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ABSTRACT

To test the performance of tracking systems on a high level it is nec-
essary to perform both quantitative and qualitative analyses. This is
particularly true for concepts such as robustness that lack a clear-cut
quantitative definition. Addressing the difficulty inherent in collect-
ing user evaluation data, we present a metric which maps the quan-
titative evaluation of systems to a close approximation of qualitative
robustness of the experience. This largely reduces the need to per-
form qualitative analysis of tracking robustness. We motivate the
need for this metric through an analysis of four orientation tracking
systems used for the construction of environment maps. This ini-
tial analysis demonstrates that ground truth error does not directly
reflect the results of a qualitative analysis. We then show that our
proposed metric is able to use the quantitative analysis of the sys-
tems to correctly approximate the relative robustness of the systems
in our initial evaluation. Therefore our proposed metric is able to
estimate qualitative evaluation results, without the need for an ad-
ditional user study. Our metric requires only a set of representative
video sequences along with ground truth data for each frame in
terms of yaw, pitch, and roll.

Keywords: Robustness metric, vision-based tracking, real-time
panorama acquisition, expert evaluation, camera pose relocalization

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis

1 INTRODUCTION

Despite a large increase in the number of tracking systems in re-
cent years, there is still no simple method for comparing the perfor-
mance of multiple tracking systems at a high level. This is particu-
larly true with respect to obtaining a qualitative sense of robustness.
Any such comparisons must currently be carried out by asking a
large number of users to rate or rank the performance of the sys-
tems tested. Additionally, the data from such user studies cannot be
reused and a new study must be performed each time a new system
is introduced.

We are interested in determining the qualitative robustness of
tracking systems. However, robustness itself is a nebulous term,
particularly in relation to computer vision. Robustness of an algo-
rithm in computer science is defined as the ability for the algorithm
to continue to function despite abnormal input. We similarly de-
fine robustness as the ability of vision-based tracking systems to
function in the presence of sudden or severe changes in the input
video such as changes in lighting, camera movement, occlusions,
etc. For a qualitative sense of robustness, we are interested in how
the system appears to perform while under the control of users.

The contribution of this paper is in providing a metric which esti-
mates qualitative ratings of the robustness of tracking systems con-
sistent with such user evaluations, but without requiring additional
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user studies beyond those performed in this paper. The proposed
metric is uncomplicated in design, and can be easily reused for eval-
uating future orientation tracking systems. Our metric requires only
a set of representative video sequences along with ground truth data
for each frame in terms of yaw, pitch, and roll. By representative we
mean that the video sequences should cover the spectrum of con-
ditions over which the tracking is said to be robust. For example,
if a system is robust against lighting changes, then the input videos
should contain a collection of movements over which the lighting
changes considerably.

Our goal is to reduce the need for case-specific user studies in
order to analyze the qualitative performance of systems. In order
to determine if this is possible, we must first understand the re-
lationship between qualitative and quantitative performance. We
therefore begin by presenting both the qualitative and the quantita-
tive performance of four tracking systems in section 3. Our results
clearly indicate that direct comparison of raw quantitative data is
not sufficient to gain an understanding of the qualitative perception
of robustness. To address this issue, we derive a metric which can
be used in order to perform such a mapping. This metric consists
of two parts, a classification of the error, and an equation to trans-
late the classified error into an estimation of qualitative robustness.
We explain both the thresholds for classification and the parameters
of the equation in section 4. In section 5, we then demonstrate the
effectiveness of our metric by correctly predicting the qualitative
performance of a system we did not use in establishing the metric,
using only the measured quantitative performance of the system.
Finally, we conclude with a discussion of our results and the direc-
tion of future work in section 6.

2 RELATED WORK

A wide variety of tracking systems using various kinds of sensors
have been investigated for Augmented/Mixed Reality (AR/MR) ap-
plications. There has also been extensive evaluation of low-level in-
terest point detectors, feature descriptors [16] [13] [12] and camera
pose techniques. Our goal is complementary to and very different
from these evaluations as we focus on classifying performance on
a much higher level.

Even though there have been several metrics for measuring
tracking errors, there is still a lack of research regarding metrics
for assessing the robustness of tracking approaches. That is, most
of the tracking methods for AR applications developed their own
error metrics or employed conventional metrics, such as reprojec-
tion errors, comparison with ground truth and overlay of synthetic
models. Satoh et al. used a robotic arm to obtain ground truth for
measuring registration error [15] [11] [6]. Most metrics make no
consideration of visual appearance of tracking results and user ex-
perience. Recent work in the field of AR has visited the issue of
robustness [14], but even though the authors used a special error
metric, it was not used to assess the robustness of the system but
for detecting tracking failures only. Klein et al. also performed re-
search to improve the robustness of SLAM systems by using edge
features and an inter-frame rotation estimator [10]. The general ro-
bustness of a system involves more than just the average system
error, and most of the existing evaluations have been on the error of
a single system, while we are interested in a metric which is more
generally applicable. Our work is complementary to the laudable
efforts of the TrakMark working group [17], and the data we are
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making publicly available 1 are meant to further some of the same
goals.

Some of our analysis is similar in form to work on empirical
evaluation done for qualifying computer vision work. While we
are not aware of any high level robustness evaluations of camera
pose, there has been some work in classifying other tracking algo-
rithms. In particular, Bowyer et al. [1] presented an overview of
several methods for empirical evaluation of computer vision algo-
rithms. Our methodology is similar to both the second and third
categories they describe. Our work shares some similarities with
what they term independent evaluation in that we do not have a
favored technique. Our expert evaluation is also akin in spirit to
the evaluation performed by Heath et al. [7] as our evaluation has
a qualitative component in the human definition of what is robust
tracking. However, in our case the evaluation is not the final re-
sult. Instead, we are interested in generating a metric from both
the user evaluation information we collect and a large set of data
with known ground truth so that similar user evaluations may be
circumvented in future robustness comparisons of tracking meth-
ods. As long as evaluators are able to provide sets of input streams
that represent the robustness challenges that they are considering
along with ground truth tracking information for these sequences,
our metric will enable comparison of different tracking algorithms
with respect to their robustness, without requiring additional user
studies.

This work extends and builds upon a previous overview evalua-
tion of a number of tracking systems [3].

3 MOTIVATING EVALUATION

In this section we motivate the need for a metric of robustness based
on quantitative observation through the results of a study comparing
tracker performance of several real-time computer vision systems
for panorama acquisition. For this study, we present a quantitative
analysis of these systems based on distance to ground truth. We also
present a qualitative analysis based on both the output panoramas
and a live user evaluation. Finally, we demonstrate that ground truth
error alone does not provide sufficient insight into the perceived
robustness of the system.

For this analysis we examined the performance of four varia-
tions on an existing orientation tracking system, Envisor [4]. We
analyzed regular Envisor, Envisor with constant recovery, Envisor
with selective recovery, and Envisor with constant recovery and pre-
scanning. A detailed discussion of these methods can be found
in [2]. Briefly, the base system of Envisor uses a frame to frame
feature-based tracking system. With regular Envisor, recovery is
only possible within a narrow region around the last tracked posi-
tion via regular feature-based tracking. Envisor with constant re-
covery is similar to regular Envisor but uses a keyframe-based re-
covery method which is always actively trying to recover. As a re-
sult, it can quickly recover to any camera pose already seen during
acquisition. However, the constant recovery may result in some ad-
ditional jitter or jumps (due to keyframe alignment). Envisor with
selective recovery is similar to the constant recovery method, but
only attempts to use the keyframes for recovery if it suspects that
tracking has failed. This results in a smaller amount of jitter than
found in the constant recovery method. Envisor with constant re-
covery and pre-scanning is our ideal case. It uses the constant re-
covery method but with a full set of previously acquired keyframes
surrounding the user. This greatly reduces the chance of tracking
failure, but the system may suffer from a small amount of jitter due
to the keyframe alignment.

We chose these systems for several reasons. First, our familiar-
ity with the systems allows us to verify that the results regarding
their performance are realistic. Second, their performance range

1http://tracking.mat.ucsb.edu/

from ‘fragile’ to ‘quite robust’, which provides desirable differ-
ences for our evaluation. Finally, we are sufficiently familiar with
the methods featuring constant and selective recovery to know that
their qualitative results should generally be very similar. This is
useful, as we should be able to distinguish not only very poor and
very robust systems, but also systems which are similar in terms of
robustness. Note that the goal of this paper is not to demonstrate
the superiority of a particular tracking system; the exact tracking
solutions used are of less importance than the ability of users to
distinguish the systems by their robustness.

3.1 Quantitative Evaluation
In order to accurately perform a quantitative evaluation of our track-
ing systems it was necessary to collect a data set containing ground
truth with respect to the orientation of the camera. For our study
we collected video data with very accurate ground truth by mount-
ing a camera on a pan tilt unit (PTU). The PTU allows for a pre-
viously constructed path file to be replayed precisely and allows
us to obtain a highly accurate estimate for the orientation of each
frame of video. Specifically, we used a PTU-D46 pan tilt unit [5]
from Directed Perceptions. The PTU has an upper speed limit of
300◦/second and a resolution of 0.0514◦. We are therefore able to
replay motion data precisely and at the speeds recorded. This al-
lows us to retain motion blur and other real-life imaging artifacts
during playback.

The orientation paths used as input to the PTU were collected
from the head movements of a large set of users performing both
searching and exploration tasks. More detailed information on
these paths will be discussed in Section 6. For the purpose of
our evaluation we used 45 different paths each a minute long. The
data was replayed in both indoor and outdoor locations to provide
a larger variation between samples for the evaluation. We are mak-
ing this motion path data available for download, alongside with
the captured panoramas in various places under various acquisition
conditions. 1

The camera used for the capture of the panoramas was a Point-
Grey DragonFly2, which delivers 640×480 pixel RGB frames at
30 Hz. We used Zhang’s calibration technique to measure the cam-
era’s intrinsic parameters in a one-time offline calibration proce-
dure [18] [8]. In addition to the focal length and principal point,
lens distortion parameters were also measured which were used to
undistort each frame.

3.2 Qualitative Evaluation
The qualitative analysis of system robustness consisted of two parts,
an analysis of the resulting output panoramas and a live expert
evaluation of the tracking systems. The analysis of the generated
panoramas allows for a large breadth of samples (different places
and acquisition conditions) to be examined, while expert analysis
provides confirmation of the trends seen in the analysis of the re-
sults, using live system exploration in one place.

Panorama Evaluation For this evaluation, all of the video
samples collected were used as input for each of the four systems
in order to obtain output panoramas. Given 45 input sequences this
resulted in 180 panoramas being used for the evaluation. Each of
these panoramas was ranked based on the size and quantity of any
noticeable visual artifacts. The evaluations were performed by six
domain experts (researchers in the fields of computer vision and
augmented reality).

To allow the expert evaluators to rate the panoramas, we de-
signed the ranking interface seen in Figure 1. The experts ranked
the panoramas in sets. Each set contains four panoramas of the
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(a)

(b)

Figure 1: The interface used for the panorama evaluations: a) users
were asked to rank panoramas generated by each of the four varia-
tions of Envisor. b) users were able to click on an item to compare it
to a ground truth panorama of the scene.

same scene as seen in Figure 1(a). All panoramas in a set are gener-
ated using the same motion path. The only difference is the tracking
method used to generate the panorama with one panorama for each
tracking solution. The order of the panoramas inside each set was
chosen randomly for every viewing. The presentation order of the
sets themselves was also random.

The six experts were asked to evaluate every panorama in each
set. To evaluate a panorama the experts selected it by clicking.
They then assigned a value between one (worst) and seven (best)
by pressing the corresponding number key on the keyboard. Once
assigned, the selected score was displayed on the left-hand side of
the panorama. Note that these values could be changed and were
only fixed once the experts moved to the next set in the series. Ad-
ditionally, experts were able to compare each panorama to a ground
truth panorama of the scene as shown in Figure 1(b).

Live Evaluation As an additional metric beyond evaluation of
the resulting environment maps, we had five expert users evaluate
each system in a live demonstration (3 people were chosen from
the previous set of six, but we allotted several days in between the
two studies). These users were all experts in the field of vision-
based tracking, and therefore they were asked to simply rate the

Figure 2: The interface shown to the expert evaluators as they de-
termined the robustness of the systems. The evaluators rotated a
camera on a tripod at speeds of their choice. The yellow rectangle in
the center represents the current camera image. Part of the currently
captured panorama data is visible outside of the yellow rectangle. All
evaluations of the systems were recorded on paper after the test.

robustness of the systems as they perceived them based on their ex-
perience. In order to ensure a fair comparison, we had each user
rank each system four times for a total of 16 randomly ordered runs
per user. To eliminate the effect of initial lack of comparison as the
experts determined a scale for their ratings, we used only the last
two iterations. The ordering of the tracking methods was random-
ized. For each individual test the evaluators were given at most a
minute to examine the tracking performance of the systems.

Every evaluated system used the same interface to represent the
constructed panorama, seen in Figure 2. This interface shows a
90◦ vertical field of view (FOV) of the environment map, with new
frames posted directly into the environment map without blending.
After each evaluation the users were asked to rank the system from
one (worst) to seven (best). We normalized and averaged the results
for both panorama and live evaluation, accounting for subjects’ rel-
ative differences in rating.

3.3 Evaluation Results
The average ratings of our evaluators for each set of result envi-
ronment maps were very consistent for each of the methods. Per-
forming an analysis of variance single factor test with the indepen-
dent variable being the method and the dependent variable being
the ratings resulted in a residual of 1:1940 with F = 572 and p <
0.0001. From the evaluation we can see that the different methods
performed with significant difference among all sequences. The
results from a set of corresponding Tukey Post-hoc evaluations is
shown in Figure 3. Note that every tracking system was signifi-
cantly pairwise different from each other in terms of the quality of
the generated panoramas, with the exception of constant recovery
compared with selective recovery in the indoor case. Among all
methods, these two are most similar to each other in terms of their
robustness. This is important as it indicates two things. First, the
methods could generally be distinguished, and second, the quali-
tative performance of the selective recovery method is very close
to that of the constant recovery method. This relationship is also
clearly reflected in the results from the live evaluation, but is not
seen in the raw ground truth error. Table 1 summarizes the evalua-
tion results from the panorama evaluations, the live tests, and lists
average distance to ground truth in degrees for each of the tracking
systems over all the input sequences.
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(a)
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Figure 3: Results of a Tukey multiple comparison of means given an
ANOVA comparison for a) indoor and b) outdoor sequences show-
ing that the evaluations of the panoramas are statistically different
for each pair of systems with the exception of constant and selective
recovery. Note that these results are also reflected in the live evalu-
ation. (CRS: Envisor with constant recovery and pre-scanning, SR:
Envisor with selective recovery, CR: Envisor with constant recovery,
NR: original version of Envisor (No Recovery))

Table 1: First row, average distance to ground truth in degrees. Sec-
ond row, ratings assigned to the panorama output data (scale one
(worst) to seven (best)). Third row, the robustness ratings from the
live evaluation (scale one (worst) to seven (best)). (NR: original ver-
sion of Envisor (No Recovery), CR: Envisor with constant recovery,
SR: Envisor with selective recovery, CRS: Envisor with constant re-
covery and pre-scanning)

NR CR SR CRS
Distance to ground truth (◦) 26.75 8.08 16.38 3.27

Panorama evaluation 2.03 3.12 3.54 5.41
Live evaluation 1.63 3.95 4.03 6.05

Note that for both of the qualitative analyses seen in Table 1,
the relative distance between the selective recovery method and the
constant recovery method was very small. This distance is not only
much greater in the ground truth error, but also reversed, indicat-
ing that there is not a direct linear mapping between tracking error
and qualitative robustness. This result clearly indicates that a more
indirect mapping is needed.

4 FORMULATION OF THE ROBUSTNESS METRIC

In this section we discuss the formulation of our proposed metric.
To reiterate, the purpose of this metric is to map a quantitative anal-
ysis of tracking systems to a qualitative estimation of the robustness
of those systems. The input for this metric is the per frame track-
ing error (distance from ground truth) provided by the quantitative
analysis.

Our metric involves two steps. First we classify the error gener-
ated by the systems, and second we determine the robustness of the
systems using the classified error percentages as input to our met-
ric. In this section we begin by describing the thresholds used to
classify the error. We then present our proposed metric and discuss
its formulation.

4.1 Classification of Error

We classify tracking errors into three main regions as shown in
Figure 4: ‘acceptable’, ‘recoverable’ and ‘irreparable’ tracking re-
gions. The regions we propose are based on the premise that some
levels of error affect the perception of robustness in very different
ways. For example, we suggest that time spent with tracking in
the ‘irreparable’ tracking region is disproportionately more harm-
ful to the perception of robustness than time spent in the ‘recover-
able’ tracking region. Similarly, our assumption is that the few very
noticeable errors are much worse for the sense of robustness than
many more nearly imperceptible errors.

Note also that the definition of robustness discussed in the intro-
duction is tied closely to the idea of a breaking point. That is, ro-
bustness is focused on the ability of systems to continue to operate.
The thresholds and regions we define are based around breaking
points, with the regions separated into distinct tiers of failure. This
is also the reasoning behind the naming convention applied to the
regions.

We have defined our thresholds to capture what we consider to
be three variations of error. The lowest level of error lies in the
‘acceptable’ region, which we define to be errors which are largely
unnoticed by users. The values which lie in the ‘recoverable’ region
are then clearly noticeable by users. We have defined the errors in
the ‘irreparable’ region to be errors in which the tracking is either
lost and frame to frame tracking has ceased, or the error is excep-
tionally noticeable. The exact boundary of the regions are defined
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Figure 4: An illustration of acceptable, recoverable and irreparable
tracking regions, and acceptable and irreparable tracking thresholds
for an absolute orientation error graph

by two thresholds, the ‘acceptable’ tracking threshold and the ‘ir-
reparable’ tracking threshold. We will define how we derived the
values for these thresholds in the remainder of this section.

Acceptable Tracking Threshold The acceptable tracking
threshold is effectively an upper bound on the errors which can oc-
cur in a system without causing any easily noticeable errors in the
output. This threshold is based on the premise that for every ap-
plication there is a certain amount of tracking error which is small
enough that it does not greatly affect the qualitative evaluation of
the system.

We are interested in orientation tracking and the resulting con-
structed panorama. Therefore, we base our acceptable tracking
threshold on the distance in frame to frame error allowable before
the errors become noticeable.

In order to obtain an estimate for the maximum angular distance
which remains inconspicuous in a panorama, we selected several
sections of a full environment map as seen in Figure 5 and manually
introduced errors by shifting the images off by a range of degrees.
The actual value depends on the size and quality of the generated
environment map, and even the detail in the observed scenes would
make some amount of difference to the evaluator’s ability to notice
errors in the results. An empirical evaluation for our example ap-
plication showed that for a sphere map of 1536×512 pixels a shift
of around 0.5◦ at the equator is negligible.

Note that this threshold is domain specific. As an example of
an alternative, an adaptation of this metric focusing on AR displays
might set this lower bound to a level at which augmentations have
a drift or offset which becomes a distraction to users.

Irreparable Tracking Threshold The irreparable tracking
threshold is an upper bound on the frame to frame error at which
normal tracking breaks and some recovery method is needed. This
threshold is based on the simple premise that there is a significant
difference between the time spent with lost tracking and time spent
with tracking which is generally operable, but contains some er-
rors (potentially a constant offset or otherwise systematic tracking
deviation).

For our analysis the tested systems all share the same code base,
and therefore, the irreparable threshold for all systems was set to

(a) (b)

(c) (d)

Figure 5: Tolerable range of the acceptable threshold (a) view frus-
tum area (b) 0.3◦ shift (c) 0.5◦ shift (d) 0.7◦ shift

the point at which Envisor [4] using only frame to frame feature
tracking is just about able to run successfully.

To determine this value we collected a number of samples using
the previously mentioned PTU and camera configuration. This data
consisted of video taken of an indoor environment, with a generous
number of features to enable tracking. In each video the camera is
rotated around the vertical axis at an exact rotational speed, using
the camera mounted PTU as described above. At this time only yaw
rotational data has been collected. We consider this generally suffi-
cient as performance for combinations of yaw and pitch are gener-
ally similar, and high speed roll is seldom a large issue in AR. This
testing determined the irreparable tracking threshold for our system
to be 56◦/second. As our tracking system runs at 48.08ms/frame
this gives a maximum distance per frame of about 2.69◦.

While the acceptable tracking threshold is based on the general
application area (panorama acquisition), this bound is dependent on
the specific systems tested. Therefore the value used in this study
is useful for the tracking systems tested, but new values need to be
derived on a per system basis. We are making all data sets used in
our testing publicly available to ease the process of determining this
value for future systems.

4.2 The Robustness Metric
Using the thresholds discussed previously, we are now able to de-
termine the percentage of time each tracking system spends in each
classification region on average. This percentage is represented
in Eq. 1 by NT , NA, NR and NI , where NT is the number of total
frames, and NA, NR and NI denote the numbers of frames belonging
to the acceptable tracking region, recoverable tracking region, and
irreparable tracking region, respectively.

Our work is based on the assumption that the time spent in each
region contributes differently to the overall sense of the robust-
ness of the system. To reflect this in our metric, we have included
weighting factors (α , β , and γ). The higher the value of the weight-
ing factor the more detrimental the time spent in that region is to
the sense of robustness R.

R = 1− (α · NA
NT

+β · NR
NT

+ γ · NI
NT

) (1)

100



In order to determine optimal values of the weighting factors to
approximate our observations for R from the qualitative user eval-
uations, we performed a brute force optimization testing a large
range of values for the weights. The optimization worked by
cycling through all sensible value combinations for the weights
in small discrete steps. For each weight combination, for each
panorama, we then determined the estimated robustness using those
weights. This provides a level of error based on the difference be-
tween the average of the normalized ratings of the expert users for
that panorama and the estimated robustness using our metric, R. To
determine the optimal set of weights we then minimized the sum of
squared differences over all the panoramas. Note that, the panorama
scores were placed in a range of zero (worst) to one (best) for this
evaluation, by subtracting one (the lowest score) and then scaling
by a factor of one over six (the difference between the highest and
lowest scores). This scaling was done to avoid having an arbitrary
value of seven for the highest score produced by our metric.

In order to obtain a full range for computing the weighting fac-
tors, we added an additional artificial data set which is the perfor-
mance produced by an ideal system. This contributes two things:
it serves to ensure that there are sufficient samplings from the low-
error end of the spectrum in order to ensure the α values have suf-
ficient information to converge on a meaningful value. Intuitively,
it also serves to provide a grounding to the metric to ensure that as
the performance increases, we do in fact approach a perfectly robust
system.

Note that for determining the weighting factors we used data
from only three of the four methods. These were Envisor with no
recovery, Envisor with constant recovery, and Envisor with constant
recovery and pre-scanning. Using only three of the four methods to
derive the weights allows us to evaluate the accuracy of our metric
using the fourth system.

We chose not to use the data from Envisor with selective recov-
ery, as it can be considered the most non-trivial case of mapping
the quantitative to qualitative data as seen in Table 1. Therefore, if
our metric is able to map the quantitative analysis of this method to
the qualitative evaluation, then it is a very strong indication of the
usefulness of our metric.

For our evaluation of the first three methods, over all 135 data
sets (again, each data set is obtained as a combination of many in-
puts from 6 experts), we obtained weightings of 0.030, 0.56, and
0.83 for α , β , and γ , respectively. We limit the obtained results to
two significant digits as these values are somewhat flexible; addi-
tional data sets would help to further refine our estimates.

While the proposed values were determined using a single appli-
cation area, namely panorama construction, the weights themselves
are designed to be general, and we predict that they will not need to
be recomputed when we will branch out to different domains. As
they are based on the time spent in each tracking region, they can be
reused provided the values for the thresholds have been determined
as previously discussed.

5 EVALUATION OF THE METRIC

To demonstrate how the performance of the four different versions
of Envisor fits into our three-region model, we show histogram dis-
tributions of time spent in the acceptable, recoverable and irrepara-
ble regions for each tracking method. From Figure 6, we can ob-
serve that Envisor with constant recovery and pre-scanning carries
out more stable and accurate tracking compared to the other meth-
ods. On the other hand, the original version of Envisor shows many
input frames classified in the irreparable tracking region.

Note that as mentioned previously, we did not use the data from
Envisor with selective recovery when determining the weights of
our metric. We can therefore give an estimate of how well our met-
ric works, by determining the difference between the evaluations of

Figure 6: Histogram distributions of time spent in acceptable, recov-
erable and irreparable regions for each tracking method. 45 video se-
quences of indoor and outdoor scenes were tested for each method.
Each sequence was about one minute (1800 frames) long. Selective
recovery is starred as the data was not used for the original formula-
tion of our metric, but was later used to test its validity.

Table 2: First row, the mean measurement of robustness for each
system over all users and over all datasets. Second row, the robust-
ness ratings from the live evaluation, Third row, the projected robust-
ness generated by our metric, Fourth row the scaled projection from
our metric for illustrative purposes (multiplied by seven). (NR: original
version of Envisor (No Recovery), CR: Envisor with constant recov-
ery, SR: Envisor with selective recovery, CRS: Envisor with constant
recovery and pre-scanning). Note that the scale for the evaluations
is from one (worst) to seven (best). The projected value from our
metric does not have units, so it is important to consider how closely
the projected values reflect the relative distance between rankings.

NR CR SR CRS
Panorama evaluation 2.03 3.12 3.54 5.41

Live evaluation 1.63 3.95 4.03 6.05
Projection from metric 0.33 0.44 0.47 0.52

Scaled Projection from metric 2.28 3.11 3.27 3.67

the experts for the robustness of this system and the result of the
projected robustness of our metric based on the ground truth data
sets.

The results of our projections are listed in Table 2. Note that
apart from differences in absolute values and slight proportional
differences for constant recovery with pre-scanning, the projections
were very accurate, and in all cases the relative differences were
well captured. In the case of pre-scanning, our results can most
likely be explained by the fact that it was relatively the best of the
tested methods despite the fact that as seen in Figure 6 it spends
most of its time in the recoverable region. Note that the scale of our
evaluation is more compact than that of the original panorama and
live evaluation results. This is due to the inclusion of an artificial
dataset of a perfect system in the construction of the weights. Again
this was done to ensure the metric converges meaningfully toward
a value of one as systems become more robust.

The final averages are listed alongside the average scores for the
panorama evaluations and the average scores from our metric given
absolute orientation error from ground truth. The fact that the live
user evaluation which was obtained separately from the panorama
evaluation, matches so closely to the metric and panorama evalu-
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ation data sets, is a strong indication that our metric is useful (cf.
Table 2).

6 DISCUSSION

We have presented a method for mapping the quantitative perfor-
mance of systems to the qualitative analysis of their performance,
with the goal of eliminating the need for performing subsequent
user evaluations in the comparison of orientation tracking systems.

While our metric can estimate the qualitative robustness of ori-
entation tracking systems, there are still requirements in terms of
the quantitative data needed. Specifically, we require that the user
have some estimate for the upper level of the performance of their
system. This requirement is necessary to determine the irreparable
tracking threshold for our analysis. In order to ease this requirement
we have made the speed tests used in our analysis publicly available
1 . Note that this data is also generally useful for determining the
qualitative robustness of orientation tracking systems.

We also require that the user have representative input sequences
with associated ground truth in order to determine the quantitative
performance of their systems relative to ground truth. In order to
ease this requirement and provide an example for a range of dif-
ferent environments over which robustness could be evaluated, we
have also made the data used in this evaluation publicly available.
This data consists of two parts. First, we provide the video data and
associated ground truth used in the evaluation of our metric, which
can be used directly to test the performance of additional systems.
Secondly, we provide the head orientation information which we
collected for this study. The orientation data we provide can be
replayed with a PTU at a later time under the conditions being eval-
uated. For example if users are interested in testing the performance
of their tracking systems under changes in illumination, they will be
able to replay the motion paths under various lighting conditions.

We believe this orientation data is generally helpful as the move-
ment of the camera should reflect realistic movements of human
users, as opposed to simple or random movement paths. This is
true for both our metric and any quantitative analysis. The 45 sets
of orientation data used in the analysis presented in this paper were
obtained from a larger data set consisting of samples from 23 par-
ticipants over a set of nine tasks. The participants were campus stu-
dents with little to no experience with AR. Each subject was given
a small monetary compensation for their participation. The partic-
ipants were asked to perform their tasks while wearing a hat with
an attached orientation tracker (InterSense InertiaCube2 [9]). Be-
tween each run the tracker was calibrated to ensure that the motion
data collected accurately matched the view of the participant. This
was accomplished by having the students boresight an object at a
known height and distance from their starting position.

Of the nine tasks, five varied in duration and four were a minute
long. For the purposes of evaluating our metric we used only the
minute long samples. This reduced our pool to 92 usable sets. Of
the four tasks, three are essentially the same observational task re-
peated multiple times. This essentially means there were two types
of tasks, one a casual exploration task, and the other a searching
task. From these we randomly selected 45 sets to be used in further
evaluations.

As mentioned before, we used these 45 sets of realistic head mo-
tions for play-back in different locations to acquire our test panora-
mas. We should mention a minor disadvantage of the PTU system
we employed for this purpose. It stems from a very small lag in
the number of quickly executed commands. Therefore there was a
small amount of filtering applied to the data from the users. The
effects of such filtering are minimal, however, and this smoothing
only affects how accurately the input path given to the PTU matches
the original user’s head motion. It does not affect the accuracy of
the ground truth values obtained, as the exact position of the PTU

was sampled for each frame.

7 CONCLUSIONS AND FUTURE WORK

In this paper we introduced a new metric for determining the qual-
itative robustness of systems from a quantitative analysis of their
performance. Our metric requires only a set of representative video
sequences along with ground truth data for each frame in terms of
yaw, pitch, and roll. We provided evidence of the usefulness of our
metric through the correct prediction of the relative robustness of
an uninvolved tracking system.

Future work will evaluate the metric using additional systems.
While we believe that all of the tracking systems presented are suf-
ficiently different for evaluating our metric, it will be helpful to
analyze the performance of externally developed systems.

For future work we would also like to evaluate the system over
additional application domains, such as overlaying and displaying
annotations in the scene. In this case, assuming Envisor was used
for tracking, the only value necessary to change would be the ac-
ceptable tracking threshold. This is assuming that there is a dif-
ferent level of quality expected when displaying annotations than
when constructing an environment map.

An additional goal of future work is to adapt our metric to be use-
ful for a 6 degree of freedom (DoF) tracking solution. For this, we
will need to collect additional 6 DoF ground truth data which could
be acquired e.g., by using a robotic system. The central idea of the
metric should be extensible to 6 DoF. At the base of the metric we
are interested in classifying the quality of tracking and understand-
ing the relationship of those classifications to qualitative robustness.
The general idea of classifying the error is certainly flexible enough
to extend to 6 DoF. However, the exact implementation needs to be
clearly defined. Currently, we imagine two possible options. First
we could attempt to formulate the error for both position and ori-
entation in terms of a single value. Alternatively we could use the
values from both errors separately and attempt to perform the opti-
mization of the weighting factors over this tuple. The second option
is more descriptive, although it would require a much larger set of
data in order to determine the values of the weights.

The idea of the thresholds is also generally applicable, and could
be applied to 6 DoF work. It is reasonable to assume that there are
thresholds for both position and orientation errors under which the
misregistration is largely unnoticed. Similarly, there are also ap-
propriate levels of error at which we can place the upper threshold,
although this error may be slightly more difficult to quantify. Par-
ticularly, positional error may have to be defined relative to some
scale, as nearby objects are more influential to the tracking quality
than objects far away from the user.
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