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ABSTRACT

Over the past few years, Augmented Reality has become
widely popular in the form of smart phone applications, how-
ever most smart phone-based AR applications are limited in
user interaction and do not support gesture-based direct ma-
nipulation of the augmented scene. In this paper, we intro-
duce a new AR interaction methodology, employing users’
hands and fingers to interact with the virtual (and possibly
physical) objects that appear on the mobile phone screen. The
goal of this project was to support different types of interac-
tion (selection, transformation, and fine-grain control of an
input value) while keeping the methodology for hand detec-
tion as simple as possible to maintain good performance on
smart phones. We evaluated our methods in user studies, col-
lecting task performance data and user impressions about this
direct way of interacting with augmented scenes through mo-
bile phones.
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INTRODUCTION

Mobile Augmented Reality (AR) applications have histori-
cally been deployed on experimental laboratory systems, us-
ing bulky setups of mini-computers, sensors, and large head-
mounted displays. These instrumentation constraints posed
major obstacles to widespread acceptance of AR technology.
With the arrival of embedded AR devices in the form of smart
phones, people can now experience AR applications more
easily, without setup restrictions, anywhere, and at any time.
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Augmented Reality has been demonstrated widely on mobile
phones, with many different applications such as games, nav-
igation and references. In the beginning, many of these appli-
cations were less about interaction and focused more on in-
formation display on the top of our real world [1]. As AR ap-
plications became increasingly interactive, e.g. through ges-
tures on a phone’s touch screen, the possible scope of applica-
tions was extended. Our motivation stems from the successful
demonstration of direct free-hand gestures in AR [2, 3, 8, 13,
19], and our aim is to enable such direct interaction in the
“magic lens” of smart-phone based AR.

In this project, we implement hand-based Augmented Reality
interaction in real-time on a mobile phone. We design sev-
eral different interaction types, allowing a user to move and
scale an AR object, as well as to control a continuous value
(mapped for demonstration purposes to the transparency of a
virtual object). We believe that the ensuing direct interaction
is very applicable in many smart-phone based AR applica-
tions. We evaluate the accuracy and robustness we achieved
with our methods through user evaluations. The results indi-
cate that our prototype is functional and engaging. We use a
very simple computer vision methodology in order to max-
imize responsiveness of the interface even on less powerful
computational platforms.

We organize this paper into four parts: first, we put our work
in perspective of related work, discussing how hand interac-
tion in AR environments has previously been implemented,
and comparing our approach. Next, we present the interac-
tion techniques we designed, and explain the implementation
of the system. Then we report on several user studies that we
conducted, detailing procedure, results, and discussion. Fi-
nally, we conclude with an overall discussion and an outlook
for future work.

RELATED WORK

Previous work [3, 13, 19] on hand-based interaction be-
tween a user and the augmented reality environment has been
demonstrated using multiple fiducial markers on both mov-
ing and stationary objects. FingARTips by Buchmann et al.
[3] implemented hand interaction employing multiple station-
ary markers on the ground, and others attached to the user’s
fingers. They utilized ARToolKit [10] to find the relation-
ship between the ground and fingers to detect the gestures.
The paper addressed potential occlusion problems by plac-
ing markers on three finger joints, resulting in a somewhat
encumbered experience. Three gestures (grabbing, dragging,
and releasing a virtual object) were distinguished by taking



into account pose estimation differences among fingertips as
well as finger poses relative to the object and ground (station-
ary markers). While the method produced promising results
in public demonstrations and informal user studies, high setup
costs and user encumbrance restricted broad adoption.

Other works, such as [8, 17] partially addressed encumbrance
issues due to multi-marker use by attaching color stickers on
fingertips. Recently, Hiirst et al. [8] implemented various
interaction capabilities on mobile phones by employing the
system’s sensor data, and color markers on fingertips. They
showcased single- and dual-finger interactions and conducted
user studies to evaluate their techniques on the mobile phone.
Finger-based 2D translation tasks were compared against ges-
tures utilizing the phone’s touch screen and orientation sen-
sors, and the results showed that in terms of task time, touch-
screen interaction outperformed the other approaches. Al-
though the finger-based interaction scored the lowest per-
formance, a high score of fun-engagement level indicated
the potential for gaming applications. The authors adopted
this feedback, prototyping dual-finger interaction on a virtual
board game, including translation, scaling, rotation, and in-
corporating visualization. Gestures were recognized based
on the location, distance, and center point between two fin-
gers. The results showed that translation using two fingers
performed comparably to single-finger interaction, but in a
post-study survey users rated dual-finger interaction slightly
higher. Even though the paper presented the potential of dual-
finger interaction on the mobile phone, one shortcoming was
the lack of full-fledged 3D interaction. The authors men-
tioned that full 3D localization was difficult and noisy due
to unintended camera motion; thus, they restricted their prac-
tical evaluations to 2D interactions. They also applied color
stickers that prepared only certain fingers for the interaction.
Our work addresses the problem of unintended camera mo-
tion, and lets users express their gestures with unmarked fin-
gers of their choice.

Many prototypes implemented on higher-performance sys-
tems [5, 15, 16] integrated sophisticated computer vision
algorithms (e.g. [21]) to find the hand and detect gestures
more robustly in less-restricted scenes, demonstrating that
gesture recognition can be rather complex and computation-
ally expensive, depending on the working environment. On
the lower-performance hardware afforded by mobile phones,
simpler approaches have to be devised to run at practical
speed. Baldauf et al. [2] suggested the use of fixed skin-color
segmentation and morphological filtering to find fingertips in
the image plane. This work focused mainly on the tracking
technique, and it has not been demonstrated and evaluated
as part of a complete interaction solution featuring differ-
ent types of interaction and comparative performance eval-
uations. Seo et al. [20] estimated the palm pose by filtering
potential hand regions based on skin color and subsequently
applying a distance transformation to find the biggest area.
The virtual object appeared on top of this detected region and
could move along with the palm. The work however did not
address sequential gestures, such as flicking or scaling. Both
of these last two projects also suffered from relying solely on
skin color when segmenting the hand, because it would be

difficult to continuously recognize the hand when the work-
ing environment included big portions of skin-color materials
such as a wooden desk.

INTERACTION TECHNIQUES

We implemented three different user input gestures to be rec-
ognized by our system. We restricted our system to three
gestures that are commonly used on touch screen: swiping,
scaling, and value adjustment (as by a slider) to experiment
with the possibilities of hand interaction techniques on mo-
bile phones both quantitatively and qualitatively. To optimize
learnability, we designed our gestures to be similar to existing
touch screen gestures.

To demonstrate and test the gestures, we apply transforma-
tions to an AR object: a virtual object superimposed on top
of an ARToolkitPlus [23] marker. While the world reference
frame is defined by the marker, our gestures are all recognized
using fast and simple markerless computer vision algorithms.

e Translate (move left, right, up, or down): When the hand
moves from outside of the scene toward the marker, the
virtual object moves based on the hand direction (pushing
the object in a certain direction).

e Scale (increase and decrease size): Similar to a touch
screen zoom gesture, when a user makes a pinch or un-
pinch (spread) motion, the virtual object scales down or

up.

e Adjust value: A continuous value is controlled as the hand
comes closer to or further away from the marker. We illus-
trate this by adjusting the transparency of a virtual object:
more opaque as the hand comes closer to the marker, and
more transparent when the hand gets retracted further. In
order to lock in the desired transparency value, the user re-
moves the hand quickly.

IMPLEMENTATION

Without loss of generality, we built our prototype system on
top of ARToolKitPlus [23], ported to a Nokia N90O smart
phone, running Maemo 5.

After marker detection, we detect and track the hand in the
scene using color and motion cues. We assume that a user
holds the phone in one hand and uses the other for interac-
tion with the scene. The first approach we pursued aimed
to identify frame-to-frame optical flow and classify it by ve-
locities (to distinguish camera motion from motion of the
hand in the scene). While Lucas-Kanade optical flow [14],
which ranges among the faster computer vision techniques,
has good applicability for hand-tracking on laptops or work-
stations, we soon experienced the computational constraints
of our mobile phone platform. Calculating optical flow on
each frame, or even just every 5-10 frames, slowed down the
overall performance considerably. In our initial implementa-
tion, the frame-rate dropped to about 1-5 fps when utilizing
this method. Instead, as a fast alternative, we first applied
background subtraction and then used simple motion segmen-
tation algorithms to detect the hand gestures.
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Figure 1. Flow diagram of our application
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Background Subtraction

Background subtraction works well when the camera stays in
a static position, but in our use case, in which a user holds the
phone in one hand, we have to cope with intermittent camera
motion. As shown in Figure 1, after the marker is detected,
we employ a Projective Texture Mapping [6] step, projecting
the reference camera image onto the scene geometry, which
in our simple demo application is simply the plane defined by
the recognized marker, and capturing a virtual image of that
scene from the current camera position. Assuming a close-
to-planar scene, we can thus remove the background even in
presence of camera motion, and classify all remaining image
differences as candidate interaction motion (a second clas-
sification step will filter out only skin-colored motion pix-
els). To improve performance, we compute this inside the
GPU in parallel, modifying the framebuffer directly. This
method works fast, causing little performance loss (we ob-
served frame rates dropping from 30fps to 27 fps). Once the
GPU returns the framebuffer that obtains the projected refer-
ence background frame from the current camera viewpoint, it
is compared against the current camera frame via subtraction.

The question arises when to capture a new reference back-
ground frame. Simply re-capturing the background every n
frames is not an option because when a hand is present in
the scene, it would be taken as part of the background. In-
stead, we make use of the fact that this style of interaction
(one hand performing a gesture while the other is framing
the view) is usually performed while the camera stays close
to stationary; We tend to move a camera around to see the
virtual object from different angles when we do not interact
with the scene. Based on this assumption, the background up-
date will be made when Az > 20.0mm or Ay > 20.0mm or
Az > 20.0mm where Az, Ay, and Az are the absolute cam-
era position differences since the last background frame was
taken. Otherwise, when the background update is on hold,
our finger detection algorithm is applied to recognize an in-
teraction.

Interaction

After the background subtraction step, the hand can be de-
tected much faster and more accurately than trying to detect
it from a raw input frame. There are many algorithms to de-
tect the hand in various environments, e.g. based on color [12,
22], motion flow [14], shape detection [18], and statistical in-

formation [9]. Combining multiple hand detection methods
will improve the overall accuracy but it will also slow down
the overall performance, especially in mobile phone applica-
tions. We take a very simple approach, applying color seg-
mentation to detect the hand from the scene. Different color
spaces have been suggested for the skin color range; to avoid
the cost of color space conversion, RGB color was chosen for
this project.

Normalizing RGB is crucial because it will remove any inten-
sity changes and thus, it will address illumination problems
and increase accuracy. After normalizing the RGB image,
we performed a skin color filter to the region around the AR
marker. To save a computational cost and since we are mostly
interested in interaction in the region around the virtual ob-
ject, we restricted the search window to three times the area
of the marker (pose-estimation). We used an RGB skin color
range as suggested by Kovac et al. [12].

We split the search window into a 4 by 4 grid (Figure 2 (d)).
The size of this grid was determined experimentally as a good
compromise between speed and necessary accuracy for the
gestures we chose to implement and evaluate (see also Sec-
tion on User Studies). For each grid cell, we compute the per-
centage of skin-color pixels, P(skin,,), the number of skin-
colored pixels divided by total number of pixels in grid,,. We
implemented two different modes for the interaction: discrete
event detection and continuous value adjustment. For the dis-
crete mode, we manually set the threshold value for each cell,
that is if P(skin,) is greater than the threshold value, grid,
is hit. For the continuous value adjustment, we record how
much the hand occludes that grid cell. In this case, each cell
is not governed by a threshold, but the amount of hand oc-
clusion in each cell, P(skin,,), is used to change a value dy-
namically, for instance opacity. Figure 2 illustrates the three
different interaction techniques: discrete (A and B), and con-
tinuous value adjustment (C) mode.

We use the discrete mode when we need to make a sequen-
tial gesture, such as for translation or scaling. For instance,
scale-down or up uses a pinch motion and we split the de-
tection into two parts: When P(skin,) is greater than the
threshold value in a certain starting grid cell and next (within
10 frames from first detection) the corresponding neighbor
grid cells obtain P(skiny,z) that is greater than the threshold
value, then we trigger the interaction. On the other hand, we
use the continuous mode for an interaction that continuously
changes a value, similar to a slider. In our case, the virtual
object remains transparent until the hand goes closer to the
marker, which increases the opacity. The farther the user re-
tracts the finger, the more transparent the object becomes. To
lock in a certain degree of transparency, the user quickly re-
moves the finger.

SPEED

Our application renders the augmented video stream at 640 x
480 resolution on the phone’s display, but we internally use
320 x 240 resolution for all image processing steps to reduce
computation time. Table 1 shows time measurements for each
step, revealing that GPU to CPU read-back and image fil-
tering took the most time. Even though the GPU processes
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Figure 2. (a) and (b) show translation and scaling interaction. (c) shows continuous value adjustment, applied to box transparency. In this experiment,
the user attempts to match a target opacity value. (d) shows (as debug information) the 4 x 4 grid board we use to track the hand.

Task Processing Time (msec)
Marker Detection 8.72
Background Subtraction 9.27
Transfer GPU to CPU* 22.60
Image Filtering* 82.63
Skin Region Detection* 12.31

Interaction Detection 0.00

Table 1. Performance timings for each task (in ms)
* tasks are called every 5 frames; all others are called every frame

the projective texture mapping and background subtraction
quickly, a challenge arises when we need to access this out-
put from the CPU. We resolved this issue by only requiring a
direct pixel access every 5 frames, which experimentation re-
vealed to be sufficient for robust performance. Image filtering
is applied after background subtraction, filling any holes that
resulted, and smoothing out noise. After prolonged informal
experimentation, we determined that applying the erosion and
dilation steps three times would result in a sharp reliable seg-
mentation, but this turned out to be a large workload. These
expensive tasks (marked with * in Table 1) are thus called
only every 5 frames whereas all others are called every frame.
This all adds up to a total performance time of approximately
41.5 ms per frame. Since we initially started out with a ren-
dering rate of 30 fps for simple AR marker detection, we now
end up with an 18-20 fps overall frame rate, which is still a
“reasonable” speed for interactive use.

USER STUDIES

We conducted two different studies to measure the accuracy
and robustness of the application, and to observe if the hand
interaction using the mobile phone is usable. We conducted
both studies back-to-back, the two studies being independent
of each other. The total length of the two studies was a max-
imum of 45 minutes. We recruited 30 participants, who were
from different backgrounds, with a mean age of 24.6 years
(23 females with a mean age of 24.1 years, and 7 males with
mean age 26.4). The test environment was not constrained
to a single place, but each test was conducted in a different
place, using flat working surfaces which varied in color and
texture. Before we started each trial, we determined how fa-
miliar a user was with smart phones and Augmented Reality,
and established the participant’s dominant hand. Participants
received standardized instruction and training with our meth-
ods, all part of the 45 minutes. We asked users to hold the

phone in their non-dominant hand and to use their dominant
hand for the interaction.

Goals

The first study measured the time for continuous value con-
trol. We speculated that as the range from which to choose
the target value becomes wider (e.g. from [1,10] to [1,30]),
selecting the target value would become more difficult to con-
trol. We were interested in locating any range of drastic per-
formance drop-off to determine the best suitability of our 4 x4
grid-board method. A random number was chosen from three
different ranges, [1,10], [1,20], or [1,30], and displayed on
the screen (Figure 2 (c)). The users’ task was to move their
hands/fingers in or out the AR scene to control the value to
match the displayed number. Every 10 seconds, if users could
not finish the task, the system would time out, recorded 10
seconds as the maximum time, and move on to the next ran-
dom number; otherwise, the completion time was recorded
internally and the next trial started. We asked users to do this
task 75 times, with 25 trials from [1,10], 25 from [1,20], and
25 from [1,30], in random order.

Our second study tested the performance of hand-held ver-
sus tripod setups (Figure 5 (b) depicts a typical tripod scene).
One major point of interest with our proposed method was
the intended system use which differed slightly from related
work: users hold the phone in one hand and use the other for
the interaction while enabling 6-degree-of-freedom interac-
tion. We hypothesized that since our method addressed the
issue of (slight) camera motion, we would get about the same
results from non-stationary (hand-held) camera setups as with
stationary (tripod) camera setups. We randomized the order
of conditions. For hand-held setups, we asked users to hold
the phone any which way they preferred and also let them
switch hands if they deemed it more natural. We had four
different gestures: Move a box left, right, up, and down in
random order, 25 times for each direction. For each task, we
displayed the requested direction on the screen and we asked
users to complete the trial in 3 seconds. We simply recorded
whether users completed the task within that time frame or
not. We asked users to do 100 trials, 50 with the camera on a
tripod and 50 with the camera in hand.

Results

Our pre-study survey showed that 83% of the participants
own smart-phones, and that among these participants the pre-
dominant average usage of smart phone was between every
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Figure 3. Results of Continuous Value Experiment based on TestA:
whole data, and TestB: successfully completed trials only.

hour to every few hours. 27% of the participant knew or had
heard of Augmented Reality before, generally from the web
or through applications such as games, but they reported their
familiarity level with AR as low (average of 1.3, with median
of 1, on a 1-5 scale).

Full data Completed data
Task | Completed Moan SD Moan D
[1,10] 69.2% 7102.2 | 946.5 | 5866.8 | 718.6

[1,20] 53.6% 8076.7 | 590.0 | 6338.7 | 776.6
[1,30] 39.3% 8886.8 | 410.4 | 7068.9 | 837.9

Table 2. Results of continuous value adjustment

Table 2 reports the results of our first (continuous value ad-
justment) test, with the collected dataset sliced two ways: The
full dataset represents all 2250 runs (25 runs X 3 ranges x 30
participants) we collected during the study. The completed
dataset on the other hand represents only those tasks that par-
ticipants were able to finish within 10 seconds. Table 2 lists
the completion rate of each range (after removing three out-
lier participants, who did not follow instructions correctly, the
probabilities improved to 75.3%, 57.1% and 42.4%).

For each dataset, we measured the average time (ms) to com-
plete the number for each of the three different ranges. An
ANOVA for the full dataset revealed significant differences
(F(2,87) = 51.4, and p = 1.8 x 10715 < 0.05). More-
over, post-hoc analysis using Tukey’s HSD test demonstrated
that since all possible differences were greater than HSD,
all groups are significantly different from each other. An
ANOVA for the completed dataset also revealed significant
differences (F'(2,87) = 18.1 and p = 2.63 x 10~7 < 0.05).
Here, a post-hoc analysis using Tukey’s HSD test showed that
HSD =479.4, with |M; — M| = 471.9, | M2 — M3| = 730.2,
and |Ms — M;| = 1202.1, and thus no significant difference
between the [1,10] and [1,20] groups, but differences among
the other groups ([1,20], [1,30] and [1,10], [1,30]). Figure 3
illustrates these results.

We also tested the collected data for a learning effect, i.e.
do later trials tend to exhibit increased performance? Over
all participants, the average time in ms for the first 25
runs was 8008.9 (SD=676.3); for the next 25 runs, it was

8096.8 (SD=649.7); and for the last 25 runs, it was 7997.0
(SD=830.1). In this case, an ANOVA test revealed no sig-
nificant differences (F'(2,87) = 0.17 and p = 0.84 > 0.05).
Similarly, a t-test between the first 25 runs and last 25 runs
showed ¢(29) = 0.081 and p = 0.94 > 0.05, implying that
there was no significant difference. We did not observe a
learning effect over time with this task.

Our results confirmed that the value adjustment task became
more difficult with the interval to pick the target value from
widening. We did not observe a drastic timing change be-
tween any two of the three different ranges. Instead, the diffi-
culty level appears to rise nearly linearly from range [1,10] to
range [1,30]. The average time for range [1,10] was 7102.2ms
(5866.8ms for completed trials), which appears to be surpris-
ingly long for the gesture, and the completion rate was 69.2%,
which is fairly low. These quantitative results support that it is
difficult to make fine-grin adjustments using our 4 x 4 grid ap-
proach, and this puts a limit on the range of hand gestures we
can gainfully implement. As a result, we need to re-consider
the use of the 4 x 4 region for gestures demanding high pre-
cision.

100
20

80 ¥

70 T
60
50

Percentage (%)

40

30 T

20

T

10

HTripod Hand

Figure 4. Completion rates for Experiment 2 (movement task) for cam-
era on tripod (/eft) and camera in hand (right)

The second experiment measured the success rates of trig-
gering discrete translation events for camera-in-hand versus
camera-on-tripod setups (Figure 5). The results displayed
in Figure 4 show that the average rate of completing the
task within 3 seconds with the camera on a tripod was 0.76
(SD=0.13) and for camera-in-hand it was 0.79 (SD=0.10).
A ttest (£(29) = —2.08 and p =0.047 < 0.05) revealed
that there was a significant difference between the tripod and
hand setups, with the camera-in-hand setup performing bet-
ter. From the data, we also checked if there were any ordering
effects, i.e. did it matter if a user first did the tripod-based test
or the camera-in-hand test? T-tests revealed no significant
difference from what modality was performed first.

Our analysis contradicted our initial hypothesis that the two
setups would perform equally well. We obtained the un-
expected result that our camera-in-hand setup performed
slightly better than the tripod setup. It is difficult to find exact
quantitative reasons of why the camera-in-hand mode might
have outperformed the tripod mode. After all, the differences



Experiment 1 Experiment 2
Fun to use | Easy to control | Easy to control | Move physically | Tripod-Hand

Strongly disagree (1) 0% 6.7% 0% 0% 16.7%
Disagree (2) 0% 26.7% 0% 0% 13.3%
Somewhat disagree (3) 0% 33.3% 6.7% 3.3% 6.7%
Neutral (4) 3.3% 23.3% 3.3% 10% 6.7%
Somewhat agree (5) 26.7% 10% 20% 26.7% 3.3%
Agree (6) 26.7% 0% 30% 13.3% 13.3%
Strongly agree (7) 43.3% 0% 40% 46.7% 40%

Mean (Likert scale) 6.1 3.0 5.9 5.9 4.6

Table 3. Post-study questionnaire results using a 7-point Likert scale; data from 30 participants. For the last column (Tripod-Hand), 1 indicated an

absolute preference for the tripod setup and 7 for the camera-in-hand setup

were not huge. What can be concluded is that our method of
dealing with slight camera movements was successful enough
as not to lead to performance handicaps in this study. Post-
study survey comments indicated an alignment of user per-
formance with user preferences: Some users who preferred
the tripod setup scored high on the tripod due to “easiness”
because they liked having “both hands free” and thus, they
did not have to “worry about switching hands for the inter-
action”, such as between move gestures to the left and to the
right. On the other hand, some users preferred the camera-in-
hand, because for the tripod setup it was “harder” to see the
virtual object “from a certain angle”, and “tripod legs were an
obstacle for the interaction”.

(b)

Figure 5. Two different setups: (a) camera-in-hand and (b) camera-on-
tripod

Discussion

After the first test, we asked users about how fun the applica-
tion was and on a scale from 1 (not fun) to 7 (very fun), our
average score was 6.1 (median = 6). In exit interviews par-
ticipants mentioned that it was “like a game application” and
that they derived a “must-win” feeling during the study. We
also think that the low familiarity level with AR (1.3 accord-
ing to our pre-study survey) might have been a contributing
factor, in that experiencing a method that users were not fa-
miliar with was “entertaining” to them. However, the score
for the easiness of locking in the correct target number in ex-
periment 1, from 1 (very hard) to 7 (very easy) scale, was
only 3.0 (median = 3). As our results on completion rate also
demonstrated (Table 2 shows 69.2%, 53.6%, and 39.3% for
the different ranges), it was possible that frustration with fine-
grain adjustments brought down this score. Table 3 shows
more detail about two experiments’ post-survey result.

On the second test, the average score on easiness of control
in 1 (hard) to 7 (easy) scale was 5.9 (median 6). The dis-
creteness of this task contributed to better completion rates.
We also asked if users felt like they were moving the box
physically, and on a scale from 1 (not really) to 7 (absolutely)
scale, the result was 5.9 (median 6). This is a high value, con-
sidering that there was no force feedback. A shortcoming of
the experience was that the box always moved with the same
velocity in only four directions.

Despite many users’ positive feedbacks about our proposed
method, we also received some complaints, such as “tiring
shoulder”. Particularly, some critical comments came in re-
sponse to the first test, when users had to hold the phone
continuously for each task that took up to 10 seconds. This
might mean that gestures that requires longer interaction
times could face acceptance problems. For instance, one of
the possible solutions that Hiirst et al. [8] suggested was to
focus on applications that requires gestures less frequently.

A question arises if direct hand interaction is a better solution
compared with current state-of-the-art touch-screen gestures.
As the results from our first experiment indicate, based on
the completion rate, time, and post-survey feedback, control-
ling a small value using our proposed method was not easy.
However, interacting with a 3D AR object and environment
through gestures on a 2D screen observing the 3D scene also
has its potential problems. The fixed and potentially very
small size of a smart-phone display screen doesn’t lend itself
well to larger-motion gestures, especially when the distance
between the camera and the AR object increases, making the
interaction footprint on the display very small (through per-
spective projection). Further experiments are needed to make
quantitative comparisons for various scenarios. Although
touch screens offer a very reliable and thoroughly established
mode of interaction, for controlling 3D AR scenes the jury is
still out on what interface metaphor might work best.

Quantitative results from our second experiment revealed a
success rate of 79% for users being able to complete a flick-
ing/pushing task within 3 seconds. We conducted a brief
analysis, applying keystroke-level model (KLM-GOMS) [4,
7, 11] theory to predict the time of a related swiping ges-
tures on the touch screen, so that we can informally com-
pare it against our method. We split our discrete method
into two parts: the mental act, through which users cogni-
tively prepare for the task that they need to achieve (flicking



in a certain direction), and the pointing event, for which users
move a finger around the touch screen to achieve the goal
(just like moving a mouse cursor). We predict the time of
using the discrete method on the touch screen to amount as
approximately 2.3 seconds. This time can vary depending on
the distance between the screen and finger and other factors.
It is likely that touch-screen input will yield higher success
rates and altogether faster response times than our through-
the-camera-phone hand gestures. However, the benefits of
direct-manipulation for AR object manipulation is a potential
plus for the proposed method, as evidenced by the positive
post-study survey feedback and specifically the question on
the realism of interaction.

Conclusions

In this paper, we introduced a simple yet novel approach
for interacting with virtual content in AR environments ob-
served through camera smart phones, using our unencum-
bered hands for gestural input. Our results demonstrate that
we can successfully address the problem of potential cam-
era motion during gesture detection using projective texture
mapping and background subtraction, obtaining acceptable
correctness rates for simple scenes while maintaining good
frame rates.

Our first evaluation experiment showed that this type of hand
interaction might not (yet) be a good fit for subtle adjustment
motions, as evidenced by users’ difficulties in controlling
small interval values; we think that button, keypad or other
physical sources of input might still be a better fit in this case.
Our second study demonstrated acceptable performance (cor-
rectness rate) of using a discrete sequential gesture detection
for a translation event, at a reasonable speed. Our post-study
survey comments highlight some potential promise of direct-
manipulation gesture interaction with AR scenes (high en-
gagement and physical realism). The hand-based interaction
was perceived as “fun” and “easy to control” (for the discrete
method). There is a distinct difference in features and af-
fordances between a touch screen and our proposed method.
A touch-screen interface is a common and accepted gesture
tool in mobile phones, which users are thoroughly familiar
with and which works robustly and, in conjunction with the
right interface elements, very advantageously. We are not ar-
guing or even targeting a complete replacement of this in-
teraction modality. We do think, however, that our work, as
well as other recent work in the area of hand gesture recogni-
tion highlights specific potential of 3D interaction using fin-
ger gestures to directly manipulate an AR scene. We have
demonstrated the feasibility and potential uses of such tech-
nologies using camera smart phones. Based on reasonable
accuracy, robustness, and positive feedbacks we received, we
conclude that direct hand interaction in phone-based AR is a
modality that should be considered to complement others.

We realize that improvements are desirable in terms of long-
term-use ergonomics, robustness and reliability. We will con-
sider the design of infrequent gestures as Hiirst et al. sug-
gested, and we also plan to collect more data on user behav-
iors to optimize gesture design. Our current 4 x 4 grid re-
stricts possible gestures, as detailed adjustments are difficult

to achieve. Future work will consist in tracking individual
fingers more efficiently and robustly, for instance by apply-
ing multiple hand detection algorithms in parallel while keep-
ing performance high. We would like to expand our method
to more and more fine-grained gestures, such as freely rotat-
ing virtual objects or moving objects in any direction with
different velocities. User studies will be required to investi-
gate if 3D interaction ‘in the air’ has advantages over existing
and more established display-based interaction methods, both
qualitatively and quantitatively. Once we make progress to-
wards these goals, one of the possible applications in which
we can utilize and showcase our new direct manipulation ges-
tures would be a virtual storybook, in which users can inter-
act with characters and scenery through life-like 3D gestures,
hopefully enhancing the Flow and Presence afforded by such
an environment.
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