applications

Markov Clustering

A

$ i

&

image courtesy Stijn van Dongen

Markov Clustering (MCL) finds clusters by
postulating that a random walk that visits
a dense cluster will probably visit many of
its vertices before leaving.

We use a Markov chain for the random
walk. This process is reinforced by adding
an inflation step that uses the Hadamard
product and rescaling.

-

J

27

(—[ Betweenness Centrality ]—\

77
Rocchini

Betweenness Centrality says that a vertex
is important if it appears on many
shortest paths between other vertices.
An exact computation requires a BFS for
every vertex. A good approximation can
be achieved by sampling starting vertices.

\§

J

—

o
PageRank €

courtesy Felipe Micaroni Lalli

—

PageRank

PageRank says a
vertex is important
if other important
vertices link to it.

5

Each vertex (webpage) votes by splitting
its PageRank score evenly among its out
edges (links). This broadcast (an SpMV) is
followed by a normalization step
(ColWise). Repeat until convergence.

PageRank is the stationary distribution of a
Markov Chain that simulates a "random

J

\_ surfer”.

(—[ Belief Propagation ]—\

P& ;0
QO AT
Sum-up:
p= Pn+ZkEN(i) Py,
1= 151_1(131'1/11@ + ZkeN(i) Priping), Vi
Update i’s messages to its neighbors
Py = *;'112]' (P = Py),
tij = (Pifts — Pjipegi) [ Aij.
Gaussian belief propagation (GaBP) is an
iterative algorithm for solving the linear
system of equations Ax = b, where A is
symmetric positive definite.
GaBP assumes each variable follows a
normal distribution. It iteratively calculates
the precision P and mean value u of each

variable; the converged mean-value vector

\_ approximates the actual solution.




KNOWLEDGE DISCOVERY WORKFLOW




KNOWLEDGE DISCOVERY WORKFLOW

i (e

LOCOCDCDELLLL]LOC

- Gene data
- Email

- Twitter

- Facebook
- Video

- Sensor

- Web

A I )




KNOWLEDGE DISCOVERY WORKFLOW
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Two versions of sparse GEMM

1D
block-column
distribution

C4[C,|C;[C4|Cs|Cs|C/|Cs

W Ci=C+AB

\ TR K 2D block
i(F L[4 = checkerboard
= ’ “ distribution




2D layout for sparse matrices & vectors

n/ p.
<>
A
xl,l . . . .
l ........................................................... Matrlx VECtor dIStrlbutlonS
n/p, Ay Ag | As 1 Yal (M / ’
l . interleaved on each other.
.......... 1V
I ........................................................... x2’1 A D f I d -b ] .
A | AL A [ ] |- Defeult distribution in
J [l Combinatorial BLAS.
' X3 ?
A | oA LA | s I
| [

- 2D matrix layout wins over 1D with large core counts
and with limited bandwidth/compute

- 2D vector layout sometimes important for load balance

- Scalable with increasing number of processes



Node-level considerations

Submatrices are “hypersparse” (i.e. nnz << n)

- s nnz' = & — (0

VP

__»Average of ¢ nonzeros per column

Total Storage:

/ F
Jp
blocks™
—
\.
~ Y
/P blocks

O(n + nnz) = O(n,/p + nnz)

« A data structure or algorithm that depends on matrix dimension n
(e.g. CSR or CSC) is asymptotically too wasteful for submatrices

» Use doubly-compressed (DCSC) or compressed

sparse block (CSB) data structures instead.

uCsB



Comparison of Sp GEMM implementations

35

30

25

20

Seconds

15

10

(a) R-MAT x R-MAT product (scale 21).

70

' SpSUMMA T
EpetraExt ----%---

66X %
60

50

40

Seconds

30

1.6X

20

10

121 150 180 256
Number of Cores

"SpSUMMA ——
EpetraExt ----x---

.
-
.
-
.
-
-
-*

32X
"‘
g
x$
“3.9X ... o
PR
1 1 1 1 1
49 16 36 64

Number of Cores

121

(b) Multiplication of an R-MAT matrix of scale

23 with the restriction operator of order 8.

e SpSUMMA = 2-D data layout (Combinatorial BLAS)
e EpetraExt = 1-D data layout (Trilinos)

35
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Indexing sparse arrays in parallel

(extract subgraphs, coarsen grids, etc.)

SpRref: B = A(I,)J) A,B: sparse matrices
SpAsgn: B(I,J) = A I,J: vectorsofindices
SpExpAdd: B(I,J) += A

length(J)

0/1/0/0 1/0(0
/ —
Iength(){0001 X X 0l110 =
— 0|01
" olofo]r"

SpRef using mixed-mode sparse matrix-matrix
multiplication (SpGEMM). Ex: B = A([2,4], [1,2,3])

36



Sequential SprRef and SpAsgn

function B = spref(A,I,J)
R = sparse(l:length(I),I,1l,length(I),size(A,1l));
Q = sparse(J,l:1length(J),1,size(A,2),length(J));
B = R*A*Q;

function C = spasgn(A,I,J,B) 0O 0 O 0 0 0
[ma,na] = size(A); A+| 0 B 0 |-| 0 A@J) O
[mb,nb] = size(B); 0 0 0 ’

R = sparse(I,l:mb,1,ma,mb); 0 0 0

sparse(l:nb,J,1,nb,na);
sparse(I,I,1l,ma,ma);
sparse(J,Jd,1l,na,na);

A + R*B*Q - S*A*T;

Q3 o
i

37



Parallel algorithm for SpRef

1. Form R from | in parallel, on a 3x3 processor grid

SCATTER 0 1 2 3 4 5 6 7 8

P(0,0)

P(1,1)

P(2’2) Z frrrreesssrrnnnnn b >@

38



Parallel algorithm for SpRef

2. SpGEMM using memory-efficient Sparse SUMMA.
" .

Minimize temporaries by:
» Splitting local matrix, and broadcasting multiple times
* Deleting P (and A if in-place) after forming C=P*A UCSB
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Strong scaling of Spref

“®Time (secs) “’~Speedup

60 120

50 100
n 40 80 a
2 3
S 30 60 9
(] o
» 20 40 O

10 20

O | T T 0

1 4 16 64 256 1024
Cores

random symmetric permutation < relabeling graph vertices
 RMAT Scale 22; edge factor=8; a=.6, b=c=d=.4/3
* Franklin/NERSC, each node is a quad-core AMD Budapeﬁ CSB

40



Strong scaling of SpRef

“®Time (secs) “’*Speedup

Seconds
—
o
o

1 4 16 64 256 1024
Cores

Extracts 10 random (induced) subgraphs, each with |V|/10 vert.
Higher span = Decreased parallelism = Lower speedup

UCSB

B o5 _aB
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Coming in v0.2: Attributed Semantic Graphs and Filters

Example:

* \Vertex types: Person, Phone, Camera

 Edge types: PhoneCall, TextMessage,
Colocation

* Edge attributes: StartTime, EndTime

e Calculate centrality just for
PhoneCalls and TextMessages
between times sTime and eTime

def vfilter (self, vTypes):
return self.type in vTypes

def efilter (self, eTypes, sTime, eTime):

return ((self.type in eTypes) and
(self.sTime > sTime) and
(self.eTime < eTime))

wantedVTypes = (People)
wantedETypes = (PhoneCall, TextMessage)

start = dt.now() - dt.timedelta (hours=1l)
end = dt.now()

bc = G.centrality(‘approxBC’ ,h filter=
((vEilter, wantedVTypes),

(efilter, wantedETypes,
start, end)))




Options and issues in implementing filters

. Prefilter to extract the relevant subgraph
—  Simplest solution

—  Too much memory or time for some applications

44



Options and issues in implementing filters

. Prefilter to extract the relevant subgraph
—  Simplest solution
—  Too much memory or time for some applications

. Write filters as semiring ops in C++, wrap in Python
—  Can get good performance at CombBLAS level

— Inflexible, hard to write new filters
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Options and issues in implementing filters

. Prefilter to extract the relevant subgraph
—  Simplest solution
—  Too much memory or time for some applications
. Write filters as semiring ops in C++, wrap in Python
—  Can get good performance at CombBLAS level
— Inflexible, hard to write new filters
. Write filters in Python, call back from CombBLAS
—  Very flexible

— But slow

UCSB
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Options and issues in implementing filters

Prefilter to extract the relevant subgraph
—  Simplest solution

—  Too much memory or time for some applications

Write filters as semiring ops in C++, wrap in Python
—  Can get good performance at CombBLAS level

— Inflexible, hard to write new filters

Write filters in Python, call back from CombBLAS

—  Very flexible

— But slow

Need a better way! SEJITS?

UCSB
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- KDT:

— Release V0.2 soon (semantic graphs & attribute filters)

—  Evolve front end to include other parallel graph libraries

—  Selective, embedded JIT specialization to accelerate
KDT/CombBLAS: Fox, Kamil et al.

—  Collectives and autotuning for discrete primitives:
Williams, Oliker et al.

More algorithms work (multicore, hybrid)
More applications (time-dependent path planning, ....)

UCSB
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