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ABSTRACT
Brain Computer Interfaces (BCIs) typically utilize electroen-

cephalography (EEG) to enable control of a computer through

brain signals. However, EEG is susceptible to a large amount

of noise, especially from muscle activity, making it difficult

to use in ubiquitous computing environments where mobil-

ity and physicality are important features. In this work, we

present a novel multimodal approach for classifying the P300

event related potential (ERP) component by coupling EEG

signals with nonscalp electrodes (NSE) that measure ocular

and muscle artifacts. We demonstrate the effectiveness of our

approach on a new dataset where the P300 signal was evoked

with participants on a stationary bike under three conditions

of physical activity: rest, low-intensity, and high-intensity

exercise. We show that intensity of physical activity impacts

the performance of both our proposed model and existing

state-of-the-art models. After incorporating signals from

nonscalp electrodes our proposed model performs signifi-

cantly better for the physical activity conditions. Our results

suggest that the incorporation of additional modalities re-

lated to eye-movements and muscle activity may improve

the efficacy of mobile EEG-based BCI systems, creating the

potential for ubiquitous BCI.
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1 INTRODUCTION
Brain Computer Interface (BCI) systems enable the control

of a computer through brain signals [49]. Traditionally, BCIs

have been utilized as an assistive technology for people with

mobility impairments [44]. There is however a growing in-

terest in general purpose, non-invasive BCI technologies

to improve the computing experience of perfectly healthy

people. A number of consumer facing products have been

developed such as EEG headsets by Emotiv, the Muse medi-

tation headband, and an EEG-integrated virtual reality head-

set by Looxid Labs. These products promise to enhance the

computing experience by enabling intelligent interfaces that

sense and react to changes in the user’s cognition.

Recent work from neuroadaptive systems have explored

the use of these brain signals (EEG) as an additional input

modality for a wide variety of interaction tasks. A central

idea is to use EEG information for user modeling to build

adaptive interfaces [18, 19] that can implicitly and quickly

https://doi.org/10.1145/3340555.3353759
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Figure 1: Methods and Tasks. (A) Example of the oddball
task. Participants were required to detect targets (right ori-
ented faces) in a stream of distractors (left oriented faces)
and standards (cars oriented left or right). (B) The partici-
pant was fitted with an EEG cap and positioned on a station-
ary bike. (C) The participant rested their elbows on a pair of
"aero bars" attached to the bike handlebars and used their
right thumb to respond to targets.

react to user state [26, 41]. This information can be used to

quantify user states such as cognitive load [20, 27], emotion

[4, 25], and attention [15, 31] to inform better interaction

experiences for education [30], entertainment [29], equip-

ment operation [52], and others [2, 3, 32, 45]. Nonetheless,

an open research question remains as to how these signals

should be integrated and how reliable they are for non-trivial

computing applications.

The key advantage of these technologies is that they opens

the door to real Ubiquitous Computing, where computing

may occur in any time or place [1]. In ubiquitous comput-

ing, users may be interacting with the system while moving

around in their environment and engaging in physical activ-

ity (e.g. an augmented reality task). However, EEG signals

are commonly known to be severely impacted by a wide

range of biophysiological artifacts associated with move-

ment. To ensure that the system remains usable, it is crucial

to understand how classification performance of EEG sig-

nals changes under these adverse conditions, so that we can

develop techniques for robust classification and analysis.

Typical BCI solutions are based on laboratory studies and

rarely replicate the conditions outside the lab in which the

system should be deployed. There are three main ways to

tackle such a problem: 1) to extract features that are invariant

to the expected noise, 2) to denoise the signal, and 3) to be

robust to the noise. An extensive amount of data collection,

manual feature extraction, and domain knowledge is typi-

cally necessary to identify, classify, and correlate these sig-

nals to a particular application [6]. A number of techniques

have been used to alleviate the need for manual feature ex-

traction, including spatial and temporal filtering, and neural

networks [33].

Due to the success of Deep Learning models in other fields

such as Computer Vision and Speech Recognition in which

the performance reaches human-like levels of performance,

there has been a resurgence in the use of deep neural net-

works for feature extraction and classification of EEG signals

[43]. However, deep learningmethods require a large amount

of training examples to be successful in order to model the

variability that exists across examples [23], which is not typ-

ically the case for BCI data. First, the EEG datasets have a

low number of examples per class compared to typical com-

puter vision problem, and they have unbalanced datasets,

in particular for event-related potential (ERP) based BCI in

which the target class has a low probability. Second, EEG

is highly non-stationary and characteristics of the signal

can change depending on the behavioral state of the wearer

(e.g. fatigue/arousal). These effects can be partially remedied

through the use of data augmentation [14, 39, 46], but the

applications of these techniques have not been well studied

for EEG signals.

To help address these issues, we introduce a dataset in

which participants were positioned on a stationary bike and

engaged in a visual three-stimulus oddball task [38] while

at rest and during bouts of low- and high- intensity cycling

exercise [9]. We open source
1
this dataset with the goal of

encouraging further research. We investigate whether clas-

sification performance of a state-of-the-art deep learning

model suffers under different intensity levels of physical

activity, and discover that it does, suggesting room for im-

provement of feature representation. We propose a model

to improve performance by incorporating the use of a de-

noising autoencoder. Furthermore, we consider the addition

of signals from nonscalp electrodes and user state data, to

provide supplementary information.

The paper is organized as follows. First, the related work

and classification methods are described in Section 2. Second,

the datasets are detailed in Section 3. Third, the methods are

presented in Section 4. Finally, the classification results and

the impact of the proposed method are discussed in Section 6.

2 RELATEDWORK
Classification Methods
Lotte et al. [33, 34] has provided a review of classification al-

gorithms for EEG-based BCI. They concluded that the current

state-of-the-art is Riemannian Geometry (RG) classifiers, and

suggested it is time to move away from classical approaches

which usually use Linear Discriminant Analysis (LDA) with

Common Spatial Pattern (CSP) filters. In fact, the winning

1
https://github.com/yding37/mcann
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approach for the Kaggle BCI competition at NER 2015 used

xDAWN spatial filters with RG [5].

Deep learning models have been applied to EEG classifi-

cation since at least 2008 [12] and there has been a sharp

increase in activity thanks to the recent success of these mod-

els in the natural language processing and computer vision

domains. The best performing deep learning approach is

currently Convolutional Neural Networks (CNN), which are

able to borrow technical advancements from the computer vi-

sion community. CNNs were first used for EEG classification

by Cecotti et al. in 2011 [11, 13] for P300 ERP classification.

Schirrmeister et al. [43] conducted an in-depth survey of

CNN architectures for EEG classification and provided an

open source software library for evaluating them.

Recently, the US Army Research Lab released EEGNet, a

CNN architecture that reached performance comparable to

the state-of-the-art on 4 different BCI tasks [28]. The authors

used depthwise and separable convolutions which helped

to reduce the amount of trainable parameters in the model

[24]. Our model uses a variant of EEGNet as the basis for

our encoder. By applying EEGNet within an autoencoder

paradigm, we are able to learn a more robust representation

of the EEG data.

Although not as common, autoencodermethods have been

explored in a few EEG classification studies. In [51], the

authors utilized a Stacked Denoising Autoencoder (SDEA)

in order to classify mental workload. We also utilize a de-

noising autoencoder, but we target the P300 signal which is

better characterized and understood [37]. The authors also

compared computation time and concluded that their SDEA

model could be used for online classification, which supports

our intended use case of ubiquitous BCI.

[42] used a multimodal fusion approach with stacked au-

toencoders coupling EEG and EMG data. However, their

approach utilized two separate pathways for EEG and EMG

and learned a latent vector representation of the data. How-

ever, their network did not show improvements over CNN

based approaches. In our approach, we share the weights

of the encoder for both EEG and NSE and fuse their latent

representations.

EEG During Physical Activity
EEG recordings are known to suffer from motion artifacts,

as they simply measure the electrical signals in the brain.

Moreover, the activation of muscles produces large electri-

cal signals and is the main source of noise in many studies.

Participants are usually trained to stay completely still in

order to minimize contamination of the dataset. For this rea-

son, there are relatively few datasets where EEG is actually

recorded while under motion.

In [36] the authors collected EEG recordings of subjects

walking at 3 different speeds on a treadmill. Contrary to

Table 1: Our dataset is the largest among current publicly
available datasets for BCI tasks of similar purpose.

Dataset # Samples Ratio

BCI-2a [47] 2.5K 1:1

Kaggle [35] 8.8K 1:1

P300 [28] 30K 1:5.6

Bike (ours) [9] 72K 1:1:8

expectations, they did not observe significant contamination

of the EEG signal by motion artifacts. However, it should be

noted that the fastest speed investigated (4.5 km/h) is still less

than the preferred walking speed of an average person [8],

making it difficult to extrapolate to Ubiquitous BCI settings.

A handful of studies have collected EEG data during acute

bouts of exercise. Yagi et al. [50] and Grego et al. [21] both

measured EEG with a P300 task while cycling. More recently,

other studies have investigated the impact of acute exer-

cise on other types of brain responses, such as orientation-

selective responses in visual cortex [10] and neural oscilla-

tory activity associated with inhibitory control [17]. For a

comprehensive summary of sport and exercise related EEG

studies, see Cheron et al. [16]. However, to the best of our

knowledge, the present study is the first to apply classifica-

tion methods to EEG collected during acute bouts of physical

activity, with the goal of improving the efficacy of ubiquitous

BCI.

Artifact removal is another common practice for remov-

ing sources of interference such as muscle activity. Gwin

et al. [22] compare artifact removal methods for EEG col-

lected while walking or running. General guidelines and

good practice for artifact removal can be found in [48]. Ulti-

mately, given that we are interested in online classification,

we chose not to perform any motion artifact removal. In-

stead, we perform minimal pre-processing on the datasets,

which we describe in the next section.

3 DESCRIPTION OF DATASET
Task and Exercise Protocol
The EEG dataset used in this work was previously described

in [9]. Twelve adult student volunteers took part in the study

in exchange for course credit or financial compensation. Fig-

ure 1 provides an overview of the methodology used for col-

lection. Each participant performed two different versions

of a three-stimulus oddball task [38] while seated on a sta-

tionary bike. Participants were required to respond to target

stimuli (left-oriented faces) and ignore the distractor stimuli

(right-oriented faces) and the standard stimuli (cars oriented

either to the left or right). The ratio of targets to distractors

and standards was 1:1:8, respectively. In the two different

versions of the task the stimuli were presented at different

rates. Stimuli were either presented at 1 Hz (200 ms stimulus
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Figure 2: Single subject (sj04) ERPs are shown for each of the physical activity conditions. To avoid visual clutter, only ERPs
generated from the standard and target conditions are shown. Error bars represent Âś standard error of the mean (SEM)

presentation with 800 ms inter-stimulus intereval (ISI) or 2

Hz (200 ms stimulus presentation with 300 ms ISI). The 2 Hz

data were collected for the purpose of a BCI study and were

not reported in the original paper.

Participants completed the 1 Hz and 2 Hz tasks at rest

(sat on the bike but not pedaling), during low-intensity ex-

ercise (pedaling at at a very light resistance level of 40W)

and during high-intensity exercise (pedaling at a resistance

level which the participant reported to be “somewhat hard”

according to their Rating of Perceived Exertion (RPE; Borg

1970 [7].)). The order of completion was counterbalanced

between participants.

EEG data were recorded continuously during each task

using a BioSemi Active Two System consisting of 32 scalp

electrodes arranged in an elastic cap (Electro-Cap, OH, USA)

and placed in accordance with the 10-20 system. Additional

non-scalp electrodes (NSE) were fixed to the right and left

mastoids, 1 cm lateral to the left and right canthi (horizontal

EOG), above and below each eye (vertical EOG) and on the

right and left trapezius muscles (EMG).

Classification Goals and Challenges
Here, the goal of the classifier was to determine which stim-

ulus (target, distractor or standard) the participant viewed

for each trial. The inclusion of two physical activity condi-

tions sets this dataset apart from typical P300 datasets. This

dataset fits with our goal of building BCI paradigms for ubiq-

uitous computing, because compared to other P300 datasets,

the conditions in this task are more similar to those that

might be encountered in real life. In traditional P300 EEG

data collection, participants typically sit in a comfortable

position and are told to minimize non-task related physical

motion. However, for BCIs to be useful in real life, the actions

of the user should not be controlled. In contrast, this P300

dataset incorporates physical exercise, an indispensable part

of day-to-day life. Therefore, achieving a good classification

accuracy on this dataset is a first step to building a useable

BCI for everyday activities.

The inclusion of physical exercise introduced extra noise,

which makes the classification task more difficult. The pres-

ence of extra noise under physical exercise is visualized in

the error bands in Figure 2. Here, we identify at least three

sources of noise which may not be present in other existing

P300 datasets. The first is EMG noise. EMG activity can be

present in the range 10 - 250 Hz, which overlaps with the

useful frequency band of EEG signals at 1 - 40 Hz. The sec-

ond is that sweating can cause low-frequency noise [40]. The

third is physical motion itself. During the task, the partici-

pants were biking at 50 RPM, which corresponds to 100 pedal

downstrokes per minute (left and right). This introduced a

noise at 1.33 Hz, which also overlaps with the 1 - 40 Hz range.

Due to the overlap, naive filtering methods cannot eliminate

those sources of noise completely.

4 METHOD
The ERP classification task is defined as follows: A set of EEG

channelsC and its signal over time x ∈ RC×T
is given where

T depends on the sampling rate and duration of an epoched

trial. The task is to take each epoched trial x and output a

3-class probability distribution y. We are additionally given

xnse ∈ RCn×T for NSE information and s ∈ [0.1, 0.5, .9] for
resting, low, and high exercise states.

In this paper, we propose an end-to-end deep learning

architecture, Multimodal Context-Aware Neural Network

(MCANN), for modeling the ERP prediction problem. Our

model (Figure 3) is in part motivated by the ability for unsu-

pervised techniques to build a good representation of data.

We break our model into 4 components: 1) a temporal feature

extraction module in section , 2) a fusion component which

combines these features, 3) a decoder which to reconstruct

the signal for unsupervised learning and 4) a classification

network for predicting the final class distribution.

Unsupervised Representation Learning
Autoencoders first map an input x into a latent represen-

tation by a deterministic mapping: z = fθ (x). The latent
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Table 2: Temporal Encoding Network
Layer Parameters

Conv2d 1x10x10

Batch Norm f: 10, eps: 1e-3, m:0.1

Conv2d, Elu Cx10x10

AvgPool k: 1x4 s: 1x4

Renorm p: 2, mn: 1

Conv2d 10x1x20

Table 3: Fusion Network
Layer Parameters

Dropout p: .25

Conv2d 1x16x20, g: 20

Conv2d 1x1x10

AvgPool k: 1x8, s: 1x8

Dropout p: .25

Fully Connected, Elu (T/1.6)x64

Table 4: Decoder Network
Layer Parameters

Fully Connected, Elu 64x(20*T//32)

BatchNorm

Deconv2d 1x1x20

Fully Connected, Elu (T/4 + 1)x(T/4 + 1)

Deconv2d Cx1x10, g: 10

Deconv2d, Elu 1x5x1

Deconv2d 1x10x1

Network parameters are abbreviated as follows: eps for epsilon, m for momentum, f for number of filters, k for kernel size,
s for stride, p for power, mn for max norm, and g for groups. Convolutions filter sizes are expressed in channel by time by
number of filters.

Figure 3: Our proposed model for evaluating EEG data with
additional input modalities.

representation z is then remapped back to x′ = дθ ′(z). A de-

noising autoencoder additionally takes a corrupted version

of the original input x̃ to reconstruct x. Autoencoders of this
sort have been shown to be robust to partial destruction of

input for a wide range of tasks. Here fθ (x) and дθ (x) are
modeled by multiple neural networks.

Noisy input x̃ = x +Wn is formed by the addition of a

noise vector whose values are sampled independently from

a normal distribution Wni j ∼ N(0,σ 2) for all i ∈ {1, . . . ,C}
channels and all j ∈ {1, . . . ,T } time samples. Here we use the

standard normal distribution (σ 2 = 1), however other values

could be considered depending on the dataset. Additionally,

alternative methods of corruption could be explored which

can be informed via user context or state information.

The noisy input x̃ is concatenatedwith prior noise informa-

tion xnse and s and fed into our network. The reconstructed

signal x′ = дθ ′(fθ (x̃, xnse , s)) is obtained.

Temporal Encoder
Table 2 describes the temporal feature extraction network.

Weights from the first convolutional layer are shared to ex-

tract common temporal signal properties. The output of our

temporal extraction process is denoted by: veeд = hϕ (̃x) and
vnse = hϕ′(xnse ) for encoded eeg and nse features.

Fusion Network
The outputs of the temporal encoder are concatenated channel-

wise with state and NSE information v = [veeд ; vnse ; s],
where the state is broadcast for each temporal feature value.

A single layer, fully connected, network u = MLP(v) is used
to fuse channel information over time for each time step. The

output u is passed through our multimodal fusion encoding

network (Table 3). Note that we can adjust, add, or remove

other modalities of input by modifying the representations

concatenated to v and fused through u with ease.

For all evaluations 64 dimensions are used as the latent

representation output by the last layer of the fusion network

along the temporal dimension. For datasets with a smaller

number of temporal time steps, themin(64,T /1.6) is used.

Decoder Network
The network is parameterized by x′ = дθ ′(z) using the net-
work given in Table 4. At a very high level it approximates

the opposite order of layers presented by the encoder net-

work to obtain the non-corrupt signal. The final output x′ is
mapped to the noise-free input via the reconstruction loss:

Lr = −
1

N

N∑
i=1

∥xi − x′i ∥21 . (1)

Classification Network
The classification network is a single layer fully connected

network which maps the latent vector z to a softmax distri-

bution of 3 classes y′ = so f tmax( MLPρ (z)). The negative
log likelihood is utilized to maximize the correct class distri-

bution:

Lc = −E[logp(y|x)] (2)

Joint Loss Function
The final optimization function is a linear combination of

the reconstruction and classification loss:

L = Lc + λLr , (3)

Where λ is an adjustable weight that can be annealed. For

all experiments, we set λ to be linearly annealed from 1e−2

to 1e−5 over 5 training epochs. While other functions for

annealing are possible, we did not evaluate them for this

study.

5 EXPERIMENT SETUP
Two methods of preprocessing were used to examine the

performance as well as noise tolerance properties of our
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model. For each of 1Hz-Bike and 2Hz-Bike data (the two con-

ditions of data collection previously described), the mastoid

electrodes were used as the reference electrodes. The origi-

nal data were also band-pass filtered between .1Hz-255Hz.

We analyze a "denoised" version of the dataset, 1Hz-Bike-

Filtered and 2Hz-Bike-Filtered, by applying a band-pass

filter from 1-40Hz and down sampling to 128Hz. This step re-

moves the high (40Hz+) and low (.1Hz-1Hz) frequency noise

as the P300 ERP signal is known, a priori, to be within the

1Hz-40Hz frequency band. Comparing these different prepro-

cessing methods allows us to examine algorithmic behavior

under different conditions of noise and prior information.

To evaluate the accuracy and robustness of our algorithm,

we split the data in two ways. For subject-independent
splitting, the post-processed data is split into 80% training

and 20% testing instances.We do this for each user stratifying

by class distribution. The training data for each user is con-

catenated and shuffled to create a large training dataset. The

same is done for the test dataset. Model and parameter tun-

ing is conducted by randomly splitting 10% of the data from

the training set for validation. This method for data splitting

was used because this is common practice for current ma-

chine learning methodologies, as well as its more challenging

condition over single-subject within-subject classification.

Cross-subject splitting allows us to analyze the generaliz-
ability of a technique to novel users. We follow the procedure

from [28] for subject splitting. Due to our smaller subject

pool, we choose 1 subject iteratively and select an additional

subject randomly. The remaining 10 subjects are used for

training. This process is repeated 12 times so that each sub-

ject’s test data is tested at least once. We set the training

epochs to be 150 when validation accuracy appears to have

converged for all models.

Algorithm Comparison
The MCANN model is compared against a traditional non-

deep learning approach as well as a previous state-of-the-art

deep learning model for ERP classification. For the tradi-

tional approach, xDAWN with 5 spatial filters was trained

on the EEG data for each class, estimate covariance matrices,

and project them into tangent space. Classification is per-

formed using logistic regression with Riemannian distance

[5]. This is similar to the technique used to win the Kaggle

BCI challenge.

For the deep-learning model, MCANN is compared against

EEGNet [28], a CNN architecture which performs compa-

rably to state-of-the-art methods on a number of BCI tasks.

For a fair comparison and to study the effects of multimodal

signals on existing architectures, two versions of EEGNet are

used. The EEGNet (UM) is a unimodal model which is only

trained on EEG data. EEGNet (MM) is a multimodal model

where we concatenate state information and non-scalp elec-

trodes to the input.

Training and Setup
Trainingwas conducted using a dropout of .25, the adam opti-

mizer with an L2 weight decay of 1e−8, and a learning rate of

1e−3. All hyperparameters were tuned on the validation set

of subject independent splitting and kept same throughout

evaluation. Early stopping was used during tuning.

Training and evaluation was conducted on a single AMD

2700X with a single NVidia RTX 2070. We measure the per-

formance of running a classification on the test set with

a mini-batch size of 1 to simulate how samples would be

received during a real-time scenario. Running a single end-

to-end evaluation of a single sample takes 39 ms.

6 RESULTS AND DISCUSSION
We examine the macro-averaged precision, recall and F1-

scores of all algorithms. Table 5 shows the classification

results averaged across all physical activity conditions. We

compare all algorithms using bothmethods of pre-processing

for two different data collection parameters (1 Hz and 2 Hz).

Subject-Independent Evaluation
While xDAWN+RG provided the best performance in recall

for one of the four conditions, the MCANN model exhib-

ited the best performance in F1-score and in all metrics for

all other conditions. In this study, our overall F1-score for

subject-independent classification improved 6.28 points or

approximately 10% in performance.

Figure 4 provides a confusion matrix for the 1Hz-Bike-

Filtered condition. Precision and recall values for recog-

nizing the distractor signal improved with MCANN for the

high-intensity exercise condition. Additionally, the decrease

in performance between resting and high-intensity exercise

(higher noise) for target recognition is noted in this and

other experiments. For the four cases we analyzed, the true

positive rate for distractors showed the greatest increase.

Noise Robustness. We study the effects of noise on algorithms

by changing the sampling and filtering parameters. Our

dataset contains noise both within the known ERP frequency

(1-40hz) and outside. Future applications of algorithms to

EEG might make use of these additional data ranges, poten-

tially preventing the bulk filtering of large frequency bands.

All algorithms (with the exception of the 1 Hz case for

xDAWN+RG) typically demonstrated approximately 3% in-

crease in performance metrics over unfiltered data (Table

5). However, when given noisy data, MCANN scores higher

on the overall F1-score than other methods under filtered

conditions. This suggests MCANN has high tolerance to

noise.
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Table 5: Summary results for all conditions under subject independent splitting. Average percentage metrics for (R)ecall,
(P)recision, and (F1) score reported. Bold signifies best performance.

1Hz-Bike | 2Hz-Bike | 1Hz-Bike-Filtered | 2Hz-Bike-Filtered

Method R P F1 | R P F1 | R P F1 | R P F1

xDAWN+RG 74.16 54.40 62.76 64.7 46.93 54.40 70.52 52.32 60.07 67.59 49.33 57.03

EEGNet (UM) 64.98 55.99 60.16 58.82 48.63 53.24 68.18 58.29 62.85 66.94 52.00 58.53

EEGNet (MM) 64.98 57.86 61.21 62.04 50.59 55.73 71.72 57.42 63.78 67.70 54.33 60.28

MCANN (Ours) 69.62 61.92 65.55 67.09 56.33 61.24 75.33 62.31 68.20 71.92 58.27 64.38

Figure 4: Detailed breakdown of performance for the 1Hz-
Bike-Filtered, subject-independent condition.

Effect of Exercise Intensity. All algorithms for all evaluated

conditions and preprocessing methods experienced a drop in

performance from resting to low- or high- intensity activity.

Figure 4 provides an example comparison for the user con-

text versus performance. While MCANN also experiences a

drop in performance, it more than doubles the precision for

prediction of the distractor in the 1Hz-Bike-Filtered scenario.

Table 6 examines the algorithmic performance over the

three conditions. We see that our model and EEGNet (MM)

demonstrate an improvement in performance, especially in

the high-intensity exercise (higher noise) condition. Our

algorithms produced a greater increase in performance under

noisy conditions over previous state-of-the-art classifiers,

indicating an improved tolerance to noise. EEGNet (MM)

also showed improvements over it’s UM variant.

Effect of Multimodality. There is some evidence to suggest

that the addition of multimodal information can improve

classification performance. When comparing the EEGNet

(UM)model to EEGNet (MM) performance, we see on average

a 1.5 point improvement in F1 score in Table 5. Our proposed

method, which also uses the additional modalities performs

best on precision and recall scores and leads to an average 6

point improvement in F1 over EEGNet (UM).

Looking at the confusion matrix in Figure 4, we see that

EEGNet (UM) target prediction true positives drops by 10

percentage points between the resting and high-intensity

exercise conditions. However, for our multimodal approach,

we maintain reasonable performance for target predictions

and only drop by about 2 points. This suggests that the extra

modalities may enhance target signal detection.

Cross-Subject Evaluation
Cross subject evaluation is conducted on the best overall al-

gorithm performance case (1Hz-Bike-Filtered) and the worst

overall algorithmic performance case (2Hz-Bike) from subject-

independent evaluation.

A two-sample t-test assuming equal variances is used. We

report p-values and effect size using Cohen’s d. Our method

performs significantly better onmetrics against xDAWN+RG,

the traditional approach, with greater accuracy (p=0.005,

d=1.28), precision (p=0.008, d=1.19), recall (p=0.031, d=0.94),

and F1-score (p=0.006, d=1.25).

When compared to EEGNet (UM), our model performs

better on accuracy (p=0.014, d=1.09), recall (p=0.002, d=1.44),

and F1-score (p=0.032, d=0.93). We did not find any sig-

nificant difference for precision. Likewise, when compared

to EEGNet (MM), we perform significantly better on accu-

racy (p=0.027, d=0.97), recall (p=0.005, d=1.26), and F1-score
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Table 6: 2Hz-Bike, subject independent condition with per-
centage difference from xDAWN+RG.

User Context Resting Low High

Precision

xDAWN+RG 52.65 43.7 44.46

EEGNet (UM) 49.89 (-5%) 49.44 (+13%) 46.55 (+5%)

EEGNet (MM) 52.08 (-1%) 49.22 (+13%) 50.47 (+14%)

MCANN (Ours) 59.93 (+14%) 54.75 (+25%) 54.34(+22%)
Recall

xDAWN+RG 70.67 60.75 59.43

EEGNet (UM) 64.73 (-8%) 60.35(-1%) 53.12 (-11%)

EEGNet (MM) 68.21 (-3%) 59.62(-2%) 59.54 (+0%)

MCANN (Ours) 69.8 (-1%) 67.8 (+12%) 63.38 (+7%)

Table 7: Cross subject evaluation on the 1Hz-Bike-Filtered
condition. ± standard error is reported.

Method Resting Low High

Precision

xDAWN+RG 49.44 ± 1.34 46.95 ± 1.24 46.08 ± 1.02

EEGNet (UM) 52.01 ± 1.26 51.34 ± 1.16 48.34 ± 1.17

EEGNet (MM) 52.42 ± 1.37 51.81 ± 1.23 48.51 ± 1.29

MCANN (Ours) 56.01 ± 1.85 54.65 ± 1.65 49.33 ± 1.56
Recall

xDAWN+RG 68.52 ± 1.86 63.71 ± 2.04 59.31 ± 1.96

EEGNet (UM) 68.38 ± 1.42 61.78 ± 1.36 56.18 ± 1.81

EEGNet (MM) 68.35 ± 1.16 62.46 ± 1.56 56.41 ± 1.79

MCANN (Ours) 72.02 ± .89 68.52 ± 1.41 62.29 ± 1.41

Figure 5: 1Hz-Bike-Filtered performance measures for each
algorithm: Accuracy, Recall, Precision, and F1-metric. Error
bars show standard error. Brackets indicate p-value signifi-
cance groups from paired t-tests.

(p=0.05, d=0.85), but there were no significant differences on

the precision metric.

Additional significance tests were computed to compare

across biking condition. When comparing to EEGNet (UM)

we see significant increases for metrics on accuracy (p=0.013,

d=1.10), recall (p=0.003, d=1.34), and F1 (p=0.028, d=0.96)

for the low condition. For the high activity condition when

compared to EEGNet (UM) we perform significantly better

on accruacy (p=0.021, d=1.01) and recall (p=0.021, d=1.02).

No other significant differences were found when compared

to EEGNet (UM). Under resting conditions, no significant

difference was found between EEGNet (UM) and our model.

Similar tests are conducted between MCANN and

xDAWN+RG. We generally see significantly better perfor-

mance on almost all metrics for our model. On the high

intensity condition, we see accuracy (p<0.005, d=.64), preci-
sion (p<0.005, d=.70), recall (p<0.005, d=.49), and F1-Score

(p<0.005, d=.68). In the low condition, we see improvements

in accuracy (p<0.005, d=1.6), precision (p<0.005, d=1.4), and
F1-Score (p<0.005, d=1.4). In the resting condition, we found

significant improvements in accuracy (p=0.004, d=1.32), pre-

cision (p=0.01, d=1.16), and F1-score (p=0.007, d=1.22). Both

tests of significance on EEGNet(UM) and xDAWN+RG indi-

cate MCANN’s stronger tolerance to noise.

When looking at the worst case scenario with the 2Hz-

Bike dataset, we did not find any significant differences

among any of the methods. We believe that, due to the mini-

mal amount of processing and higher presentation frequency,

the 2Hz-Bike dataset has a very large amount of individual

subject variance outside the traditional 1-40Hz range, making

it difficult for any model to generalize to new subjects. Some

of these differences may be due to differences in individual

motion patterns such as riding posture and cadence. These

factors introduce unique noise patterns that compound the

already challenging task of performing classification across

users. These results highlight the need for more robust mul-

timodal sensors to be used in conjunction with EEG sensors.

We intend to investigate these inter-user differences in future

research.

7 CONCLUSION
In this paper we presented a challenging dataset for devel-

oping BCI classification algorithms. We provided a novel

method for classifying EEG signals under conditions that

varied dramatically with regard to noise. We observed sig-

nificant improvements in our test set during cross-subject

evaluation when compared to previous state-of-the-art tech-

niques. Additionally, our new algorithm is capable of incor-

porating additional modalities for improved classification of

brain data. Future work will include (1) the application of

our classifier to online BCI scenarios that involve motion,

such as navigation of real-life or virtual environments, and

(2) testing classifier performance during other types of phys-

ical activity that may involve more extreme head and body

movements.
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