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Figure 1: An example Augmented Reality application showcasing the difference between user-perspective and device-perspective magic lens
interfaces. (a) Real world environment only. (b) Augmented Reality scene with the conventional device-perspective magic lens. (c) AR scene
rendered with our user-perspective magic lens prototype.

Abstract

In this paper we present a new approach to creating a geometrically-
correct user-perspective magic lens and a prototype device imple-
menting the approach. Our prototype uses just standard color cam-
eras, with no active depth sensing. We achieve this by pairing a re-
cent gradient domain image-based rendering method with a novel
semi-dense stereo matching algorithm inspired by PatchMatch. Our
stereo algorithm is simple but fast and accurate within its search
area. The resulting system is a real-time magic lens that displays
the correct user perspective with a high-quality rendering, despite
the lack of a dense disparity map.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.3.7 [Image Processing and Computer Vision]: Scene
Analysis—Stereo

Keywords: augmented reality, magic lens, user-perspective, im-
age based rendering, gradient domain, semi-dense stereo

1 Introduction

The metaphor of the magic lens is used to describe a common in-
terface paradigm in which a display region reveals additional hid-
den information about the objects the user is interacting with. This
metaphor was originally introduced for traditional GUIs, but it has

∗e-mail: domagoj@cs.ucsb.edu
†e-mail: holl@cs.ucsb.edu
‡e-mail: psen@ece.ucsb.edu
§e-mail: mturk@cs.ucsb.edu

also been adopted as an intuitive interface for some VR applica-
tions. More prominently, today it is the de facto standard interface
for Augmented Reality due to the wide adoption of hand-held com-
puting devices such as smartphones and tablets. Indeed, it is these
devices that are largely responsible for bringing AR into the main-
stream consumer market.

However, while the concept of the magic lens is a natural fit for
hand-held AR, the typical approach falls short of the full vision of
the metaphor. At issue is the perspective of the augmented scene.
While concept imagery for AR often presents the magic lens as
an almost seamless transparent display, in reality nearly all cur-
rent magic lens implementations rely on video-see-through meth-
ods where the device displays and augments video captured by the
camera on the back of the device. As a result the AR scene is pre-
sented from the perspective of the device, instead of that of the user.

This device-perspective approach does not provide a fully intuitive
and seamless experience for the user. There is a clear break between
what is in the real world and what is mediated by the device. Fur-
thermore, the sometimes dramatic change in perspective can have
negative effects on usability and spatial understanding. As an exam-
ple, consider an AR application for visualizing interior design and
furniture arrangement (see Figure 1); this is a popular use case for
AR. The entire purpose of AR in this type of application is to give
the user a better sense of what the space will look like with the new
décor or furniture. However, device-perspective AR will distort the
perspective and scale of the room (Figure 1b) so the user will not
get a true feel for the future remodeled room. On the other hand, a
true magic lens would show the augmented scene at the same hu-
man scale as the real world. Ideally there would be no perspective
difference between the scene inside and outside the magic lens (Fig-
ure 1c). This type of interface is referred to as a user-perspective
magic lens.

Scene reconstruction has been at the heart of the problem of creat-
ing a user-perspective magic lens. Since the scene is mediated by
an opaque display, it has to be re-rendered from a scene model. Re-
construction is still a challenging research problem. While active
depth sensors provide good results and have recently become com-
monplace, they have constraints such as range limits and inability
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to work outdoors in strong sunlight. Another approach to scene
reconstruction is stereo vision, where the depth of the scene is re-
constructed by matching two views of a stereo camera pair. The
advantage of stereo reconstruction is that it can work with standard
cameras, it does not need active illumination, and there are no major
restrictions with regard to outdoor scenes.

Some stereo reconstruction algorithms can provide quite accurate
depth maps, but this comes at a performance penalty. Fully accu-
rate depth maps cannot yet be achieved at frame rate. Real-time
stereo can produce depth maps that are sufficient for many appli-
cations, but they are not very good for the purpose of re-rendering
a real world scene. Typically, real-time stereo approaches achieve
speed by using a small depth range (limiting the number of different
depth values), resulting in a scene model composed of distinct front
facing planes. Re-rendering this model from a new point-of-view
can result in a scene composed of obvious distinct layers.

In this paper we present a new approach to solving the problem
of creating a user-perspective magic lens. We observe that accu-
rate dense scene reconstruction is a requirement imposed by the
traditional rendering methods, and not an inherent requirement of
creating a user-perspective view. By taking a different approach to
rendering, we lower the requirements for reconstruction while also
achieving good results. We do this by using image-based rendering
(IBR) [Shum and Kang 2000]. IBR can produce high quality results
with only limited scene models by leveraging existing imagery of
the scene. This fits very well with the nature of our problem.

The key to our approach is the adoption of a recent gradient do-
main IBR algorithm [Kopf et al. 2013] that is paired with a novel
semi-dense stereo matching algorithm we developed. The IBR al-
gorithm we use renders from the gradients in the image instead of
the pixel color values. It achieves good results as long as the depth
estimates of the strongest gradients are good, even if the depths of
the weak gradients are incorrect. This fits well with the general be-
havior of stereo reconstruction, but we exploit it further by using a
semi-dense stereo algorithm to compute depths only at the strongest
gradients.

With this approach we have created a geometrically-correct user-
perspective magic lens with better performance and visual quality
than previous systems. Furthermore, we use only passive sensing,
and support fully dynamic scenes with no prior modeling. Due to
the use of face tracking, we do not require instrumenting the user.
Although our prototype system is tethered to a workstation and
powered by a GPU, we are confident that given the rate of advance-
ment of mobile hardware this will be possible on a self-contained
mobile platform in just a few years.

2 Related Work

The “magic lens” metaphor was first introduced by Bier et al. at Xe-
rox PARC [Bier et al. 1993] as a user interface paradigm developed
for traditional desktop GUI environments. The basic idea is that of
a movable window that alters the display of the on-screen objects
underneath it. This window acts like an information filter that can
reveal hidden objects, alter the visualization of data, or otherwise
modify the view within the region that the window covers.

This concept of an information filtering widget was quickly adopted
outside traditional desktops. Viega et al. developed 3D versions
of the magic lens interface, both as flat windows and as volumet-
ric regions [Viega et al. 1996]. The Virtual Tricorder [Wloka and
Greenfield 1995] was a interaction device for an immersive VR en-
vironment that featured a mode in which a hand-held tool revealed
altered views of the 3D world. [Rekimoto and Nagao 1995] in-
troduced hand-held Augmented Reality with the NaviCam system.

The NaviCam was a video-see-through AR system consisting of a
palmtop TV with a mounted camera and tethered to a workstation.
The video from the camera is captured, augmented, and then dis-
played on the TV. This hand-held video-see-through approach soon
became the norm for Augmented Reality interfaces [Zhou et al.
2008]. Optical see-through AR approaches (e.g. [Bimber et al.
2001; Olwal and Höllerer 2005; Waligora 2008] can implement
perspectively correct AR magic lenses without the need for scene
reconstruction but have to cope with convergence mismatches of
augmentations and real objects behind the display unless they use
stereoscopic displays.

There have been efforts in the AR community to design and de-
velop video see-through head-worn displays that maintain a seam-
less parallax-free view of the augmented world [State et al. 2005;
Canon 2014]. This problem is slightly simpler than correct per-
spective representation of the augmented world on hand-held magic
lenses since the relationship between the imaging device and the
user’s eyes is relatively fixed.

With the proliferation of smartphones and tablets AR has reached
the mainstream consumer market; this has made hand-held video-
see-through the most common type of AR and it is what is often
assumed by the term “magic lens” when used in the context of AR
[Mohring et al. 2004; Olsson and Salo 2011]. Since the display
of the augmented environment from the perspective of the device’s
camera introduces a potentially unwanted shift of perspective, there
is renewed interest in solutions for seamless user-perspective repre-
sentation of the augmented world on such self-contained mobile AR
platforms. User studies conducted using simulated [Baričević et al.
2012] or spatially constrained [Čopič Pucihar et al. 2013; Čopič Pu-
cihar et al. 2014] systems have shown that user-perspective views
have benefits over device-perspective views. Several systems have
attempted to create a user-perspective view by warping the video
of a video-see-through magic lens [Hill et al. 2011; Matsuda et al.
2013; Tomioka et al. 2013]; however these approaches can only
approximate the true user-perspective view as they are unable to
change the point of view and therefore do not achieve the geomet-
rically correct view frustum.

The most directly relevant work to this paper is the geometrically-
correct user-perspective hand-held augmented reality magic lens
system in [Baričević et al. 2012]. That prototype system was built
using a Kinect depth sensor and a Wiimote. The Wiimote is used to
track goggles worn by the user in order to obtain the head position.
The approach relies on the fairly high quality depth information
provided by the Kinect to obtain an accurate 3D model of the real
world; the final scene is then rendered using conventional rendering
methods (raycasting and scanline rendering). While the approach is
fairly straightforward, it has certain constraints. Firstly, the system
does not gracefully handle dynamic scenes as the scene is rendered
in two layers with different real time characteristics. One layer is
rendered from the live Kinect stream and updates immediately, the
other is rendered from a volumetric scene model that updates more
slowly. Secondly, active depth sensors like the Kinect cannot oper-
ate well under strong sunlight (or any other strong light source that
emits at their frequency).

Stereo reconstruction is one of the most well researched areas of
computer vision. A full overview is well beyond the scope of this
paper. For an excellent review of the field we refer the reader to
[Scharstein and Szeliski 2002]. In recent years, a number of al-
gorithms have been proposed that take advantage of GPU hard-
ware to achieve real-time performance [Wang et al. 2006; Yu et al.
2010; Zhang et al. 2011; Kowalczuk et al. 2013]. While these algo-
rithms can produce fairly accurate dense disparity maps, the real-
time speeds are achieved for relatively low resolutions and narrow
disparity ranges. Our stereo algorithm is inspired by PatchMatch
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Figure 2: The steps to rendering a novel view: (a) input image, (b)
gradient magnitudes of input, (c) mask of strongest gradients, (d)
disparity map for masked area, (e) filled-in disparity map, (f) final
solution. (Note: (a) - (e) are for left camera, (f) is for final pose)

[Barnes et al. 2009], an iterative probabilistic algorithm for finding
dense image correspondences. PatchMatch is a general algorithm
and has been applied to the field of stereo matching before. [Bleyer
et al. 2011] proposed a stereo matching algorithm based on Patch-
Match primarily designed to support matching slanted surfaces, al-
though it also supports front facing planes. In [Pradeep et al. 2013]
this was adapted for real-time 3D shape reconstruction by using a
faster matching cost and relying on a volumentric fusion process to
compensate for the noisy per-frame depth maps.

Imaged-based rendering techniques create novel views of a scene
from existing images [Shum and Kang 2000]. These novel views
can be rendered either purely from input image data [Levoy and
Hanrahan 1996], or by using some form of geometry [Shade et al.
1998; Debevec et al. 1996]. Our approach is based on the gradient-
domain image-based rendering work by Kopf et al. [2013]. Their
method creates novel views by computing dense depth maps for the
input images, reprojecting the gradients of the images to the novel
view position, and finally using Poisson integration [Pérez et al.
2003] to generate the novel view.

3 Overview

As mentioned above, our approach is based on the gradient domain
image-based rendering algorithm by Kopf et al. [2013]. For a de-
tailed description of the algorithm we refer the reader to the original
paper; here we will only give a brief high level overview in order

to introduce the idea. We also give a more detailed explanation of
how we adapted the method for our system in Section 5 below.

The main idea behind gradient domain methods is that an image
can be reconstructed from its gradients by performing an integra-
tion. Therefore, if one needed to generate an image corresponding
to a new viewpoint of a scene (as in a user-perspective magic lens),
one could do so by integrating the gradient images for those view-
points. These gradient images can be obtained by reprojecting the
gradients computed for an existing view of a scene for which there
is scene geometry information. Since strong gradients are generally
sparse in a scene, and since stereo matching algorithms work best
at strong gradients, this approach provides a way to create a high
quality image even without a fully dense and accurate depth map
as long as the strongest gradients are correctly reprojected. While
there will be errors in the reprojected gradient image, they will be
mostly confined to weak gradients that do not have a large effect
on the integration of the final solution. In contrast, a standard re-
projection method would result in a noisy solution with much more
noticeable artifacts.

Using a rendering method that only requires good depth informa-
tion at the gradients gives us the opportunity to optimize our stereo
reconstruction. Instead of the standard approach of computing a
dense depth map across the input image pair, we can compute semi-
dense depth maps that only have information at the parts of the im-
age that have strong gradients. The depth of the rest of the image
can then be approximated by filling in depth values extrapolated
from the computed parts of the depth map. As long as the depth
information for the strongest gradients is correct, the final rendered
solution for the novel view will not have significant artifacts.

In order to achieve this goal we have developed a novel semi-dense
stereo matching algorithm inspired by PatchMatch [Barnes et al.
2009]. The algorithm is simple and fast, but it computes accurate
results over the areas of interest. A detailed description of the algo-
rithm is given in Section 4 below.

3.1 Creating a novel view

The basic steps to generating a novel view with our approach are
shown in Figure 2. The input to the pipeline is a stereo pair (Figure
2a shows left image) and a desired position for the novel view.

The first step (Figure 2b) is to filter the input image pair in order to
produce a mask that marks the pixels that are at the strong gradi-
ents. We define the gradients as forward difference between neigh-
bors. The overall strength of the gradient is computed by taking the
maximum between the horizontal and vertical strengths, which are
defined as the average of the per channel absolute differences.

We then apply a threshold to this gradient strength image to create
a gradient mask. We use a global threshold for the entire image.
The threshold can be either a set fixed value or the current average
gradient magnitude. In practice, we find a fixed threshold between
5 and 10 to work well. We first clean the mask by removing pix-
els that have no neighbors above the threshold and then perform a
dilation step (Figure 2c).

Next, our stereo matching algorithm is run over the masked pixels.
This results in a semi-dense disparity map (Figure 2d) with good
depth estimates for the masked areas with strong gradients, and no
data for the rest of the image. We then perform a simple extrapo-
lation method to fill-in the disparity map across the image (Figure
2e). Then the 3D position of each pixel is computed from the dis-
parity map. The renderer takes the 3D position information, as well
as the desired novel view’s camera parameters (position, view frus-
tum, etc.) and generates the final image (Figure 2f).
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4 Stereo Reconstruction

One of the most important considerations in the development of our
algorithm was the need to run as fast as possible. This led to a par-
allel GPU-based approach, which in turn set additional constraints.
One of the principal tenets of GPU computing (or SIMD computing
in general) is to avoid code path divergence. That is, each thread in
a concurrently running group of threads should execute the same
steps in the same order at the same time, just using different data.
This demand led to several design decisions regarding our algo-
rithm.

4.1 Mask indexing

The mask computed from the gradient magnitudes determines the
pixels for which the stereo algorithm will compute disparities.
However, since the algorithm is implemented on the GPU using
CUDA, using this mask directly would be inefficient. A naı̈ve ap-
proach would be to run a thread per pixel and simply exit the thread
if the pixel is not in the mask. However, this is very inefficient,
as these threads will not truly exit. The SIMD nature of the GPU
hardware requires all the threads that are concurrently running on a
core to follow the same code path. If even one thread in that group
is in the mask and needs to run the algorithm, then all the threads
in the group might as well run since they would introduce (almost)
no overhead. In order to get any performance gain, all the pixels
in the image region covered by the group would have to be outside
the mask. This is rare in natural images, as there are almost always
a few strong gradient pixels in any part of the image. This means
that the naı̈ve approach to the gradient-guided semi-dense stereo
algorithm degenerates to a dense algorithm.

In order to prevent this waste of computational power we re-group
the gradient pixels so that they cluster together. We process the
mask image to create an array of pixel indices. Each row of the
mask is traversed in parallel, and when a pixel that is inside the
mask is encountered, its index is saved in the output array at the
same row and in the next available column. Pixels outside the mask
are simply ignored. As a result the indices of the masked pixels are
densely stored in the output array. The count of masked pixels in
a row is saved in the first column of the output array. This process
creates a mask whose blocks are mostly completely full or com-
pletely empty, with only a few that are partially full. This mask is
much more suitable for parallel processing on GPU architectures.

4.2 Stereo matching

Now that we have a mask of the strong gradients in the image, we
can run stereo matching on them. We implemented a simple, fast,
and accurate stereo matching algorithm inspired by PatchMatch.
Our algorithm takes the basic ideas of random search and propaga-
tion from PatchMatch and applies it to the domain of semi-dense
stereo matching at the gradients and in parallel. Although inspired
by PatchMatch, the specific details are somewhat different due to
the nature of the problem.

The algorithm consists of two main steps: Random Search and
Propagation. The full algorithm is run for a number of iterations,
and in each iteration each step is iterated as well. Each iteration
of each step is fully parallel at the individual pixel level. Only the
steps themselves and their iterations are serialized.

Data and Initialization The algorithm takes as its input the stereo
image pair and the arrays with the mask indices. It outputs the
disparity values and matching costs for each camera of the stereo
pair. Before the algorithm is run, the disparities are initialized to

zero, while the costs are initialized to the maximum possible value.
In our implementation we use unsigned 8-bit values to store the
disparities, with a disparity range of [0, 255]. The costs are stored
as unsigned 16-bit values, giving a range of [0, 216-1]. The upper
limit is above the maximum possible value that can be returned as a
matching cost, so initializing the cost to 0xffff simplifies the search
for the minimum cost disparity since there is no need to treat the
first candidate disparity differently from the rest.

Random Search The random search step consists of generating
a random disparity value, computing the matching cost given that
disparity, and keeping it if the cost is lower than the current cost.
This can then be repeated a number of times before continuing to
the propagation step.

The way the random disparity is generated requires some discus-
sion. Regular PatchMatch [Barnes et al. 2009] initializes fully ran-
domly from all possible correspondences, and the random search
is done by randomly searching from all possible correspondences
within a shrinking window centered on the current solution. Our
approach is different. Firstly, the initialization and random search
is a single unified step. Secondly, the random disparity is not gen-
erated from the disparity range but from the valid indices for that
epipolar line. We are matching only the strong gradients that are
within our masks.

In general, if a part of the scene is labeled as a strong gradient in the
left image it will also be labeled as a strong gradient in the right im-
age (and vice-versa). This is not the case for parts that are occluded
in one image of the pair, but those do not have a correct match
anyway. If follows that a pixel within the gradient mask of one im-
age will have its corresponding pixel within the gradient mask of
the other image. Since the gradients are generally sparse, this sig-
nificantly reduces the possible valid disparities. This reduction in
search space means that each random guess has a higher probability
of being correct, which improves convergence.

Therefore, when generating a random disparity we sample from the
space of valid indices, not from the full disparity range. As men-
tioned above, the first column of each row in the index masks stores
the number of valid pixels. This value is used as the range of a
uniform random distribution. We generate a random integer from
this distribution, this number gives us the column in the index mask
row to sample. The index stored in that column gives us our ran-
dom match candidate. We then compute the matching cost for this
candidate correspondence, if the cost is lower than the current cost
we save the disparity and the cost as the current best match. For the
matching cost we use the standard sum of absolute differences over
a 7×7 support window. This process can be iterated, in our current
implementation we run two iterations.

Propagation The random search step will generate a very noisy
disparity map where most of the disparities are wrong, but some are
correct. The propagation step serves to propagate the good matches
across the image. Here our algorithm also differs significantly from
PatchMatch.

Taking the standard PatchMatch approach to propagation would
present several problems for our application scenario. Firstly, the
computation cost is too high. In the serial version the image is
processed linearly from one corner to the next. At each pixel the
disparities of the preceding horizontal and vertical neighbors are
used as possible new disparities and new matching cost are com-
puted. If the cost of a candidate disparity is lower than the current
one, the new disparity is adopted. Computing the matching cost is
expensive in general, and doing it serially is prohibitive. The per-
formance would be far too slow for real-time use. Parallel versions
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of PatchMatch have been proposed, but they are still not well suited
to our application. Although the computations are done in parallel,
much more are needed per pixel. Even the parallel versions require
too many expensive matching cost computations per frame.

Secondly, PatchMatch is meant for computing dense correspon-
dences. We only compute disparities within the masked areas. This
means there are large gaps in the image. Although it is possible in
principle to propagate by skipping those gaps, this would violate
the assumption of propagating between neighbors and it is unlikely
that that kind of propagation would be useful. In the case of par-
allel implementations of PatchMatch, the propagation is limited in
radius so it would not be able to skip gaps anyway.

We take a simpler approach to the propagation step. Instead of
propagating serially through the entire image, we have each pixel
in parallel check its neighborhood. Instead of computing another
matching cost for each of its neighbor’s disparities, the pixel uses
the neighbor’s cost as a proxy for what the cost would be for this
pixel if it had the same disparity. The idea behind this is that if our
disparity is the same as that of our neighbor, our matching costs
will likely be very similar as well. We chose the neighbor with the
lowest cost and take its disparity as a candidate solution, we only
now compute a new matching cost. If this new cost is lower than our
old cost we accept the new disparity, otherwise we keep the old one.
This means that each iteration of the propagation step only does one
matching cost computation. In our current implementation we run
three iterations of the propagation step.

4.3 Post processing

Most stereo algorithms have a post-processing step that follows the
initial computation of the disparity map. The purpose of this step
is to further refine the disparities. We take a fairly simple approach
to post processing. The goal is to determine which of the computed
disparities are likely correct. Then the rest of the image is filled in
with extrapolated values.

The simplest way to determine good disparities is to run a con-
sistency check. This involves comparing the left and right dispar-
ity map and only keeping the values for those pixels whose tar-
get points back at them, i.e., only keep correspondence pairs. This
eliminates the parts of the image that are occluded in the other view,
and therefore cannot have a good match. Although this works well
for a standard plane sweep algorithm, in our case it could cause er-
rors because our search is probabilistic and there is no guarantee
that pixels that are unoccluded and belong to a correspondence pair
will point to each other. It is possible for only one pixel of the pair
to point to its match, while the other one points elsewhere. To help
with this we run a step prior to the consistency check. For each
pixel p in a disparity map we check if its match p′ = q points back.
If it does not, we compare the matching costs of the two pixels.
Since the matching cost is symmetric it should be the same (and
minimal) for a correspondence pair. If q has a higher matching cost
then p, we set its match q′ to p and set the cost. This will always
create a better solution. This process is run in both left-to-right and
right-to-left directions. After this step, we run a traditional consis-
tency check. Pixels that are not part of a correspondence pair are
labeled as invalid.

Since the invalid pixels are in the masked area, they are impor-
tant so we do not want to naı̈vely fill them in the same way as the
unmasked pixels. Instead we attempt to grow the valid disparity
values into the invalid ones. This is a parallel process where each
invalid pixel checks it direct neighbors and adopts the lowest valid
disparity from the neighbors, this invalid pixels is now marked valid
but its cost is set to maximum. Each iteration of this further grows
the disparity, we settled on five iterations for our system. The op-

eration contributes somewhat to the disparity edge fattening, but it
improves the disparity map overall.

Finally, after the previous steps we can fill in the remainder of the
disparity map. We assign new values to any pixels that are still
left as invalid, or were not in the gradient mask. To extrapolate
the disparity map we use a simple linear search across the epipolar
lines. From each pixel (again in parallel) we search left and right for
the first pixel that is valid. We look at the two disparity values and
adopt the lower one (taking the lower value instead of interpolating
helps prevent occlusion edges from bleeding into occluded areas).
This is perhaps an overly simplistic approach, and it does result in
considerable streaks in the disparity map. However, these streaks
are mainly over low gradient strength areas and therefore do not
cause many artifacts in the final re-rendered image.

4.4 Performance and accuracy

Through experimentation with the number of iterations of our
stereo algorithm, we settled on two overall iterations, each doing
two iterations of search and three iterations of propagation. This
means that in total we only perform ten matching cost computations
per frame per masked pixel. Despite this we get accurate disparity
results. Table 1 gives the timings and error rates for the Teddy and
Cones pairs from the Middlebury dataset [Scharstein and Szeliski
2003]. Figures 3 and 4 show the disparity maps and disparity errors.

Because of the probabilistic nature of the algorithm we have an
effective disparity range of 256, even though we only compute the
cost for ten disparity levels. To achieve the equivalent precision a
plane sweep algorithm would have to check all disparity levels and
perform an order of magnitude more matching cost computations
(256). Even if the plane sweep skipped over unmasked areas, it
would not significantly reduce the runtime because of the GPU code
path divergence problem mentioned above.

Table 1: Per-frame timings and error rates for the Teddy and Cones
datasets. The resolution of the input images and the disparity maps
is 450x375. The error rate is the percentage of pixels within unoc-
cluded masked areas with a disparity error greater than 1 pixel.

Teddy Cones

Timings
Computing mask 2.98 ms 3.18 ms
Stereo matching 12.59 ms 16.82 ms
Post-processing 1.92 ms 1.57 ms

Error rate 15.47% 7.52%

Prototype In our prototype system the stereo camera has a native
resolution of 1024x768, but in order to improve performance we
reduce this to 512x384 for the stereo matching algorithm. We do,
however, use the full-color image for the matching, instead of the
common grayscale reduction. Although the stereo matching is at
half resolution, this is upscaled back to full resolution before com-
puting the gradient positions and calling the IBR algorithm.

5 Rendering

As mentioned above, the basic idea of the method is to create a
novel view by integrating gradient images that are formed by re-
projecting the gradients of the original view. Integrating a solution
just from the gradients is a computationally expensive operation,
even with a GPU-based parallel implementation. It can take many
iterations for the integration to converge to a solution, partly due

91



(a) (b)

(c) (d)

Figure 3: Stereo matching for Teddy dataset. (a) Left input image.
(b) Raw disparity. (c) Final (filled-in) disparity. (d) Disparity error:
white - correct, black - error greater than 1 pixel, gray - not in mask
or excluded because of occlusion.

to the unknown constant of integration. The method by Kopf et al.
[2013] uses an approximate solution (the data term) as an initial
solution in order to significantly reduce the number of iterations.

The key to the approximation step is to consider that when a gra-
dient changes position from the original view to the new view it
should alter the color of the regions that it passes over. To clar-
ify, consider a quadrilateral whose two opposing edges are the gra-
dient’s original position and the new position. This quad can be
drawn over the original view, and the gradient value can be applied
to the pixels that the quad covers. This may add or subtract to those
pixels’ value. If this process is done for all gradients, the result-
ing image will be very similar to what the correct image should
be from the new view. For a more in-depth description, please see
[Kopf et al. 2013].

5.1 Performance considerations

While developing our prototype system we aimed to strike a bal-
ance between real-time performance and good image quality. The
various bottlenecks were identified through profiling, and adjust-
ments were made to reduce the run-time while minimizing any loss
of quality. Here we give some details about those considerations.

The IBR algorithm can be divided into three distinct steps that have
different performance behaviors.

The first step is the rendering of the data term, which is surprisingly
the most expensive. The performance hit here comes from the num-
ber and size of the quads. Each quad corresponds to a gradient, so
there are twice as many quads as there are pixels (one horizontal
and one vertical). Furthermore, the nature of the shifting gradi-
ents means that each quad will typically generate a large number of
fragments. The cost of this step changes considerably based on the
novel view position.

The second (also fastest) step is rendering the gradients images, i.e.,
simply reprojecting the lines of the gradients at their new positions.

(a) (b)

(c) (d)

Figure 4: Stereo matching for Cones dataset. (a) Left input image.
(b) Raw disparity. (c) Final (filled-in) disparity. (d) Disparity error:
white - correct, black - error greater than 1 pixel, gray - not in mask
or excluded because of occlusion.

Finally, the third step is the integration of the final solution from the
gradients, initializing with and biasing toward the data term. This
step is fairly expensive, but its runtime is mostly constant, depend-
ing mainly on the number of iterations.

The original work by Kopf et al. used a super-resolution frame-
buffer for rendering all the steps in the algorithm, i.e., the frame-
buffer size is several times larger than the input resolution. They
also bias the final solution toward the approximate solution. We
take a somewhat different approach. We observe that we can treat
the approximate solution as simply the low frequency component
of the final solution, while the reprojected gradients can provide the
high frequency detail. We then use the approximate solution just as
a initial solution, and do not bias towards it during the integration.
This then allows us to use a much lower resolution image for our
data term, since it only needs to capture low frequency information.
By using a lower resolution data term we significantly improve per-
formance. We set the data term resolution to a quarter of the regular
framebuffer resolution. We also reduce the number of integration
steps to five, and use a framebuffer size smaller than the original
image. Although our framebuffer size (640x480) is smaller than
the raw input resolution, it does not actually lower the quality of
the final results. This is because the field of view of the user’s frus-
tum is usually narrower than that of the camera. As a result, the
input image is effectively scaled up when shown on the magic lens
and therefore still oversampled by the framebuffer.

The final augmented image is rendered at 800x600, which is the
resolution of our display. The various resolutions in our pipeline
were empirically determined to give a good balance of performance
and quality for our system.

6 Prototype

Our system consists of a hand-held magic lens rig tethered to a
workstation. The rig, shown in Figure 5, was built using common
off-the-shelf parts. The central component of the magic lens is a
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Figure 5: Our user-perspective magic lens prototype hardware.

Lilliput 10.1′′ LCD display. We mounted a PointGrey Bumblebee2
stereo camera, used for the scene reconstruction, to the back of the
display. A PointGrey Firefly MV with a wide angle lens is mounted
on the front and is used to track the user.

The magic lens is tethered to a workstation with an NVIDIA
Quadro 6000 GPU. This GPU provides most of the processing
power and does most of the computational work. The workstation
also has 32GB of RAM, and two dual-core AMD Opteron CPUs.
The software stack of the system is built on Linux (Kubuntu 12.04),
using CUDA 5.0 and OpenGL 4.3.

6.1 Calibration

In order to ensure a properly aligned view, the various components
of the magic lens rig needed to be calibrated, both individually and
to each other. Firstly, using standard methods we acquired the in-
trinsic camera parameters for the Firefly, and the stereo camera pa-
rameters of the Bumblebee2. These parameters are loaded by our
system in order to undistort the captured video. In the case of the
stereo camera, the parameters are also used to rectify the input so
that the epipolar lines are aligned with the horizontal axis.

Secondly, we needed to calibrate the positions and orientations of
all the cameras and the display. We use the left camera of the stereo
pair as our reference coordinate system. The right camera is already
calibrated to the left from the stereo calibration. Calibrating the
user-facing camera and the display required more effort.

Since the stereo camera and the user-facing camera are facing oppo-
site directions, they cannot be easily calibrated by using a common
target. There are methods that can achieve this using mirrors, but
we opted for a simpler approach. We prepared a small workspace
as a calibration area, covering it with coded fiducial markers. The
area was arranged so that it had markers on opposing sides. The
area was captured with a calibrated camera and the relative trans-
formations between the markers were computed, with one of them
used as a reference. We then placed the magic lens rig inside the
calibration area and captured simultaneous views from the front and
back cameras. From the pose of each camera relative to the refer-
ence, we computed the transformation between the cameras.

With the user-facing camera calibrated to the stereo camera, the
only remaining part was calibrating the display. The display was
calibrated to the user-facing camera, which by extension calibrated
it to the the stereo camera. We did this by displaying a fiducial
marker on the display, placing the rig in the calibration area, and us-
ing both the user-facing camera and an external camera. The setup
consisted of having the user facing camera see some of the mark-
ers in the calibration area, with the external camera simultaneously
seeing those same markers as well as the marker on the display.
The external camera gives the relative pose of the display to the
common markers, and the user-facing camera gives the common
markers pose relative to itself. Combined, this gives the pose of the
display relative to the user-facing camera, and therefore relative to
the reference left camera as well.

6.2 Face tracking

In order to create a user-perspective view, we need to be able to ac-
quire the user’s perspective. That is, we need to capture the position
of the user’s eyes relative to the display. We achieve this with face
tracking, which requires a user-facing camera, available on most
smartphones and tablets. Indeed, the recent Amazon Fire Phone
features face tracking as a core element, implemented through the
use of four user-facing cameras.

We implemented face tracking with FaceTracker [Saragih et al.
2009; Saragih and McDonald 2014], a real-time deformable face
tracking library. The library provides us with the user’s head posi-
tion, from which we compute an approximate 3D position for the
user’s “middle eye” (i.e., the point halfway between the left and
right eye). Due to monocular scale ambiguity and the differences in
the dimensions of human faces, this position is only approximate,
but it is sufficient for our prototype. This size ambiguity can be
resolved by introducing user profiles with the exact facial features
of the user, and using face recognition to automatically load such
a profile. We leave that for future work. Alternatively, using two
or more camera’s for the face tracking can also resolve the scale
ambiguity.

The user tracking is implemented as a separate system running in
its own process and communicating with the main software through
a loopback network interface. This allows us to easily swap out the
tracking system if needed. We used this feature to implement a
marker based tracker for the purpose of capturing images and video
of the magic lens. The images in this paper and accompanying
videos were taken by attaching a fiducial marker to the cameras,
and using this alternate tracker.

Figure 6: Example of final result. Top: user’s view showing cor-
rect user-perspective and good alignment of the view frustum. Bot-
tom: corresponding screen capture showing good quality image
with minimal rendering artifacts.
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7 Results

Some examples of the type of results we get can be seen in Figures
1a, 2, and 6.

Figure 6 shows a simple example of an AR scene, with both the
user’s view (top) and the corresponding screen capture from the
magic lens display (bottom). The view frustum inside the magic
lens is well aligned with the outside and the perspective of the scene
matches that of the outside. The screen capture taken at the same
moment shows that the image quality of the magic lens view is quite
good with only minimal rendering artifacts.

Figure 2 shows the main steps of our approach for a somewhat clut-
tered live scene with various different features: dark areas, bright
areas, textured surfaces, homogenous surfaces, specularities, and
thin geometry. The stereo matching is only run on a small per-
centage of the image, and the filled-in disparity map is very coarse.
However, the final rendering has relatively minor artifacts.

7.1 Evaluation and performance

Figures 7 and 8 illustrate the effects of the individual parts of our
approach using the standard images from the Middlebury dataset.

The effect of using an approximate disparity map can be seen in
Figure 8. The top shows the results of our rendering when using
ground truth data for the disparity map. The bottom show the results
with a disparity map produced by our stereo algorithm. Despite the
much coarser disparity map, the final results are fairly similar, with
the most serious artifacts confined to the pencils in the mug.

A comparison of the rendering from using full resolution (in this
case 640x533) images for everything, versus using a half-resolution
disparity map and a quarter-resolution data term is given in Figure
7. As can be seen, the reduced resolution does not have a significant
effect on the quality of the final rendering.

Table 2: Average per-frame timings for our prototype implementa-
tions. Average framerate is about 16 FPS.

Timing (ms)

Frame total 62.32
Prepare input pair 3.11
Stereo matching 7.92
Post-processing 3.73

Consistency check 0.18
Grow disparity 0.81
Fill disparity 2.74

Compute and update positions 7.34
Image-based rendering 36.33

Data term 13.66
Gradients 8.04
Merge left and right 1.08
Conjugate gradient solver 13.55

Other 3.89

The performance of our final system across the various steps in our
pipeline can be seen in Table 2. The system has an overall aver-
age framerate of 16 FPS. The largest aggregate cost and about half
the total cost is the image-based rendering. The stereo matching is
very fast at less than 8ms. However post-processing adds another
3.7ms, most of which is spent on filling in the disparity. This is a
very simple step, but it is not yet optimized and performs poorly if
the masked regions are too sparse. Another unexpectedly high cost
at over 7ms is the computing and updating of the 3D positions of

the gradients. This is likely because this step makes OpenGL and
CUDA synchronize which forces all GPU operations to complete,
it also imposes a synchronization with the CPU.

7.2 Discussion

Overall, our system provides quite satisfactory results but it does
have some remaining challenges. From a user perspective, the chal-
lenges are issues with the view frustum, and issues with the image
quality. From a technical standpoint these are caused by issues with
face tracking, stereo reconstruction, rendering, and calibration.

Figure 7: Comparison between full resolution and reduced reso-
lution. Left is data term, right is solution. Top is full resolution,
bottom is reduced resolution.

Figure 8: Comparison between result using ground truth versus
our stereo matching. Top is with ground truth, bottom is with our
stereo algorithm.
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View frustum The heart of the user-perspective magic lens prob-
lem is providing a correct view frustum for the user. While our
system generally accomplishes this goal, it has some constraints.

Firstly, since it is a fully live system it can only show what the stereo
cameras currently see. Although we use cameras with a fairly wide
field of view, it is still possible for the user to orient the magic lens
in such a way that the user’s view frustum includes areas that the
cameras do not see. This problem is somewhat mitigated by the
fact that the best way to use a user-perspective magic lens is to hold
it straight in order to get the widest view. This then keeps the de-
sired view frustum within the region visible by the cameras. Never-
theless, this issue warrants some discussion. Currently our system
simply fills in those areas using information from the known edges.
A possible simple solution to this problem could be to use fisheye
lenses or additional cameras in order to get a 180◦view of the scene
behind the display. In [Baričević et al. 2012] the approach was to
create a model of the environment and render from the model, this
way the out-of-sight areas could still be rendered if they were once
visible. This type of compromise approach where currently visible
areas are rendered from live data, while out-of-sight areas are ren-
dered from a model could also be a promising solution here. Since
we use image-based rendering, the scene model can simply be a
collection of keyframes with depth maps.

Secondly, our system has some noticeable latency. The latency
is a compound of the latency from the face tracking, the latency
from the pre-processing of the stereo video, and the latency from
the frame rate. This latency causes a lag in correctly aligning the
view frustum, most noticeable when the user makes fast motions or
does long sweeps with the device.

Thirdly, the view frustum can be slightly misaligned due to inac-
curacies with the face tracking. We use a free off-the-shelf face
tracker and only estimate an approximate position using a general
model of the human face. Better results could be achieved by using
a more robust face tracker and by using per-user face profiles.

Image quality The overall quality of our system is quite good.
However, we do not yet achieve a level of quality that would be
satisfactory for mainstream commercial applications. The visuals
are not as clean as with systems that only approximate the user-
perspective view through image warping [Hill et al. 2011; Tomioka
et al. 2013] but they are generally as good as the geometrically-
correct user-perspective magic lens in [Baričević et al. 2012].

The artifacts we get are primarily caused by errors in stereo recon-
struction. In general, when the correct stereo correspondence has
a higher matching cost than another incorrect correspondence, an
error in the disparity map will occur. This can occur with highly
specular surfaces or occlusion boundaries where the background is
different between the stereo views. Another cause is when there is a
low texture or periodic feature that is aligned with the epipolar lines
of the stereo camera. These problems are common to local stereo
algorithms, especially when using the simple sum of absolute dif-
ferences as the matching cost. There have been many proposals
for matching costs that can help address some of these issues. Our
stereo matching algorithm is agnostic to the matching cost used,
so exploring these alternative costs is of definite interest for future
work.

In general, the artifacts are not very severe. They are mostly unnot-
icable in the weak gradient areas, and occur primarily when there
is an error with the disparity of a strong gradient. Due to the na-
ture of the gradient domain image-based rendering algorithm, any
errors are usually blurred out which helps in making them less ob-
jectionable. In most cases the artifacts are either fuzzy waves along
some straight edges, or occasional blurry streaks from some occlu-

sion boundaries. In areas that are visible from the viewer’s position
but not seen from the cameras, the gap is filled by smooth streaks
connecting the edges.

8 Conclusion and Future Work

We have presented a new approach to creating a geometrically-
correct user-perspective magic lens, based on leveraging the gra-
dients in the real world scene. The key to our approach is in the
coupling of a recent image-based rendering algorithm with a novel
semi-dense stereo matching algorithm. Our stereo algorithm is fast
and accurate in the areas of interest. The use of image-based render-
ing provides us with good imagery, even with limited scene model
detail. Based on this approach we built a prototype device using
common off-the-shelf hardware.

In addition to the various possible improvements to the system we
would also like to evaluate the system with a formal user study.
Previous user studies on user-perspective magic lenses have either
been in simulation [Baričević et al. 2012] or with approximations
[Čopič Pucihar et al. 2013; Čopič Pucihar et al. 2014]. We hope
to be able to do a fair comparison between device-perspective and
user-perspective magic lenses with a full real system.

9 Acknowledgements

D. B. would like to thank UCSB for the Chancellor’s Fellowship
award, which provided funding. This work was partially supported
by NSF grants IIS-1219261 and IIS-0747520, as well as ONR grant
N00014-14-1-0133.

References

BARIČEVIĆ, D., LEE, C., TURK, M., HÖLLERER, T., AND
BOWMAN, D. 2012. A hand-held AR magic lens with user-
perspective rendering. In Mixed and Augmented Reality (IS-
MAR), 2012 IEEE International Symposium on, 197–206.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28,
3.

BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND
DEROSE, T. D. 1993. Toolglass and magic lenses: the see-
through interface. In Proceedings of the 20th annual conference
on computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’93, 73–80.

BIMBER, O., FROHLICH, B., SCHMALSTEIG, D., AND ENCAR-
NACAO, L. 2001. The Virtual Showcase. Computer Graphics
and Applications, IEEE 21, 6 (Nov), 48–55.

BLEYER, M., RHEMANN, C., AND ROTHER, C. 2011. Patch-
Match Stereo - Stereo Matching with Slanted Support Win-
dows. In Proceedings of the British Machine Vision Conference,
BMVA Press, 14.1–14.11.

CANON, 2014. Canon Mixed Reality. http://usa.canon.
com/cusa/office/standard_display/Mixed_
Reality_Product, accessed June 2014.
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