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ABSTRACT

Exploring large visualizations that do not fit in the screen
raises orientation and navigation challenges. Structuring the
space with additional visual references such as grids or con-
tour lines provide spatial landmarks that may help viewers
form a mental model of the space. However, previous studies
report mixed results regarding their utility. While some evi-
dence showed that grid and other visual embellishments im-
prove memorability, experiments with contour lines suggest
otherwise. In this work, we describe an evaluation frame-
work to capture the impact of introducing visual references in
node-link diagrams. We present the results of three controlled
experiments that deepen our understanding on enriching large
visualization spaces with visual structures. In particular, we
provide the first tangible evidence that contour lines have sig-
nificant benefits when navigating large node-link diagrams.
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INTRODUCTION

Exploring large visualization spaces that do not fit in the
viewer’s screen, such as a node-link diagram of several hun-
dreds of nodes, raises orientation and navigation challenges
[27]. Over the last decade, the human-computer interaction
community has offered a plethora of interactive techniques to
ease these tasks in large visualizations [8, 7, 29, 27, 23].

Enriching the space with additional visual elements such as
grids [17] or contour lines [33] is an alternative approach.
Such visual elements provide spatial landmarks which may
help the viewer better grasp the dimensions of the space and
provide memorable cues for better recognition and navigation
[17] in large spaces.

Whether introducing non-data visual elements (such as a
grid) hinders the readability of a visualization, and whether
such elements play a beneficial role during an exploration
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are open-ended questions. While visualization practitioners
strive to eliminate “chart junk™ [34], prior work in psychol-
ogy [12, 16] and empirical evidence presented by Bateman et
al.[6] indicate that there may be benefits of even “seemingly
useless” visuals in terms of memorability.

This paper aims to deepen our understanding on the utility
of such visual enrichments within the context of visual repre-
sentations of networks. Specifically, we study the effects of
augmenting node-link diagrams with grid and contour lines.
Both grids [5, 4] and contour lines [21, 13, 11] are commonly
employed to enrich visualizations, however their relationship
to the data differs significantly.

Grids are uniform structures independent of the data: two dif-
ferent datasets can be displayed on the exact same grid. In
contrast, contour lines reflect an underlying property of the
data such as a density measure, thus they present a unique
pattern per dataset. Contour lines not only provide spatial
landmarks enabling the use of spatial memory, but also rein-
force data encoding by indexing elements topologically.

While a grid visualization has shown to be useful for navi-
gation and revisitation of nodes in a node-link diagram [17],
there is no conclusive evidence on the utility of contour lines.
On the contrary, a controlled experiment by Tory et al.[33] on
dot visualizations indicated that contours did not play a role
on memorability.

Discrepancies in these results warrant further research. In
this work, we describe an evaluation framework attempting
to capture the impact of introducing additional visuals on the
readability of node-link diagrams. In particular, we compare
a uniform grid to contours generated from the data properties
and investigate their potential role in helping the viewer build
a mental model of the visualization space. Results of our con-
trolled experiments shed a different light on previous results.
We discuss the implications of our findings and reflect on key
directions for further experimentations on the topic.

RELATED WORK

Grids are ubiquitous in a variety of charts that people use
commonly such as scatterplots and bar charts. Their advo-
cates argue that well-designed grids [5, 4] do not obstruct
the primary visualization and serve as spatial references to
compare relative positions of elements. For example, a grid
in a scatterplot may help estimate the gap between two data
points. However, we could not find any experimental results
quantifying their benefits in visualizations.

Initial evidence by Ghani and Elmqvist [17] indicates that
grids and other spatial landmarks may play a role in the



formation of a mental model of large visualization spaces.
Their study compared several designs for augmenting node-
link diagrams, such as colored or textured grids and randomly
distributed icons, while performing a revisitation task in a
larger than screen node-link diagram. Their results show that
solid colored grid cells increase performance when revisit-
ing nodes. These findings suggest that grids play a role in
the formation of a mental model of the space. However, the
specific design used in this study contradicts suggested de-
sign guidelines [5, 4, 22]. The choice of employing grid cells
with saturated solid colors may have improved revisitation
performance at the cost of threatening the readability of the
visualization.

Contour lines or topographic maps (contour lines with color
filling and/or shading) are also commonly employed to enrich
abstract data visualizations and node-link diagrams in partic-
ular [21, 13, 11]. Alluding to a geographic landscape featur-
ing peaks and valleys, these representations enhance spatial
metaphors. Fabrikant et al. argue that such “spatializations”
act as fundamental sense makers for abstract domains because
concepts about space are easily accessible to human cognition
[15, 31]. However, they do not provide concrete evidence
of spatial metaphors helping the viewer build a better mental
model of the visualization space.

Tory et al. studied the benefits of 2D and 3D topographic
maps for the readability of dot representations. Their first
study dealt with the estimation of number of dots within a
contour region [32]. They found that simple color coding
was more effective than both conditions. A second study on
memorability of dot representations [33], where subjects had
to recognize previously seen dot distributions, also failed to
show any benefit of 2D or 3D maps on memorability.

At the extreme end of the spectrum, Bateman et al.[6] have in-
vestigated the role of “chart junk”, defined as seemingly not
useful visual embellishments on the memorability of simple
charts. These embellishments refer to illustrations or defor-
mations that do not convey any information about the data,
hence could be considered visual noise. The surprising re-
sults of their study suggest that such embellishments may pro-
vide richer spatial features that increase the memorability of
charts. A recent study by Borkin et al.[10] support this argu-
ment by showing that visualizations with low data-ink-ratio
and high visual density (more chartjunk) were more memo-
rable than minimal, “clean” visualizations.

Other findings [9] on the topic suggest that there is a fine line
between providing additional data ink (even if metaphorical)
to increase memorability and engagement versus obstructing
the data. These research pieces argue for conducting further
studies in this area, carefully considering the design of visual
embellishments and their impact on memorability and mental
model.

In graph visualization domain, mental map preservation has
been investigated in the context of dynamic graphs. However,
work in this area focuses on the utility of layout preservation
and animation rather than augmenting the representation with
visual references [28, 1, 18].

Comparing and contrasting results across different experi-
mental protocols, visual representations, tasks, datasets, and
design of added visual enrichments proved extremely diffi-
cult. Conflicting outcomes of previous studies resorted in no
clear answer whether or not augmenting a node-link diagram
with additional visuals would help a viewer build a better
mental model of the space. We refined a set of questions and
propose a unified framework for evaluating the benefits and
drawbacks of introducing enrichments to node-link diagrams.

EVALUATION FRAMEWORK

In this section we describe our rationale for assessing the role
that visual structures such as grids and contours may play
in the formation of a mental model. We seek answers to
our high-level questions through low-level tasks performed
in controlled settings.

Complementing visualizations with reference structures adds
clutter that may hinder the readability of the primary visual-
ization, and also contradicts guidelines of practitioners such
as Tufte, advocating for minimal ink. Hence, assessing the
potential negative impact of added visuals on readability of a
visualization is crucial.

To address this question, we selected a low-level readability
task on graph topology — find common connections between
two nodes. We hypothesized that visual structures such as a
grid and contours would interfere most with the links in node-
link diagrams since their visual encodings are similar. There-
fore, we selected an identify-common-neighbors task as out-
lined in [19], which requires participants to follow multiple
links in the diagram.

A key reason for introducing visual references in a visualiza-
tion is the idea that they can help the viewer form a better
mental model of the space. Mental model is an overloaded
term referring to concepts as diverse as the formation of an
internal representation of a document collection and the for-
mation of an internal 3D model of an object based on its 2D
representation. In this paper, our definition of mental model
is an internal representation that one constructs about the
spatial organization of objects.

We believe that forming a mental model of the space involves
at least two aspects of the spatial organization of visual ele-
ments: (1) spatial structure: gaining a sense of the relative
positions of the elements in the visualization (i.e. grasping
their distance and orientation to each other); (2) spatial land-
marks: memorizing unique recognizable motifs in the repre-
sentation that the viewer can refer to in order to navigate and
orient himself in the space.

To measure the role of grids or contour lines in helping the
viewer gain a sense of spatial structure and relative position-
ing of elements, we selected a comparison task — determine
if and how two graphs differ. We conjectured that participants
would make use of relative spatial encodings (e.g. the cluster
to the left of the central grid cell) when performing a region-
by-region comparison between two similar visualizations dis-
played alongside each other.



Figure 1. Example stimuli images from our controlled study evaluating user performance in revisiting previously highlighted nodes. Shown are the
three visualization conditions used in the experiment: node-link diagram only, node-link diagram with grid, and node-link diagram with contour maps.

Gaining an understanding of recognizable and memorizable
motifs in node-link diagrams is a research question in itself
[26]. While a recall task such as drawing the diagram from
memory may provide useful insights [26], it is not applica-
ble for graphs with more than ten nodes. To measure the
role of grids and contour lines in providing memorable spatial
features, we devised a revisitation task — revisit previously
highlighted nodes. We selected this task to build upon the
previous work of Ghani et al.[17], recognizing it also as a
plausible task that analysts perform [24, 30].

We also hypothesized that the construction of a mental model
differs significantly depending on whether the whole visual-
ization space can be seen in one view or not. While in the
former case visual memory plays a more dominant role, spa-
tial memory might have a stronger effect in the latter. For this
reason, we suggest to perform the revisitation task under two
different interaction conditions. We propose a first condition
in which the viewer can only pan in the visualization space,
thus never seeing the whole visualization space at once; and
a second condition in which the viewer can acquire a view of
the whole space with a zoom-out operation.

EVALUATION
We performed three studies for each task described above.

Techniques

We compared grid and contour lines and with a control condi-
tion of plain node-link diagram. Technique settings and data
were adjusted for each of the separate experiments and are
reported in each study section.

Node-Link-Only.
In this control condition, participants complete the tasks using
a node-link diagram without any additional visuals.

Grid.

This condition augments the node-link diagram used in the
previous condition with an underlying grid. We employ a
modified version of the grid design proposed by Ghani et
al.[17] which used strongly saturated solid colors for each
grid cell. In realistic scenarios however, such colors may
greatly interfere with the visual encoding of the primary data

[35, 4], a disadvantage we believe overpowering the benefit of
improved memorability in many visual analysis tasks. Thus,
we opted for a grid representation consisting of empty frames
rather than solid color regions. We assigned a distinct color
to each grid cell as in [17], but used transparency as advised
in [4].

Contours.

This condition augments the node-link diagram used in the
control condition with contour lines. In the context of node-
link diagrams, contour lines can be derived from several data
properties such as node degree or node centrality. Similar to
[21] we generate our contours starting with Delaunay trian-
gulation of nodes in a given layout. Corners of each trian-
gle are assigned a height value corresponding to the selected
node property. We interpolate this height value within each
triangle using barycentric coordinates. Given a set of iso-
property values indicating where the contours should pass,
our implementation of the marching squares [25] algorithm
computes the set of points marking the boundary of the iso-
value. We sample these boundary points and use piecewise
Bezier curves to connect them.

Visual references such as grids and contours are designed to
reside in a visual middle ground between the foreground of
the primary data encodings and the background, such that
they can be brought to the foreground when attended to, and
pushed to the background otherwise [20, 4, 5]. Following the
design guidelines suggested in [4, 5], we chose visual param-
eters to render the contours sufficiently discernible, yet min-
imize their interference with the primary visualization. In-
stead of a gray-scale representation, we opted for color cod-
ing to help distinguish nested contour lines. However, we
selected a very narrow color palette, with minimal saturation
and high luminance, allowing it to blend more with the white
background of the node-link diagram. In addition, we utilized
shadow-like offsets to emphasize unique contour shapes fur-
ther, while making them more distinguishable from the sim-
ple stroke used for the links of the node-link diagram. An-
other motivation was to allude to a 3D landscape, featuring
recognizable geographic formations such as peaks and val-
leys.



Experiment 1: Readability

This experiment investigates whether the presence of grid or
contour lines compromises the readability of a node-link dia-
gram by employing a common neighbors task. We performed
a within-subject design with 3 Techniques x 2 Data Sizes x 4
Repeats. We recruited 9 participants, 3 females and 6 males,
with a mean age of 33.8 years.

Data

For this study, we generated graphs using Eppstein and
Wang’s power law model [14]. The model is designed to en-
sure that the synthetic data generated follows a well-known
property of the degree of node observed in many real net-
works [3]. We used two different sizes: 50 nodes and 75
links (small); and 100 nodes and 150 links (large). We
generated 6 graphs per size for each repeat and training tri-
als. Across techniques, we used the same graphs. In order to
minimize learning effects, we flipped the layout horizontally
and/or vertically for each technique.

Technique Settings

All graphs, regardless of their size, were scaled to fit in an
area of 600 by 600 pixels, fitting on a standard computer
screen and removing the need for interactive navigation that
could impact the completion time. We opted for a legible but
small visualization size to capture the potential effect of back-
ground interference with a high density of visual elements.
From a series of pilots, we found that a grid of 3 by 3 pro-
vided a good compromise. For the contour lines, we exper-
imented with several metrics and opted for using the node
degree. We observed that this metric produced contours dis-
tinctive enough from each other, while not introducing too
much clutter. We used the same color palette for coloring the
contours and the grid lines. Figure 2 shows examples from
visual stimuli used in our experiment.

Procedure

Given two highlighted nodes, participants had to select nodes
that are connected to both of the highlighted nodes in a total
of 24 trials. The order of techniques were counterbalanced
across participants. For each trial we selected two random
high-degree nodes which were not connected directly but had
a minimum of two common neighbors. Due to the high
connectivity requirements, the highlighted nodes were likely
to appear at a busy region of the node-link diagram, where
the visualization is more susceptible to interference with the
background. Thus, the chance of capturing a potential ef-
fect of the background on the readability of the node-link di-
agram would be higher. The order of techniques were coun-
terbalanced across participants. The participants selected the
common neighbors by clicking on the nodes. After selecting
all common neighbors, the participants were asked to con-
firm their answer by pressing a button. Participants were in-
structed to take breaks as needed after every trial while the
visualization screen was blank.

Hypothesis

We hypothesized that (H1) Grid and Contours would de-
crease the readability of the representation and impact at least
the completion time as they introduce additional visual clut-
ter.

XA
k ,!”"“v
,\\,,"/s
[\7

</
Al

Figure 2. Examples of the visual stimuli used in the controlled studies on
readability (Experiment 1) and comparison (Experiment 2). Only one of
each pair of images was used in the readability study.

Results

Since accuracy results did not follow a normal distribu-
tion, we analyzed them using Friedman’s non-parametric test.
Friedman’s test did not reveal any significant difference in
accuracy between Node-Link-Only, Grid, or Contours. All
techniques had a mean of about 90% accuracy (with 3.5%
standard error). Pairwise comparisons of Wilcoxon’s test Z
values reveal weak effect sizes (r < 0.1).

We analyzed the completion time for correct trials only, using
a Mixed Linear Model (MLM) that can handle missing val-
ues. We excluded the about 10% of incorrect trials. MLM did
not reveal any significant difference in completion time, con-
tradicting our hypothesis (H1). All techniques had a mean of
about 15 seconds (with 7 sec standard error).

We asked the participants to rate whether they found the Grid
or Contours distracting for this task, using a 5-point Likert
scale from 1 (not distracting at all) to 5 (very distracting).
Grid received an average rating of 1.5 (SD=0.35), while the
average rating for Contours was 2.3 (SD=0.47). In line with
(H1), the majority of participants (6 out of 9) preferred the
Node-Link-Only condition for this task.

Experiment 2: Visual Reference

In this experiment participants were asked to identify pres-
ence and nature of differences between two seemingly sim-
ilar graphs that are displayed side by side. We performed a
within-subject experiment of 3 Techniques x 2 Data Sizes X
4 Repeats. This experiment was performed right after the Ex-
periment 1 session by the same participants using the same
data sets and visual stimuli.

Procedure

For each graph, we generated an altered version by randomly
deleting a high degree node with all its connections. How-
ever, we avoided eliminating nodes with high betweenness



centrality to ensure that the task was challenging enough. We
created new contour lines for the altered graph since their
node degree had changed. Half of the trials presented the
exact same graph on both sides. Participants had to answer
whether the graph on the right had a smaller, higher, or equal
number of nodes and edges as the graph on the left by press-
ing one of the three buttons.

Hypotheses

We hypothesized that (H2) participants would be more ef-
fective to conclude if the two graphs are identical with Con-
tours, where they can rely on these visuals for gauging the
differences instead of carefully inspecting the node-link di-
agram. For quantifying the differences (larger or smaller),
we expected that (H3a) Grid would yield better results than
Node-Link-Only, as grid cells would enable participants to
structure the space and inspect regions systematically. We
also believed that (H3b) Contours would yield to better re-
sults than the two other techniques because the landscape
built from data properties would guide participants’ attention
towards the region that is different.

Results

Since accuracy results did not follow a normal distribution,
we analyzed them using Friedman’s non-parametric test. The
test revealed a significant difference between techniques for
identifying if graphs are identical or not (p < .05). Pairwise
comparisons using Wilcoxon’s tests indicate that the Con-
tours technique outperforms Node-Link-Only (p < .05) and
Grid (p < .01) confirming (H2). An estimate of effect size
based on Z value reveals a medium effect size (r ~ .3) for
both of these pairwise comparisons. Mean accuracy indicates
that Contours are 10% more accurate than Node-Link-Only
and 18% more accurate than Grid. Graph size did not yield
to any significant difference between techniques.

We analyzed the results on completion time for correct tri-
als only using a Mixed Linear Model (MLM) that can han-
dle missing values. We excluded the 24% of incorrect trials
(i.e. participants failed to recognize if the modified graph was
identical, smaller or larger). MLM revealed an effect of Tech-
nique (F5 16 = 5.29,p < .05) and Size (F; 3 = 41.49,p <
.001) on completion time. As expected, pairwise comparison
revealed that participants performed 20% faster to identify
changes in Small size networks, with a statistically signifi-
cant difference (p < .001). Pairwise comparisons revealed
that Contours led to significantly faster task completion times
(p < .05) than the other two techniques. Mean completion
time indicates that users performed the tasks 12% faster on
average with Contours than with the two other techniques,
confirming (H3b). Contrary to (H3a), Grid however did not
produce more accurate or faster identification of differences
between graphs compared to Node-Link-Only.

We asked participants to rate the usefulness of the Grid and
Contours visualizations for this comparison task, using a 5-
point Likert scale from 1 (not useful at all) to 5 (very useful).
Grid received an average rating of 3.77 (SD=0.22), while the
average rating for Contours was 4.45 (SD=0.24). 6 out of
9 participants preferred the Contours visualization, while the
remaining 3 preferred the Grid visualization for this task.

Figure 3. Examples from the small (top row) and large (bottom row)
data sets used in Experiment 3.

Experiment 3: Revisitation

In this experiment, we investigated whether the Grid and the
Contours visual reference structures aided users in forming
a mental model of a visualization space. To assess the for-
mulation of a mental model, we devised a task of revisiting
previously highlighted nodes in a visualization space that is
larger than the viewing window. We performed a 3 Tech-
niques X 2 Data Sizes x 2 Interaction Methods x 3 Repeats
within-subject design. We recruited 12 participants, 8 males
and 4 females, with a mean age of 28.3 years.

Data

We used two data sizes in this experiment : 100 nodes and
150 links (small), and 150 nodes and 300 links (large). We
decided against using a graph generator for this task because
we did not have access to one that could produce graphs with
distinguishable topological features (i. e. dense communities
or hubs) as real graph often do [2]. We conjectured that this
factor could bias our results as grid or contour lines are likely
to play a more significant role when used to augment “feature-
less” visual spaces. Therefore, we generated our graphs from
real social network data. Starting from a data set representing
co-autorship relationships in a real social network, we ran-
domly added and removed nodes and edges until the desired
number of elements and sufficient distinctive topological fea-
tures were achieved. We generated five graphs per size for
each repeat and training trials. Examples are shown in Figure
3. Across techniques, we used the same graphs. In order to
minimize learning effects, we flipped the layout horizontally
and/or vertically for each visualization technique.

Technique Settings

In this experiment, participants had to perform the task in a
visualization space that did not fit in view (unless specifically
zoomed out in one of our conditions). We used a window size
of 1000x1000 pixels over a 3000x3000 pixels canvas (small)



Figure 4. Examples from the Grid and Contour visualization stimuli images used in Experiment 3 (revisitation). The images on the left show the whole
visualization space with a highlight of what can fit in the view in the pan and zoom-in conditions. The images on the right show the contents of the

viewing window in detail.

or a 4500x4500 pixels canvas (large). We picked a grid cell
size of 750x750 pixels ensuring that an entire cell and some
portion of its neighboring cells would fit in the view, while
avoiding a fine grid spacing. Thus, we used a 4x4 grid for
the small data, and a 6x6 grid on the large one. We opted
for using color on the grid lines as a secondary cue to encode
relative positions of the grid cells (see Figure 4, top).

To generate contour lines, we used the betweenness central-
ity of each node. This metric produced a good compromise
between the simplicity of the patterns (i.e. the number of dis-
tinct peaks) and the presence of distinguishable features (i.e.
the variation in shape). See Figure 4, bottom for an example
visual stimulus.

Navigation and Interaction

The participants used either pan or zoom to navigate within
the visualization space. Dissociating navigation techniques is
common practice [23] as it ensures similar navigation strate-
gies between participants. Here, it also enabled us to ob-
serve different strategies while forming a mental model of
the space. In the pan interaction mode, participants could not
view the whole visualization but they could pan by dragging
their mouse. In the zoom interaction mode, we designed a
simple two-level zoom wherein participants could toggle be-
tween a zoomed-in and a zoomed-out state on right mouse
button click as implemented in [23]. In the zoomed-out state,

the whole visualization fit in the view. In this mode, when
participants right-clicked, the visualization zoomed in, cen-
tering around the position of the mouse click. The scales used
in the zoomed-in state and the pan mode were the same.

Procedure

We designed a revisitation task consisting of a learning and
an execution phase, similar to [17]. In the learning phase,
three random nodes were highlighted in sequence. The start-
ing view was at the center of the visualization space in the
pan mode, and at the zoomed-in state for the zoom mode.
Participants had to navigate to find the highlighted node, col-
lect information about its locality and click on it to view the
next highlighted node. Once they clicked all three nodes, they
viewed a blank screen for four seconds. After, the execution
phase began with the starting view, where participants had
to revisit the nodes (now dehighlighted) in the same order.
They provided their answer by clicking on the node. Time to
revisit a node was limited to 25 seconds, with a countdown
appearing in the last 10 seconds. If the time expired, a pop
up dialogue instructed them to proceed to the next node. We
forced a ten second break after every trial, displaying a pho-
tograph to reset visual memory. We instructed them to take
longer breaks if needed.

Participants completed 18 trials using pan, and another 18
using zoom interaction. We used the same visuals but high-



lighted a different set of nodes to limit learning effects. We
counterbalanced the order of visualizations, but we kept the
order of interaction methods fixed across participants, opt-
ing for presenting the most difficult condition (pan) first. We
trained participants before each task and interaction mode,
informing them about strategies they could utilize. We in-
structed them to collect sufficient information about the local-
ity of a highlighted node before clicking on it in the learning
phase while being as time efficient as possible. On average
participants took about 70 minutes to complete the study. All
participants were rewarded with a 25 dollar gift card, while
the best performing participant was promised an additional
25 dollars.

Hypotheses

We expected that (H4a) participants would be least accurate
with the Node-Link-Only condition, because the presence of
Grid or Contours would provide additional visual references
encoding the locality of a visited node. In addition, we ex-
pected (H4b) Contours to outperform Grid because, in con-
trast to the uniform visual characteristics of grids, contours
provide unique visual structures in different parts of the visu-
alization which would ease recall.

We hypothesized that (HS) in the zoom condition, differences
between the Contours and Grid techniques may not be signif-
icant since participants could effectively memorize the exact
row and column of the cell containing the node in the Grid vi-
sualization. However, we expected that (H6) in the pan condi-
tion, Contours would have clearer benefits over the other two
techniques as they provide unique landmarks across space.

Finally, we did not expect (H7) to see any significant time dif-
ference across visualization techniques because we hypothe-
sized that any possible gains provided by the visuals on re-
calling the location would be eclipsed by the interaction time
required to navigate there.

Results

Since accuracy did not follow a normal distribution, we ana-
lyzed them using Friedman’s non-parametric test, which re-
vealed a significant difference among techniques (p < .001).
Pairwise comparisons using Wilcoxon’s tests showed that
Contours outperformed Node-Link-Only (p < .01) and Grid
(p < .001), confirming (H4b). An estimate of effect size
based on Wilcoxon’s test Z value revealed medium effect size
(r = .3) between Contours and the other two techniques,
while the effect size between Node-Link-Only and Grid was
small (r < .1). Mean accuracy indicates that Contours pro-
duced 7% more accurate results than Node-Link-Only and
16% more accurate results than Grid for revisiting previous
nodes. Contrary to our hypothesis (H4a), we did not find
any significant difference between Grid and Node-Link-Only.
When splitting results by interaction condition, Friedman’s
tests revealed significant differences in accuracy among tech-
niques in both the zoom (p < .05) and pan (p < .01) condi-
tions. Contours significantly outperformed Node-Link-Only
(p < .05) and Grid (p < .05) using zoom, contradicting
(HS). In addition, Contours outperformed Grid (p < .001)
but not Node-Link-Only in the pan condition, partially vali-
dating (H6). Table 1 and Figure 5 summary the results.
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Figure 5. Accuracy and margin of error results for all three techniques
in Experiment 3. Means and +/- standard error values are shown.

Technique  Pan and Zoom Pan Zoom
CxGxNL (p < .001) (p < .01) (p < .05)
CxG (p<.001) (p < .001) (p < .05)
CxNL (p < .0D) (p < .05)

Table 1. Significant differences in accuracy across techniques and in-
teraction conditions in Experiment 3. C: Contour, G: Grid, NL: Node-
Link-Only

We analyzed the results on completion time for correct tri-
als only using a Mixed Linear Model (MLM) that can han-
dle missing values. We excluded 24% of incorrect trials. In-
line with (H7), MLM did not reveal any significant difference
among techniques.

Subjective Ratings

After the controlled experiment, participants rated their con-
fidence in their results using a 5-point Likert scale from 1
(not confident) to 5 (very confident). Mean confidence lev-
els are provided in Table 2 and Figure 6. Since these ratings
do not follow a normal distribution, we analyzed them using
non-parametric tests. Friedman’s test shows a significant dif-
ference in participant confidence between techniques for both
pan (p < .05) and zoom (p < .001). Pairwise comparisons
using Wilcoxon’s test reveal that participants felt significantly
more confident using the Contour compared to Node-Link-
Only for both pan (p < .05) and zoom (p < .01). In the
zoom condition, participants felt also significantly more con-
fident using Contour than using Grid (p < .05).

We also asked the participants to give an overall prefer-
ence ranking for the three visualization techniques. Fried-
man’s test indicated a significant difference in preference
among techniques (p < .01). Pairwise comparisons us-
ing Wilcoxon’s test reveal that Contours were ranked signifi-
cantly higher than both Node-Link-Only (p < .001) and Grid
(p < .05). Indeed, 8 out of 12 participants ranked Contour as
their favorite technique.

Finally, we also report on most recurrent participants’ com-
ments collected using a printed questionnaire. For Node-
Link-Only, 5 out of 12 participants indicated that they felt
their performance was dependent on the node to revisit and
particularly easy for nodes on the periphery of the diagram.
For the Grid, 5 out of 12 participants indicated that they were
able to relocate the grid cell but that they forgot the exact posi-
tion of the node within this cell. A few participants explained



Contoure-

Grid—e—

Node-Linki—e—i

1 2 3 4
(not confident) (neutral)

5
(very confident)

Level of Confidence in zoom mode

Contoure—

Grid—e—i

Node-Link —e—
1 L L L L L L L ]
I T T T 1 T T T 1

1 2 3 4
(not confident) (neutral)

(very confident)

Level of Confidence in pan mode

—e—i Contour
——e—i Grid
. . . —e—i Node—ILink
I T T T 1
1
(first choice)

3
(second choice) (third choice)

Ranking of the Visualizations

Figure 6. Subjective rating results for confidence levels in the zoom (top),
and pan interaction modes (middle), as well as the overall rankings of the
three visualization techniques (bottom). Means and +/- standard error
values are shown.

Int.  Contours Grid Node-Link-Only
Pan 4 (SD=0.6) 383 (SD=1.02) 3 (SD=1.27)
Zoom 458 (SD=0.51) 4.16 (SD=0.57) 3.41 (SD=1.16)
Table 2. Average confidence levels indicated by the participants for each
interaction mode per visualization technique. Standard deviations are
provided in parenthesis.

that counting the grid cell was diverting their attention from
the actual graph structure. For the Contour, 7 out of 12 partic-
ipants indicated that they used contour shapes as spatial land-
marks. For example, a participant commented that he “could
see islands, coves and mountains to easily associate with ge-
ographic locations” and another explained that he “could find
unique representative shapes... that represent objects in real
life, for example, crown on a prince’s head”.

DISCUSSION

In this section we discuss the implications of our findings as
well as address the key limitations of our studies to take into
account in the future.

Implications for Design

Whispering Visuals

We followed the guidelines prescribed in [5] for the visual
design of our grids and contour lines. Our readability study
did not reveal any significant difference when additional vi-
sual structures were present. As the common neighbor task
required participants to follow many links in the diagram that
were overlapping these visuals, we feel confident that read-
ability of the diagram was not hindered when suggested de-
sign guidelines were followed.

Structuring the Space with Grids

We were surprised that our results did not show any signif-
icant increase in performance using Grid versus Node-Link-
Only. In particular, the results from our revisitation study
seem to be in contradiction with previous studies reported in

[17]. We explain these discrepancies by two major differ-
ences in the experimental setups. First, in contrast to the pre-
vious study, we selected a more “whispering” color palette.
This choice may have downplayed the role of grids in help-
ing user form a mental model of the space but ensured its
readability as advised in [5, 4] and confirmed in our read-
ability study. Second, we selected graph data featuring dis-
tinguishable topological structures, as we conjectured it was
more common in real datasets. However, such features may
have helped task performance more than the information pro-
vided by the grid. Experiments with representations that nat-
urally contain less salient motifs (such as dot visualizations)
may capture a stronger effect of a grid.

Unexpectedly, despite the lack of a significant increase in per-
formance, the grid was consistently preferred over the control
condition. Participants also reported a higher sense of con-
fidence in their answers with the grid. These subjective im-
pressions could point to benefits that we failed to capture with
our current experimental settings. However, from our current
findings, we also want to call for a careful consideration of
their use in visualizations, as they might lead to a false sense
of confidence.

Structuring the Space with Contour Lines

While many researchers experimented with augmenting visu-
alizations with contour lines or topographic maps [33, 33, 15,
21, 13, 11], there has been no tangible evidence of their util-
ity. On the contrary, advocates for minimal ink may caution
against the use of these structures as they may obstruct read-
ability. Our quantitative findings are the first to indicate that
contour lines do not hinder readability (study 1), play a signif-
icant role in helping viewers structure the space (study 2), and
form a mental model when navigating a large visualization
(study 3). Our quantitative results from the controlled exper-
iments as well as qualitative comments from the participants
suggest that contour lines can provide a general outlook of
the node-link diagram, helping viewers identify unique spa-
tial landmarks to return to previously visited nodes. Our sub-
jective ratings also concur with the increased performance as
contour lines are consistently preferred. Based on these in-
sights, we project that contour lines could ease navigation and
orientation in an infinite zoomable and pannable canvas.

In our studies we manually selected the metric to generate the
contours to ensure the presence of identifiable geometric fea-
tures while minimizing interference with the primary visual-
ization. While node centrality provided sufficient discernible
characteristics for a social network type of data (study 3), we
opted to use the degree metric for synthetic data generated
using a power law distribution (study 1, 2). Non-graph data
properties associated with the nodes can also be used. Thus,
the metric to be used for contour generation is highly specific
to the data.

Structuring the Space for Dynamic Visualizations

Enriching node-link diagrams with visual structures that re-
flect a data property is a double-edged sword. It may, as we
illustrated in studies 2 and 3, help viewer’s build a mental
model of the representation. However, in contrast with a grid,



these structures may also prove highly unstable when explor-
ing a dynamically changing diagram. Contour lines could
help grasp where the changes are, but if these are dramatic,
they may rather disorient the viewer.

Study Limitations

In our studies we strived to devise realistic tasks while con-
trolling many factors that could impact our findings. Conse-
quently, as with all controlled experiments, there are key lim-
itations that need to be taken into account when generalizing
our results and designing further experiments.

Tasks and Sample Size

What a mental model exactly is and how to assess it is an open
and challenging research question. Our evaluation framework
is an attempt at characterizing several of the aspects that may
be at play when viewers form a mental model of a visualiza-
tion. However, other aspects could be taken into account. In
particular, we did not include any recall [26] or recognition
tasks [33] as we could not decide on a systematic way to op-
erationalize them or interpret their results.

Our study is of a limited sample size. For the first two stud-
ies, where we recruited only nine subjects, arriving at definite
conclusions is not possible. However, we can observe cer-
tain trends. For instance, due to very small effect size, only
a much larger population could reveal a significant effect of
visual enrichments on readability. Our study on identifying
differences across similar graphs unexpectedly showed that
grid visualizations might not be helpful for side-by-side com-
parison tasks. This trend calls for further investigations on
the role of a grid as a reference cue.

Granularity of the Visual Enrichments

As mentioned earlier, we manually adjusted granularity set-
tings such as the number of contour lines and grid cells after
a series of pilot sessions, ensuring that a certain amount of
contour or grid lines were always present, regardless of the
scale. We still collected conflicting feedback from our partic-
ipants: 3 commented that smaller cells would allow them to
better structure the space; 2 argued for larger cells as they had
difficulties remembering the cell positions. Participants also
commented that while some contour lines did not appear to
provide enough recognizable patterns in the pan and zoom-in
modes, they became discernible as spatial landmarks in the
zoom-out mode. While we had to fix granularity of both con-
tours and grids for a manageable study size, future studies that
focus on granularity as an independent variable are needed.

Semantics

In this study we did not address the particular role of the
data semantics. However, we would like to acknowledge
that semantics may play a major role in mental model forma-
tion, possibly eclipsing the gain provided by additional visual
structures. However, this role would be highly dependent on
the dataset itself and the participants’ previous knowledge, in-
terests and analysis skills, thus making this factor extremely
difficult to control. We believe that studies in less controlled
settings (ideally longitudinal ones where participants explore
their own datasets) would be more adequate to evaluate the

interplay between semantics and additional visual structures
when a viewer is forming a mental model of the visualization.

CONCLUSION

In this paper, we proposed an evaluation framework to extend
our knowledge on the impact of introducing visual references
to node-link diagrams. Through three controlled studies, we
collected evidence quantifying the benefits and drawbacks of
two types of visual structures : grids and contour lines.

We discussed how our findings shed a new light on previous
results in the literature. In particular, our results seem to indi-
cate that when node-link diagrams present recognizable mo-
tifs, such as clusters, the benefits of grids for revisitation tasks
[17] may not be discernible. Our studies are also the first ones
to reveal tangible benefits of the use of contour lines to en-
rich node-link diagrams. Our experimental design attempts to
capture how these visuals could help the viewer form a men-
tal model of the visualization (by structuring the space and
identifying spatial landmarks). Results indicate that contour
lines play a significant role in these activities.

We believe that our results on the benefits of enriching visu-
alizations with additional visual structures will inspire further
research in this space, and the evaluation framework we pro-
pose will serve as a building block for further studies.
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