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Envisor: Online Environment Map Construction for Mixed Reality
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Figure 1: A cylindrical projection of an environment map constructed using Envisor with a camera on a tripod.

ABSTRACT

One of the main goals of anywhere augmentation is the develop-
ment of automatic algorithms for scene acquisition in augmented
reality systems. In this paper, we present Envisor, a system for
online construction of environment maps in new locations. To ac-
complish this, Envisor uses vision-based frame to frame and land-
mark orientation tracking for long-term, drift-free registration. For
additional robustness, a gyroscope / compass orientation unit can
optionally be used for hybrid tracking. The tracked video is then
projected into a cubemap frame by frame. Feedback is presented
to the user to help avoid gaps in the cubemap, while any remain-
ing gaps are filled by texture diffusion. The resulting environment
map can be used for a variety of applications, including shading of
virtual geometry and remote presence.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Tracking I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality

1 INTRODUCTION

The quality of augmentation possible with existing augmented re-
ality (AR) technologies has drastically improved in recent years,
thanks to advances in tracking, modeling, and rendering techniques.
However, this improved quality often comes at the cost of increased
startup cost, as these new techniques require expensive hardware
and careful measurement, calibration, modeling and instrumenting
of the environment before they can be used. These setup costs form
a barrier to entry that hinders experimentation with AR technol-
ogy by potential casual users. The goal of Anywhere Augmentation
is to develop algorithms and applications that reduce or eliminate
these startup costs by using commonly available components, ubiq-
uitously available data sources, and online data acquisition algo-
rithms.

One important component of modeling new scenes is the acqui-
sition of an environment map. As an image-based representation
of the light distribution around a single position, environment maps
have many uses in AR systems. Most commonly, they can be used
for realistic shading of virtual geometry [1, 8, 12] for more seam-
less integration of virtual objects into the physical scene. They are
also useful for remote presence applications [25], as a simple way
of representing a remote environment, e.g. as a backdrop in a tele-

collaboration system, or in low-bandwidth first-person interfaces
like QuickTime VR models [18].

In this paper, we present Envisor, a system for the automatic, on-
line construction of environment maps using a hand-held or head-
worn camera. Envisor tracks the camera’s orientation using opti-
cal flow of sparse corner features for relative camera motion, and
dynamically acquired landmark features to provide long-term drift-
free registration. If the system is likely to be used in environments
where reliable vision data cannot be depended on continuously (e.g.
large occlusions, highly dynamic scenes, heavy motion blur), the
camera can optionally be integrated with an auxiliary sensor such
as a gyroscope / compass orientation tracker for increased robust-
ness, though this is not a requirement.

To construct an environment map, Envisor’s tracked video
stream is projected into a cubemap frame by frame. Portions of
the frame that are determined to be dynamic are masked from the
projection, in an attempt to store only the background elements in
the environment map. As a user may forget exactly which portions
of the scene still need to be acquired, Envisor provides visual feed-
back in the form of arrows that indicate to the user which regions
remain. To combat the inevitable gaps that will still arise, texture
diffusion is used to smoothly fill in gaps to reduce their visual im-
pact.

The contributions of this work are the combination of landmark
and frame to frame components in the vision-based orientation
tracking employed by Envisor, and the Envisor application for con-
structing environment maps online, automatically. As a demonstra-
tion of the usefulness of these contributions to the AR community,
Envisor can use its acquired information to shade virtual geometry
so it appears lit by the physical scene.

2 RELATED WORK

Environment map acquisition is an important component of pho-
torealistic AR applications. The most common approach used is
to take one or more carefully calibrated photographs of a mirrored
sphere, which can then be processed offline before being used for
rendering [1, 8]. Other options include using a camera with a fish-
eye lens [12], or using an omnidirectional camera [25]. However,
these approaches are all contrary to the goals of Anywhere Aug-
mentation, because of the required special hardware, careful mea-
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surement, and offline preprocessing. Envisor works online and au-
tomatically with just a regular camera.

Established techniques for panorama stitching or mosaicing
[11, 24, 23, 5] focus on rectifying the transformation across each
entire image, over the full set of images. This creates globally opti-
mal panoramas, but requires an offline solution, as all data must be
available for processing simultaneously. There are systems that pro-
vide realtime mosaic results while waiting to compute a global re-
finement [2, 21], by only computing local refinements online. This
results in significant errors across the panorama that cannot be re-
solved without global optimization. Global solutions pose a prob-
lem for online acquisition systems that use video feeds for data,
as all the images must be stored separately so they can all be pro-
cessed and adjusted in the final optimization step. For sparse sets
of images, storage is not a problem, but storing each frame of a
tracked video, and then computing a global solution among them
is prohibitive. The goal of Envisor is to achieve tracking of suf-
ficient quality to make global optimization unnecessary, enabling
it to greedily project each video frame as it comes in, making the
running storage requirement just a cubemap.

In the context of augmented reality, there is ample previous work
on landmark vision-based and hybrid tracking systems. The ba-
sic approach in general is to use vision-based methods for land-
mark feature recognition, combined with gyroscopes for robust-
ness. An earlier system that uses a silhouette of the horizon as a
stable landmark for vision only orientation tracking was presented
by Behringer [4]. More recently, Satoh et al. [20] presented an out-
door orientation tracking system that uses user-specified patches of
image texture as landmarks, fused with a gyroscope. You and Neu-
mann [26] demonstrated a position and orientation tracker that uses
offline acquired landmark features and a gyroscope in an Extended
Kalman Filter framework. Most recently, Reitmayr and Drummond
[19] introduced a robust 6DOF outdoor hybrid tracking system that
matches video frames to a pre-acquired scene model. The limitation
of each of these systems it that they depend on offline measurement
of the scene before they can be used. This requirement sets up a
barrier to entry that hinders casual use of these tracking solutions.

Most similar to Envisor is the work of Montiel and Davison in
visual compassing [16]. They build off previous work on single
camera simultaneous localization and mapping (SLAM) [6], us-
ing a complex Extended Kalman Filter formulation of the tracking
problem to compute orientation from dynamically acquired land-
mark features. This work is significantly different from the algo-
rithm we present, primarily in that our approach utilizes a more
modular design, combining two configurable tracking modalities
to achieve similar tracking performance. Additionally, the use of
RANSAC and a larger number of simple features per frame sug-
gests that Envisor will exhibit greater robustness to dynamic scene
elements, though a direct comparison is not available.

3 VISION-BASED TRACKING

The first contribution of this paper is the vision-based tracking tech-
nique developed to provide drift-free orientation registration. The
tracking uses two separate measures, a frame to frame relative ro-
tation and a landmark-based absolute orientation, which are com-
bined in the final result. While the techniques described here focus
on 3DOF tracking, the results are applicable to full 6DOF camera
pose tracking as well.

Before tracking, the camera’s intrinsic parameters must be mea-
sured in a one-time offline calibration procedure. The OpenCV [13]
implementation of Zhang’s technique [27] is used for this purpose,
which measures the focal length, center point and radial distortion
of the camera. The distortion parameters are used to correct the po-
sition of features in the image, as well as to undistort each frame on
the GPU so the image will match the pinhole perspective model of
OpenGL.

Figure 2: Top to bottom: (a) A frame from a video with the tracked
features drawn on top. Each point is a feature in the frame to frame
tracking – red are outliers, yellow have been inliers for a few frames,
and green have been inliers for many frames. Features with a circle
around them have been put in the landmark map. The trail on each
feature shows its recent history. (b) A visualization of the landmark
map after the camera has been swept across a full hemisphere. The
cyan circles show the 3D positions of each recorded landmark. The
purple frustum shows the camera’s current viewing volume, and the
red, yellow and green points are the features currently being tracked.

3.1 Frame to Frame

The first half of the vision-based tracking algorithm computes a
relative rotation between two consecutive frames from the differ-
ences in position of a matching set of feature points in the two im-
ages. Initial features are found using Shi and Tomasi’s [22] good
features operator, which greedily selects a set of “corner” features,
where corners are defined as image patches with strong gradients
in two directions. The motion of these features between consecu-
tive frames is determined using a pyramidal version of Lucas and
Kanade’s optical flow algorithm [15], which uses a hierarchy of dif-
ferent resolution images to efficiently match sparse image patches
between two frames. See Figure 2(a) for a visualization of these
features. As features are lost (moved out of the field of view, or
could not be tracked), new features are added incrementally when
the number of features drops below a threshold.

With OpenGL’s pinhole camera model, it is trivial to project 2D
features on the image plane into 3D points on the viewing sphere.
The optimal rotation between corresponding sets of 3D positions is
computed using Horn’s absolute orientation technique [10], which
works by constructing a special 4x4 matrix from the set of feature
pairs. This matrix has the property that its maximal eigenvector is
a quaternion representing the optimal rotation. This approach has
many nice qualities. It is a non-iterative technique that does not re-
quire further refinement and only trivial quaternion normalization
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as a post-processing step, though even this is not strictly necessary.
The computation is very fast, and takes the same amount of time for
small or large numbers of feature pairs. This is especially useful as
it reduces the impact of tracking with large numbers of features. It
also provides for easy integration in a RANSAC [7] implementa-
tion as both the estimation and refinement steps, which is necessary
for robustness against likely outliers in dynamic, real-world envi-
ronments.

3.2 Landmarks

The second half of the vision-based orientation tracking adds land-
marks to the frame to frame feature tracking system to combat drift
during long tracking runs. Drift is a problem because integration of
the frame to frame tracking’s relative measurements accumulates
the small errors in each measurement, which can create large dif-
ferences between the estimated and actual orientations. Identifying
and reusing absolutely positioned landmark features addresses this
problem by providing a periodic direct measurement of absolute
orientation rather than relative rotation.

Existing landmark based tracking systems [6] use some sort of
uniquely identifiable feature such as large image patches, or SIFT
[14] or SURF [3] features for landmarks. These heavyweight fea-
tures are used to recognize when the tracker is revisiting previ-
ously seen regions, as well as during the frame to frame update
of currently visible features. This approach can be simplified, as
the uniquely identifiable nature of landmarks are not necessary for
frame to frame updates – since landmarks will agree with the mo-
tion of the rest of the scene, they will be inliers in lightweight frame
to frame tracking result discussed earlier. Therefore, optical flow
based tracking is sufficient for the feature update step, and the util-
ity of landmarks is only to uniquely identify features. Additionally,
since a landmark feature does not change from when it starts being
tracked to when it leaves the field of view, the landmark identifica-
tion only needs to happen during feature initialization.

To first create landmarks, features that are inliers for a number of
consecutive frames are promoted if they are far enough apart from
existing landmarks, which are stored in a set called the map (see
Figure 2(b)). Each landmark has its associated world coordinate di-
rection vector and a feature descriptor. When a landmark is created,
the patch around it in the image is used to create a SURF descriptor,
using the code provided by Bay, Tuytelaars, and Gool [3]. The re-
sult is a 64 float vector that uniquely identifies that patch of image
texture.

Once landmarks are in the map, they must be reacquired when
they come back into the camera’s field of view. If a landmark is
expected to be in the field of view (by projecting known landmark
locations to the camera’s estimated orientation), the landmark is
searched for in a small region about its expected location. To do
this, Shi and Tomasi’s good features operator is used to find candi-
date points inside a small search region, and then SURF descriptors
are computed for each of those features. These descriptors are com-
pared to the landmark descriptor and if a match is found, the fea-
ture is linked to the landmark and entered into the frame to frame
tracker. After a certain number of failed attempts to reacquire a
landmark feature, the landmark is determined to be lost and is re-
moved from the map. Matching descriptors are determined by nor-
malizing the two descriptors to have a magnitude of one and then
computing the dot product, which is thresholded.

During tracking, the landmarks are used twice, once as part of
the regular frame to frame rotation estimate, and separately to find
an orientation estimate from just the landmarks. This separate es-
timate uses the same algorithm as the frame to frame tracking, but
instead of computing the rotation between each landmark’s position
in the previous and current frame, the rotation from the landmark’s
world stabilized position to the current frame position is generated.
RANSAC is still applied, because while landmarks are assumed to

be static features, they may still change – for example, a landmark
feature may be on a parked car, but after some time the car may
drive away and the landmark will have changed. Landmarks that
are outliers a certain number of times will eventually be discarded.

3.3 Hybrid Tracking

The two vision-based tracking modalities - frame to frame and
landmark tracking - are combined to produce a higher quality final
tracked result. The landmark vision tracking provides an absolute
orientation, but is not available each frame as enough landmarks
may not be visible. The frame to frame vision tracking provides
an angular velocity estimate with a low amount of error assuming
slow camera motion, but integration over time creates drift. When
a landmark measurement is available, it is used as the current ori-
entation estimate, and when enough landmarks aren’t available, the
relative measurement of the frame to frame tracking is integrated
into the previous orientation estimate. This way, the benefits of
both modalities are gained in the final tracker.

Since vision-based tracking is not always reliable in some en-
vironments (with insufficient texture or highly dynamic content),
other sensors can optionally be used as well when the vision sensors
fail. For example, an InertiaCube 2 provides an absolute orientation
measurement that is always available but has greater error than the
vision measurements. It could be used when the vision tracking
fails to improve robustness.

4 ENVIRONMENT MAP CONSTRUCTION

The second main contribution of this work is the Envisor applica-
tion, which uses the tracked video stream to create an environment
map of the surrounding scene online and fully automatically. The
first step of this process is to project each frame of the video into a
cubemap, masking out the dynamic portions of the scene. To guide
the acquisition process and reduce the likelihood of missed regions,
feedback is given to the user to indicate which regions of the scene
still need to be acquired. Finally, since small gaps will be unavoid-
able, a texture diffusion process is used to blend surrounding pixels
into those gaps, reducing their visual impact.

4.1 Cubemap Projection

Envisor uses an OpenGL cubemap to store the generated environ-
ment map. Each frame, the orientation and intrinsic parameters of
the camera are used to render the video image into cubemap us-
ing a frame buffer object. This is done by computing the direction
vectors from the camera’s position to the corners of the camera im-
age, and drawing a texture mapped quad into each cubemap face
using those direction vectors as the corners of the quad (cubemaps
are indexed by direction vector, so this puts the projected image in
the correct position). An alpha mask is used that gradually falls off
around the border, to make sure each frame smoothly blends into
the cubemap, reducing the jarring effects of any inconsistencies.

4.2 Gap Avoidance

Enabling user avoidance of gaps means giving the user useful feed-
back during the acquisition process that allows him or her to more
intelligently direct the camera. In a wearable context, a user in-
terface that simply presents the user with the cubemap and allows
panning around the view is too complex, requiring significant cog-
nitive load and manipulation of the wearable input device. Instead,
the feedback should be more tailored to low cognitive load with
no interaction requirement. Envisor presents a passive display of a
set of arrows around the current view that indicate which directions
gaps are present along. See Figure 3(b) for an example image. As
there are fewer unfilled pixels along a certain direction, that arrow
will become more transparent until it disappears when all the gaps
are filled.
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Figure 3: Top to bottom: (a) Gap searching proceeds by rotating the
view vector around each of 8 evenly-spaced vectors perpendicular to
the view direction. Here, the view vector is rotated about the right
vector. Along each sample vector si, the cubemap is sampled to see
if there is a gap. (b) Eight arrows are drawn around the periphery to
show the user where gaps remain. The intensity of an arrow is based
on how many of the sample vectors along that direction detected
gaps. In this example, the user has just completed a circular sweep,
so there are no gaps to the left or right.

Creating these arrows requires efficiently sampling the pixels
along each direction and testing for gaps (to make this determina-
tion easy, the starting cubemap is set to black with alpha values of
1, and when pixels are drawn in from the video image, their alpha
values are set to 0). To sample the cubemap along each direction,
from the camera’s extrinsic pose the camera’s view, right and up
vectors (d, r and u respectively) can be extracted. The right and
up vectors can be used to create 8 cardinal directions around the
viewing direction. Then for each of these axes, the view vector is
rotated about the axis incrementally in the range of [0..180] degrees
(see Figure 3(a)).

An obvious way to implement this would be to read back the
pixels from the cubemap along the sample vector directions, but
this pixel readback is extremely slow as it breaks GPU pipelining
by introducing a stall. Since the panorama construction has heavy
CPU and GPU use, good pipelining is critical for performance, so
keeping the computation on the GPU is important. To accomplish
this, the cubemap is sampled by drawing a point with the sample
vector as its texture coordinate. The series of samples are combined
by blending with an additive blend function, and a simple fragment
shader is used to test the sampled values to see if they are gaps
or not and output 1 or 0 appropriately. The result is 8 pixels in an
offscreen buffer, each with an alpha value that represents the weight
for the corresponding direction. Then when drawing the arrows in

Figure 4: Layout of the cubemap faces in the atlas texture. The black
outline marks where the cubemap faces are sampled from when ap-
plying the texture diffusion.

Figure 5: An example of gap filling. At the end of an acquisition, gaps
may remain, especially around the north and south pole. Here, the
north pole gap is filled.

the user interface, the geometry simply has this texture applied with
the appropriate pixel’s coordinate passed as the texture coordinates
for the entire arrow.

4.3 Gap Filling

Even with user feedback, gaps are still likely to occur, though they
may be smaller. It is important to do something to fill these gaps, as
they create a very distraction visual artifact (the appearance of ob-
vious “holes” in the environment map and shaded geometry). The
fast image inpainting algorithm of Oliveira et al. [17] is a good
candidate to use for the gap filling, but it requires user input to
place diffusion boundaries. The technique can be adapted to be
fully automatic however, with just the diffusion component and no
boundaries. The advantages of this approach are numerous. First,
it can easily be implemented on the GPU, which is in line with the
goal of avoiding readback of GPU data to the CPU. Second, it is
an incremental algorithm, so a little work can be done each frame
without impacting the overall performance. And finally, a modified
version can be made to gracefully handle updates of gap regions as
new projected pixels are incrementally filled in. As this will happen
often, it is important for the gap filling to be able to respond to the
new data immediately.

The basic approach is to use a fragment shader that implements
a diffusion function. Pseudocode for the shader is as follows.
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center = sample texture at center of kernel

avg = 0

count = 0

dist = MAX

for each pixel in kernel

{

samp = sample texture at kernel pixel

dist = min( dist, samp.a )

if( samp.a <= center.a )

{

avg += samp

count += 1

}

}

avg /= count;

avg.a = dist + 1

if( count == 0 || center.a < avg.a )

output = center

else

output = avg

This shader operates as follows. First, all pixels in the cubemap
are initialized with an alpha value of 1, while projected pixels are
set to have an alpha value of 0. During diffusion, the alpha value is
used to encode the distance from a filled pixel – pixels with alpha
0 are filled, pixels with alpha 1 have not been diffused into yet, and
alpha values in between designate the distance that pixel is from
the nearest filled pixel. The shader computes an RGB value that is
the average of all the surrounding pixels that have a distance less
than or equal to the distance of the center pixel. It also finds the
minimum distance to the center pixel. The new output value is then
the average RGB and the minimum distance plus one for the alpha
value.

One advantage of this implementation is that it does not repeat-
edly recompute pixels that have already been diffused, which would
result in their colors slowly fading due to rounding errors. Also, by
using the distance as part of the criteria for deciding to update a
pixel, when new regions of the image are filled, the new smaller
distances of nearby pixels will insure they get updated. See Figure
5 for an example.

The remaining difficulty is to implement the diffusion on a cube-
map, with correct diffusion between cubemap faces. The solution
is to do the diffusion in a regular 2D texture that has been filled in
with the cubemap faces laid out so the boundaries of the embedded
faces meet as they do on the actual cube. The particular layout used
is from Gu [9], which can be seen in Figure 4. Before a diffusion
step is computed, the cubemap is drawn into the atlas texture as
shown. Then the diffusion is computed by drawing each face back
into the cubemap with the diffusion shader enabled, sampling from
the atlas texture. This way pixels at the boundary of one face will
correctly sample from the abutting faces as needed.

To save on performance, the texture diffusion is actually com-
puted on a subsampled cubemap with faces sized 64x64 pixels
(while the full resolution cubemap is 512x512 or greater). As the
diffused texture is very low frequency, this does not impact the vi-
sual quality.

5 RESULTS

See Figure 1 for an example of an environment map constructed by
Envisor from a camera on a tripod. While a few misregistrations
are evident, particularly in regions that are close to the camera, they
are minor. Since the camera was on a tripod, it was unable to ac-
quire the scene directly above or below its position, so the texture
diffusion process has filled in those gaps.

5.1 Performance

This work was tested on three machines: a desktop with a 2.1GHz
AMD Athlon CPU and an NVIDIA GeForce FX 6200 graphics

stage Athlon Xeon Pentium

video decoding 13.0 8.5 11.2
undistortion 0.3 0.3 0.3

preprocessing total 13.3 8.8 11.5
KLT tracking 24.5 15.7 28.6
RANSAC 0.3 0.5 0.7
landmarks 40.1 33.9 24.5

tracking total 65.2 50.5 54.2
cubemap update 2.7 2.3 3.7

total 81.2 61.6 69.5

Table 1: Average times (in ms) of the various stages of Envisor, on
three computers. The preprocessing and tracking are broken up into
their component stages, and timings are presented for each stage as
well as the frame total. The final total is the start to finish for each
frame of the test application.

card, another desktop with a 3.0GHz Intel Xeon and an NVIDIA
GeForce 7800 GS, and a laptop with a 2.0GHz Intel Pentium M
CPU and an NVIDIA GeForce Go 6600. The camera used was a
Unibrain Fire-i400 camera with a 4mm lens. In general, we experi-
ence around 15 frames per second in the testing application, which
runs off of a pre-recorded MPEG encoded video and accompanying
metadata file. See Table 1 for more detailed timing data. The GPU
implemented steps of the technique are not accurately represented
in the timing data because of the difficulty in accurately measuring
the stages separately given the GPU’s heavy pipelining. Because of
the way the GPU stages are implemented however, they are able to
completely overlap the CPU portions of the algorithm, and so do
not impact the final per-frame running time. This was confirmed by
comparing timing data with and without the GPU components of
the application, which were not significantly different.

Unfortunately, some of the steps that take the most time are fixed
costs. When SURF features are used for landmarks, there is a step
to compute the integral image of the video frame. This expen-
sive operation is performed even if only one SURF descriptor is
needed. However, better performance can be achieved by not doing
every step of the algorithm every frame. For example, only looking
for new landmarks every 3 frames yields a large improvement to
the average framerate. Similarly, one of the slowest components
of the KLT tracking is initialization of new features, which can
also be done every few frames. By distributing periodic workloads
across frames (interleaving KLT feature initialization and landmark
searching, e.g.) the performance can be increased. How aggres-
sively this can be done depends on the expected speed of camera
motion and dynamic nature of the scene. For faster camera motion,
features will be in the field of view for fewer frames, and so all
tracking operations must happen frequently. More dynamic scenes
will need better robustness to outliers, which requires more features
processed more frequently. These considerations are important on
a per-application basis.

The ability to tune the performance of the frame to frame and
landmark feature tracking separately is an additional advantage of
the approach to tracking used in this work. The level of configura-
bility to particular application needs is very high – for example in
a scene with consistent strong texture and very few dynamic ele-
ments, landmark tracking updates by themselves may be sufficient,
without relying on frame to frame measurements to fill gaps. Al-
ternately applications such as fully immersive VR or games that
only needs angular velocity input could use only the frame to frame
updates without the landmark corrections. This advantage is in con-
trast to black box tracking solutions that only rely on one tracking
modality.
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5.2 Tracking

For testing purposes, we used a selection of different cameras: a
Unibrain Fire-i, a Unibrain Fire-i400, and a Point Grey FireFlyMV.
They cover a range from consumer level to mid-range lab cameras.
Mostly, we used the Fire-i400 because it has the widest field of
view, at 51◦. A wider field of view means the feature tracking is
less likely to get distracted by large occluders such as a person
walking by, and that potentially faster motion can be tracked. It
also improves the robustness of the tracking against regions of uni-
form texture, as such regions will have to be much larger to fill the
camera’s field of view. However, the most significant impact of the
wider field of view was that it made environment map construction
much faster as fewer sweeps around the scene were needed, which
definitely improved the usability of Envisor.

The accuracy of the tracking was tested by moving the camera
through a circular sweep at roughly 20◦per second, on a tripod in
a large room under ideal tracking conditions. The tracking is ac-
curate enough that after completing the loop, the camera is off of
the original orientation by 0.2◦. This is significant, as it means
that the characteristic discontinuity at the end of a closed-loop in
panorama stitching, which generally requires a global refinement
to the stitching, is not as important for Envisor. This accuracy is
also sufficient for the landmarks from the beginning of the sweep
to be reclaimed as they come back into view. This means that as
long as good tracking conditions are maintained, Envisor is capable
of long-term drift-free orientation tracking. However, because the
landmark features are originally initialized off of the frame to frame
tracking results, if the relative orientation gets distracted the land-
marks will incorporate that error into their positions. If this error is
too large, the reacquisition of old landmark features will fail, caus-
ing them to be discarded and new landmarks acquired in their place.
Because of these limitations, the vision based tracking alone is not
robust to poor tracking conditions such as total occlusion. Under
good conditions, the tracking is successful indefinitely.

5.3 Environment Mapping

The quality of the resulting environment map from Envisor depends
heavily on the quality of the tracking data obtained. People are very
sensitive to small registration errors when tracking results can be
compared directly, side-by-side, as they are in an environment map
at the borders between projected frames. Visible gaps and jumps
negatively affect the appearance of a panorama. While the tracking
presented here is able to rely on a variety of different modalities,
only the frame to frame relative updates create seamless blending
within the environment map, as they directly compute the optimal
transform between two frames. If there are errors in the tracking
from bad video data or random noise in the landmark orientation
measurement, this will result in discontinuities in the environment
map. However, depending on the target application, these discon-
tinuities may not be a problem. For example, applications that use
environment maps as a backdrop may find small errors acceptable.
Shading of virtual geometry that is not completely specular and
smooth will also not be adversely affected by these errors.

One of the problems facing environment map construction is the
changing exposure and white balance of automatically adjusting
cameras. As a camera moves from a bright region to a darker one,
or vice-versa, it takes some amount of time to adjust to the new il-
lumination, which means that revisiting the same portion of a scene
may result in different pixels values than were previously acquired.
This problem is evident when the camera is re-swept over a region,
and the border between the old and new data is clearly visible due
to brightness and hue differences. In low dynamic range environ-
ments, such as an office with fluorescent lighting that creates sig-
nificant ambient illumination, the camera’s automatic adjustment
can be turned off with no ill effects (see Figure 1). However, in
high dynamic range environments such as outdoors or indoors with

very localized light sources, the automatic exposure adjustment is
important for tracking because it ensures that the image features al-
ways have good contrast. Over or under exposure will reduce the
quality of the computed optical flow, hurting tracking performance.
Alternately, if a camera supports reading the adjusted parameters
per-frame, a color model can be fit to these parameters that would
allow manual normalization of the images on the CPU or GPU, so
the tracking can always have an optimal exposure image, while the
environment map always has normalized intensities. Unfortunately,
our cameras do not support this feature.

6 ERROR ANALYSIS

In scenes with good conditions for vision-based tracking (with suf-
ficient texture for optical flow and enough coherent motion for
RANSAC), the most significant sources of error are due to motion
blur and translation of the camera.

Motion blur is caused by the camera moving too quickly within
the scene, stretching point features into lines across the frame. The-
oretically, the maximum rate of rotation that can be tracked is lim-
ited by the camera’s field of view and the framerate. For our testing
setup, we used a 51◦field of view camera and had a framerate of
10Hz. If half the image needs to remain in the field of view be-
tween consecutive frames for tracking to succeed, then that results
in a theoretical maximum angular velocity of 255◦per second. Re-
alistically, motion blur causes optical flow to fail at much lower
speeds. In practice, we find that angular velocities of up to 60◦per
second can be tracked by the frame to frame tracking, while land-
mark tracking is successful at angular velocities of up to 30◦per sec-
ond. The reasons for the slower maximum for landmark tracking
are that the landmarks require features to be tracked successfully
for a number of consecutive frames before they can be promoted to
landmark status, and that the blurring decreases the quality of the
computed SURF descriptor, which interferes with reinitialization.
The most effective way to increase the maximum trackable angu-
lar velocity is to lower the camera’s exposure time, reducing the
motion blur effect. High speed cameras and brightly illuminated
scenes will both improve this result.

Translation error is introduced because the assumption that the
camera rotates about its optical center is no correct, especially for
hand-held or head-worn cameras. To quantify the effect this has on
the tracking, we can estimate the relationship between translation
and measured rotation. Let p be a 3D point at the center of the
camera image plane at distance n from the camera, corresponding
to a 3D point P that is distance D from the camera. If the camera
undergoes a translation of distance T , perpendicular to the viewing
direction, then the point P will appear to move T in the opposite
direction (in camera coordinates), becoming Q, with corresponding
image plane point q. See Figure 6 for an illustration. The distance
the point in the image plane will have appeared to move is

pq =
nT

D
(1)

If the camera had instead rotated by θ degrees about an axis per-
pendicular to the viewing direction, the distance between p and q
would instead be

pq = n tanθ (2)

Therefore, for a translation T , the apparent rotation θ can be com-
puted as

θ = tan−1 T

D
(3)

Pure translation is unlikely, however. More likely is that the cam-
era will rotate about a point that is not the optical center, which
will cause both rotation and translation simultaneously. Assume

6



Online Submission ID: 102

Q P

pq

T

n

D

Q P

pq

θ

Figure 6: Comparison of camera translation and rotation on scene
features. Left to right: (a) As the camera undergoes translation T ,
point P in the scene moves the same distance. The corresponding
projected points p and q show the motion of the feature in the image.
(b) Point q can also be generated by rotating the camera through
angle θ .

the pivot about which the camera rotates is distance d in front of
the camera’s optical center (negative values of d mean the pivot is
behind the optical center). Then for a rotation of θ , the translation
of the camera T will be

T = 2d sin
θ

2
(4)

This translation T will cause an additional rotation measurement of
δθ , and total measured rotation θm

θm = θ +δθ = θ + tan−1 2d sin θ
2

D
(5)

For small values of θ , sinθ ≈ 1 and for small values of x, tan−1 x ≈
x. Therefore, for small rotations,

θm ≈ θ +
2d

D
(6)

The significance of this approximation is that the error is based only
on the ratio of the distances from the pivot to the camera and the
camera to the 3D feature. This result was confirmed with syn-
thetic experiments, in which an off-center virtual camera was ro-
tated within a set of points spaced 5◦ apart on a 10m sphere. The
camera’s pivot-offset was varied from 5mm to 5m, and it under-
went 360 1◦ rotations in each configuration. Results can be seen in
Figure 7, which roughly agrees with the predicted model.

In real world scenarios, indoor scenes tend to range between 2m
and 10m from the camera, versus outdoor scenes which range be-
tween 5m and 100m. For hand-held cameras, an offset of 20cm
is reasonable, in which case the synthetic test results estimate total
error (after a full circle) on the order of 1◦ indoors, versus 0.1◦ de-
grees outdoors. A camera on a tripod has an offset of 5cm or less,
which results in errors of 0.1◦ indoors or 0.01◦ outdoors.

7 CONCLUSIONS

In this paper, we presented Envisor, an application for the online
and automatic creation of environment maps as part of a wearable
augmented reality system. The two main contributions of Envisor
are a modular orientation tracking algorithm that provides config-
urable, long-term and drift-free tracking, and a technique for using
this tracked video feed to automatically create environment maps
online. We have demonstrated the quality of Envisor’s results, and
discussed the implications of its performance in a variety of con-
texts.
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Figure 7: Error in rotation measurements in synthetic test of off-
center rotation. Error is the average over 360 1◦ rotations.

The most important area of improvement for Envisor is to im-
prove the performance. We would like to try using custom imple-
mentations of the external library code we used to see about increas-
ing framerate, or even experimenting with alternative landmark fea-
ture descriptors. Investigating further GPU computation offloading
is another potential venue for improving speed. For the environ-
ment map construction, we would like to find a camera that supports
reading the exposure parameters each frame, so we can implement
an image normalization procedure and get good tracking and good
environment maps in high dynamic range scenes. Long-term, we
would like to extend these techniques into 6DOF camera tracking
and online scene model building.

In the meantime, Envisor is another tool in the growing tool-
box of Anywhere Augmentation technologies. It allows users with
standard hardware to quickly acquire useful information about their
environment, enabling experimentation with more advanced aug-
mented reality techniques.
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