
Real-Time Re-Textured Geometry Modeling Using Microsoft HoloLens
Samuel Dong* Tobias Höllerer†

University of California, Santa Barbara

ABSTRACT

We implemented live-textured geometry model creation with im-
mediate coverage feedback visualizations in AR on the Microsoft
HoloLens. A user walking and looking around a physical space can
create a textured model of the space, ready for remote exploration
and AR collaboration. Out of the box, a HoloLens builds a triangle
mesh of the environment while scanning and being tracked in a new
environment. The mesh contains vertices, triangles, and normals, but
not color. We take the video stream from the color camera and use it
to color a UV texture to be mapped to the mesh. Due to the limited
graphics memory of the HoloLens, we use a fixed-size texture. Since
the mesh generation dynamically changes in real time, we use an
adaptive mapping scheme that evenly distributes every triangle of
the dynamic mesh onto the fixed-size texture and adapts to new
geometry without compromising existing color data. Occlusion is
also considered. The user can walk around their environment and
continuously fill in the texture while growing the mesh in real-time.
We describe our texture generation algorithm and illustrate bene-
fits and limitations of our system with example modeling sessions.
Having first-person immediate AR feedback on the quality of mod-
eled physical infrastructure, both in terms of mesh resolution and
texture quality, helps the creation of high-quality colored meshes
with this standalone wireless device and a fixed memory footprint in
real-time.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Com-
puting methodologies—Computer graphics—Image manipulation—
Texturing

1 INTRODUCTION

Microsoft released the HoloLens, a standalone augmented reality
headset with a stereoscopic 3D display, in early 2016. Equipped
with an infrared depth sensor and an inertial measurement unit, the
HoloLens continuously builds up a model of the environment it
is in, allowing objects that were positioned to remain fixed in the
location no matter how far or where the user moves to. Due to its
standalone nature, it is meant to be worn as the user walks around
their environment, expanding the stored model as they go. It splits its
processing into three units: the CPU, GPU, and HPU, or holographic
processing unit. This allows the HoloLens to dedicate hardware to
continuously track and model the environment while also supporting
intensive 3D graphical applications.

The environment is scanned using the infrared laser and sensor,
generating an internal point cloud. The HoloLens automatically
processes the point cloud and converts it into a triangular mesh. This
mesh is used in a variety of manners, ranging from showing a 3D
cursor to providing anchor points for 3D objects. The mesh is also
commonly used to provide occlusion for virtual objects, making
them feel truly positioned in the real space. Games can also use this

*e-mail: samuel dong@umail.ucsb.edu
†e-mail: holl@cs.ucsb.edu

information to build a custom experience based on the structure of
the surrounding environment, such as rendering decals or choosing
where units spawn.

While the HoloLens does scan the geometry of the environment,
it does not automatically apply color detail at all. The mesh only
contains positions and normals. This prevents the out-of-the-box
HoloLens from being used for 3D scanning and other applications
that use mesh color and/or texture for exporting or rendering. Exam-
ples of potential uses of color include scanning an object with surface
texture and rendering virtual objects with real-world reflections and
ambient color.

In this paper, we propose a real-time solution using the
HoloLens’s built-in camera. Because the HoloLens is a device
with limited memory, we did not want to have a memory require-
ment that scales with the size of the environment, so we utilize a
fixed-size texture. This texture operates as a standard UV texture
map, making exporting and integrating into existing applications
very straightforward. We show the results of modeling both a small
and large environment to show the effects of the adaptive texture
and consider the time required to capture these environments and
the quality of the outcome.

2 RELATED WORK

Interactively rendering realistic image-based models of the real en-
vironment has been a research topic for a while. Early research
focused on using image-based techniques to extract the geometric
data and provide a virtual model. With the advent of depth cameras
and laser scanning, and the popularity of structure-from-motion tech-
niques [5], acquiring geometric data is extremely practical. Color
data can be acquired by taking pictures of the geometry from var-
ious angles, and the camera position and orientation is sometimes
available as well.

Newcombe et al.’s KinectFusion [12] shows building a dense
geometric model of interior environments in real-time using an
inexpensive depth sensor. This has been improved upon in Whelan
et al.’s Kintinuous paper [16], allowing for growing environments
and conversion to a triangular mesh.

Once a model has been built, image-based rendering still needs
to be done to make them look realistic. Debevec et al. [4] improved
upon their previous view-dependent image-based rendering tech-
nique by introducing a real-time method for rendering geometric
data from a set of images and poses. In their paper, the best im-
ages were chosen by the current view angle and projected onto the
geometry. Because projective texturing colors geometry no matter
its visibility, the occlusion was dealt with by clipping the geometry
with occluding volumes. Buehler et al. [2] introduced unstructured
lumigraph rendering, a combination of view-dependent image-based
rendering with light field techniques to support arbitrary view lo-
cations and directions. It factors in the resolution of each view
and creates a blend of the best views based on their quality. Chen
et al. [3] uses KinectFusion to acquire a high-quality mesh from
the scene along with image frames. After some offline processing,
view-dependent texture projection is used to render the scene while
factoring in occlusion. Care is taken to balance smooth transitions by
blending many frames and preserving view-dependent features, such
as specular highlights and reflections, by selecting fewer frames.
These methods render the model in real-time with highly accurate

231

2018 IEEE Conference on Virtual Reality and 3D User Interfaces
18-22 March, Reutlingen, Germany
978-1-5386-3365-6/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

results, but they rely on a provided model and a dense set of images.

If the real-time constraint is lifted, further optimizations for tex-
ture quality can be performed. Bernardini et al. [1] used both the
depth and color information when blending together multiple views
based on a weight calculated on the confidence of individual pixels.
Views were also aligned by utilizing features detected in the color
information to prevent ghosting. Similarly, Zhou and Koltun [17]
reduced artifacts by optimizing the camera location and orientation
and image distortion based on photometric consistency. This allows
for better texturing when geometric errors or lens distortion cause
misalignment. Maier et al. [11], on the other hand, improve vi-
sual quality by merging multiple lower resolution color frames into
higher resolution ones with some filtering. This allows the texture
to have higher resolution data for an object than what is provided by
the original RGB camera frame.

Using RGB-D (color and depth) information, Fechteler et al. [7]
were able to texture a provided articulated model with the Kinect.
The articulated mesh provides UV coordinates for a texture file. The
images come from a continuous stream of RGB data. Because not
all triangles are visible in any one frame, a set of frames are kept
based on their angle and resolution. Each triangle references only
one frame, and frames that do not provide much data are discarded
to save memory.

The Kinect has also been used to generate both color and geome-
try data. By using RANSAC and feature extraction to align views,
Henry et al. [8] use frame to frame RGB-D data to construct a sparse
surface patch array. It also detects loops and closes them. Their
method runs in real time and provides a compact representation of
indoor environments, but must store a set of keyframes for loop
detection. Instead of using image features, Kerl et al. [9] use pho-
tometric error between all pixels in subsequent frames to provide
higher quality pose estimation. By selecting keyframes and closing
loops, accumulated drift between frames is minimized. Steinbrücker
et al. [15] extend on that paper to use the tracking data to merge
depth and color into a sparse octree data structure for compact stor-
age of this data. The octree allows for real-time reconstruction and
viewing of both the geometry and color information by marching
through the tree and rendering the voxels to create the image.

An alternative to dense reconstructions of the environment is the
use of predefined 3D models. By maintaining a database of com-
mon objects, a scene can be represented by a set of these objects,
removing sensor artifacts and providing semantic labeling. Sankar
and Seitz [14] use interaction with the user to guide a program in
placing 3D models of objects. Salas-Moreno et al. [13] extend the
simultaneous localization and mapping (SLAM) with these prede-
fined objects, allowing for both automatic detection and placement
of the objects, as well as more efficient pose estimation. Dou and
Fuchs [6] utilize several RGB-D sensors mounted on walls in a
room in an effort to provide an extremely robust model of potentially
dynamic scenes. By utilizing both existing 3D models for rigid
and static geometry and reconstructed models for dynamic geom-
etry, higher quality scene reconstruction is possible for potentially
dynamic environments.

The Microsoft HoloLens provides the geometric data and model-
ing in real-time automatically. Our work focuses on using a video
stream augmented with pose information to color this dynamic mesh
in real-time. For easy integration, we use a UV texture approach,
which is almost universally accepted by modeling and model view-
ing programs and simple to render. We also maintain a fixed-memory
footprint, storing only the latest frame of the camera stream.

3 METHODOLOGY

The HoloLens API provides its geometric data in the form of a set of
meshes that are identified by a GUID. Each mesh contains a position
buffer, a normal buffer, and an index buffer. We keep the set of
meshes stored in a dictionary using the GUID as a key. To UV

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 1: Example layout with 22 triangles. The numbers show where
the triangles with specific global indices would be mapped to. The
size is 4, which holds a maximum of 32 triangles.

texture the set of meshes, UV coordinates must be provided for each
vertex in every mesh. While there are many automated methods of
unwrapping a 3D mesh onto a UV map, we chose a simple, efficient
method to cope with regular changes in geometry as the HoloLens
is building up the environment.

3.1 Mapping Triangles to a Fixed-Size Texture
Our method first assigns each triangle in the set of meshes a global
index. We iterate over the dictionary in order by GUID, which
ensures a consistent ordering of the meshes. Each mesh has an
internal ordering of triangles. Since we need to index each triangle
globally with respect to the whole set of meshes, an offset must be
calculated to apply to the internal ordering. The offset of a mesh
is calculated as the sum of the number of triangles of every mesh
before it. Our global index is then defined as the offset plus the
internal triangle index.

Given a fixed-size square texture, we divide it equally into squares
based on the total number of triangles that need to fit in it. By using
two triangles to form one square, the number of squares on one side
can be computed as:

numberO f Squares =

⌈√
totalNumberO f Triangles

2

⌉
(1)

We will refer to the number of squares on one side as the size of the
layout. Given the global index and the size, one can calculate the
triangular region reserved for that specific triangle by first computing
which square the triangle lies in, then which half of the square the
triangle is mapped to based on the index being even or odd. An
example is shown in Fig. 1.

In our approach, assuming the UV origin is in the top-left corner,
squares are laid out in a left-to-right, top-to-bottom order. Even
indices map to the top-left half while odd indices map to the bottom-
right half.

3.2 Accounting for Rasterization Issues
Due to rasterization rules, pixels whose center are not within a trian-
gle are not rasterized as that triangle. Rasterization rules ensure that
every pixel is uniquely mapped to one triangle when two triangles
are adjacent. This causes some parts of some triangles to contain
the color of an adjacent triangle as shown in Fig. 2. To prevent this,
the triangle’s UV coordinates are mapped to an inner triangle with a
sufficient gap from the reserved triangle. Fig. 3 shows the positions

232

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

Figure 2: The issue with using the outer triangles as is due to rasteri-
zation rules. Parts of the light purple triangle near the diagonal are
teal. If a UV coordinate lands in those teal parts, the color they sample
comes from the teal triangle instead of the light purple triangle.

of the vertices relative to the top-left corner of the square. To ensure
that every part of the triangle is rasterized, a form of overestimated
conservative rasterization must be used, in which any pixel that is
partially inside a triangle is to be rasterized. DirectX 11.3 is the
first feature level that allows conservative rasterization, but it is not
supported by the HoloLens. Instead, we use the geometry shader to
build a one-pixel border out of triangles, duplicating the interpolants
at the corners to ensure the border matches the edges of the triangle.
One such construction is shown in Fig. 4.

3.3 Projecting Camera Images Onto the Texture
The HoloLens provides video streaming capabilities from its camera.
The color buffer is encoded in NV12 YUV color format, and both
a view and projection matrix are provided. This information is
used to project colors onto the UV texture. First, blurry frames
should be rejected. This is done by detecting when the rotational
or translational velocity of the HoloLens is greater than a threshold.
Because the HoloLens does not expose its inertial measurement unit
(IMU) data, we cannot use the accelerometer or gyroscope. Instead,
the previous and current view matrices are used to transform both
the origin and the forward unit vector. The difference between the
previous and current origin represents the translation while the angle
between the previous and current forward unit vectors represents the
rotation.

If a frame is stable enough, it needs to be projected onto the UV
texture. Projective texturing normally causes occluded objects to
share the color of the object in front of it. To prevent the color
from bleeding through objects, the projection is done in a two-pass
fashion.

3.3.1 Depth-Only Pass
The first pass uses the camera’s view and projection matrix to per-
form a depth-only pass onto a separate depth texture using the set
of meshes. This is analogous to creating a shadow map from the
perspective of the camera. It must be noted that the projection matrix
provided by the HoloLens does not properly map the z-coordinate
and must be modified to factor in a near and far plane.

3.3.2 Projection Pass
The second pass is the actual projection. The set of meshes are
passed into the pipeline. The output of the vertex stage contains a
clip-space position and a world-space position.

(0, 0) (w, 0)

(0, w) (w, w)

Inner

Outer

Outer

Inner

1px

1px

1px

1px

2px

2px

Figure 3: The coordinates and distances of the inner and outer tri-
angles relative to the top-left corner of a square. w is the width of a
square in UV space, which is the reciprocal of the size. A pixel in UV
space is the reciprocal of the width of the texture in pixels.

• Vertex Stage: Outputs an arbitrary clip-space position (this
will be set in the geometry shader) and a world-space position
from multiplying the vertex position by the mesh’s model
matrix.

• Geometry Stage: The offset and size are passed in as a con-
stant buffer. For each input triangle, the geometry stage outputs
13 triangles (cf. Fig. 4). One of the triangles is the inner trian-
gle, while the rest form the one-pixel border to conservatively
rasterize the inner triangle. First, loop over every vertex of
the input triangle and use the primitive ID, vertex ID (the loop
parameter), offset, and size to calculate both the outer trian-
gle’s and inner triangle’s UV coordinates using Alg. 1 and
Alg. 2. We then project the inner triangle’s vertices onto the
outer triangle’s edges to construct the 12 border triangles. The
clip-space position corresponds to the UV coordinates mapped
onto clip-space to rasterize the triangles on the texture in the
correct location. The world space position is copied to the
extra vertices to ensure the border contains the same colors as
the inner triangle.

• Pixel Stage: The camera’s view and projection matrices, the
camera’s luminance and chrominance textures, and the depth
texture from the first pass are passed in. The world position is
first transformed into UV coordinates by first projecting them
into clip-space with the view and projection matrices, taking
care to reject coordinates outside of normalized device coordi-
nates (NDC) and with a negative w-coordinate. Then, the x and
y coordinates of the NDC are mapped to UV coordinates for
both the depth and camera textures. The depth texture is used
to check if the pixel is occluded or not, discarding it if it is. If it
is not, the pixel shader returns the RGB color from converting
the camera textures from the NV12 YUV color format.

3.4 Updating Texture when Geometry Changes
When geometry is added by the HoloLens, two changes can occur
to the layout. One, the GUID of the added mesh is in between
existing meshes or before all meshes, causing the global indices
of the existing meshes to shift. Two, the total number of triangles
exceeds the amount allowed by the size of the grid being used. In
these cases, the old texture cannot continue to be used. To preserve

233

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

Inner

Triangle

Figure 4: The construction of the 12 border triangles and inner triangle
to be outputted by the geometry stage. Given the vertices of the inner
and outer triangles, extra vertices are created by projecting the inner
vertices onto the outer triangle’s edges. The outer vertex and the
two projections of the inner vertex share the same interpolants as the
inner vertex. These are indicated with the same shape and color. The
diagonals shown inside the border rectangles are arbitrary.

as much existing color data as possible, we transfer the data from
the old texture to a new texture with the updated layout. Because the
transfer requires both the old and new textures to be distinct, two
textures are used in a double-buffered style, one being the current
texture used in both projection and rendering, the other being the
new texture to be copied to and then swapped.

Meshes can also be updated and refined by the HoloLens. Due
to the lack of spatial coherency in our texture mapping scheme, this
would cause that mesh’s texture data to be invalidated upon update.
Because most meshes are updated continuously by the HoloLens,
we decided to ignore updates to existing meshes to avoid having
gathered texture data be invalidated immediately upon looking else-
where, causing an unsatisfactory experience for users trying to scan
a large environment.

The procedure for texture updates on geometry changes is very
similar to the projection step. First, two sets of offsets and sizes are
calculated for both the old and new layouts based on the old and new
sets of meshes. The old texture is bound as an input while the new
texture is bound as the render target. Then, for each mesh that is in
both the old and new sets of meshes, each triangle is rendered in the
new layout’s position while sampling colors from the old layout’s
position of the same triangle.

• Vertex Stage: Outputs an arbitrary clip-space position (this is
the minimum required output of a vertex shader).

• Geometry Stage: Both the old offset and size and the new
offset and size are passed in as a constant buffer. The new offset
and size are used to calculate the clip-space positions of the
inner triangle and 12 border triangles as per the projection step.
The output vertex format also includes the UV coordinates
with which to access the old texture with. These are calculated
as the inner triangle using the old offset and size, and they are
duplicated in the same fashion as the projection step.

• Pixel Stage: Samples the old texture at the UV coordinate and
returns it.

Algorithm 1 Calculating Outer UV Coordinates

Parameters: primitiveID,vertexID,offset,size
width← 1.0/size
evenOffsets [vertexID]← [〈0.0,0.0〉 ,〈width,0.0〉 ,〈0.0,width〉]
oddOffsets [vertexID]← [〈width,0.0〉 ,〈width,width〉 ,〈0.0,width〉]

globalID← primitiveID+offset
squareID← globalID/2
position← 〈squareID mod size,squareID/size〉
topLeftCorner← position∗width
if globalID is even then

return topLeftCorner+ evenOffsets [vertexID]
else

return topLeftCorner+oddOffsets [vertexID]
end if

Algorithm 2 Calculating Inner UV Coordinates

Parameters: primitiveID,vertexID,offset,size
p← 1.0/resolution
w← 1.0/size
even [vertexID]← [〈p, p〉 ,〈w−2.0∗ p, p〉 ,〈p,w−2.0∗ p〉]
odd [vertexID]← [〈w− p,2.0∗ p〉 ,〈w− p,w− p〉 ,〈2.0∗ p,w− p〉]

globalID← primitiveID+offset
squareID← globalID/2
position← 〈squareID mod size,squareID/size〉
topLeftCorner← position∗w
if globalID is even then

return topLeftCorner+ even [vertexID]
else

return topLeftCorner+odd [vertexID]
end if

3.5 Rendering and Exporting the Mesh
When using the texture to render the current set of meshes, the UV
coordinates are calculated using the coordinates of the inner triangle.
In our experiments, we render the mesh back in front of the user,
allowing a user to compare the mesh with the real environment
in AR. Parts of the environment that have not been mapped are
transparent and therefore not visible to the user. When the mesh is
textured, it will appear in stereoscopic 3D and approximately overlay
the real objects. This will occur on-the-fly as the user looks around
and grows to match their visible field of view. Artifacts of digital
video capture, such as noise and color differences, and geometric
inaccuracies, causing inaccurate colors from different viewpoints,
are visible in this overlay. By comparing this 3D textured mesh and
the expected color of the real objects being modeled, the user can
determine the quality of the current texture and parts of the mesh
that need to be textured or improved.

We pass the set of meshes into the pipeline. Two view-projection
matrices are provided by the HoloLens to render stereoscopic 3D.
By using hardware instancing, one draw call is sufficient to draw to
both render targets simultaneously.

• Vertex Stage: Outputs the position of the vertex trans-
formed with the model matrix of the mesh and the view-
projection matrix array indexed with the instance ID. The
SV RenderTargetArrayIndex semantic is used to specify which
render target to render to and is filled with the instance ID as
well.

• Geometry Stage: The UV coordinates of the inner triangle
are calculated from the offset and size passed in and appended
to the vertex format.

234

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

Table 1: Small and Large Environment Results

of Triangles Time for capture (seconds)
Small 3,656 40
Large 80,501 120

• Pixel Stage: The texture is sampled using those UV coordi-
nates for the final color. This is equivalent to texturing a mesh
with no lighting.

We also provide functionality to export the mesh by looping over
the vertices on the CPU and calculating the UV coordinates of the
inner triangle. These are then used to export a Wavefront OBJ file.
The texture is exported as an image file, and a simple material file is
created to specify that the texture is to be used by the OBJ file.

4 RESULTS

In our experiments, we use the application to scan both a small and
large environment. We use a texture size of 4096 by 4096 pixels.
Care is taken by the operator to try and scan every portion of the
environment. The time taken is noted as well.

Currently, interaction with our application is done through voice
commands. The user can pause camera and geometry updates inde-
pendently, which allows them to check on the current status of their
scan. They can also export the mesh to the HoloLen’s local storage.

In our first environment, we scan a section of a wall with a chest of
drawers in front of it. The mesh ended up containing 3,656 triangles.
Because of the lower amount of triangles, the amount of resolution
available to each triangle is fairly high. The HoloLens failed to pick
up parts of the chest, but the objects on top of it and wall are mostly
filled in. While there is slight warping and blurriness, the overall
quality of the scan is decent. This scan took 40 seconds, but with
the geometry of the drawer not picked up, the actual time scanning
the rest of the mesh was 30 seconds.

In our second environment, we scan a sizable living room. The
mesh ended up consisting of 80,501 triangles. Most of the envi-
ronment, with the exception of glass and the dark chest of drawers
and sofas, was filled in with geometry. Because the geometry for
the sofas was missing, the color was projected onto the wall behind
them, requiring time to rescan those areas. In total, it took 2 minutes
to complete the scan. Even though the number of triangles is signifi-
cantly higher, the texture still provides a reasonable amount of detail
to the mesh.

As shown by these two examples in Fig. 5, our method allows
the user to easily scan even a large environment in a small amount
of time. The adaptive texture mapping allows both environments to
take the same amount of memory by spreading out the resolution
between the triangles. This is evident when comparing the quality
of a close-up of both meshes as shown in Fig. 6. In the UV texture
itself, the triangles for the smaller mesh are significantly larger than
their counterparts in the larger mesh. Even so, using just 64MB for
an 8-bit RGBA texture, the quality of the texture is satisfactory for
the larger mesh.

On the other hand, because we ignore mesh updates from the
HoloLens, once an area has been scanned, its geometry will not be
improved during the operation of our program. While, algorithmi-
cally, changes in existing meshes are handled correctly, practically,
due to the near constant nature of these updates, as well as how they
invalidate our texture’s data for that mesh, it is nearly impossible for
a user to texture an environment without pausing geometric changes.
Currently, the only way to update existing meshes is to exit the
program, allow the HoloLens to continue to refine the mesh, and
then relaunch the application. An alternative would be to allow to
user to choose when to start ignoring mesh updates and to perform
one more full sweep of the environment to texture it.

In order to solve this issue, a mapping from the original mesh to
the updated mesh is required. One potential method would involve
projecting the triangles from the updated mesh onto the original
mesh and retrieving the list of triangles, some of which are clipped,
from which to copy the data to each new triangle. This can also
be interpreted as clipping the original mesh by the extrusion of
each triangle of the updated mesh in both directions. This could
potentially be calculated on CPU with an acceleration structure to be
executed in a single draw call on the GPU for real-time performance.
Given the high rate of mesh updates along with the number of meshes
updated per frame, finding a mapping that allows for fast copying
and high data retention is an area for future improvement.

Another drawback arises when the triangles in the mesh differ
significantly from the half-square shape they map to in the texture.
This is caused by two different phenomena. First, while most trian-
gles generated by the HoloLens are fairly regular in size and shape,
long, thin triangles are oversampled in the short direction and un-
dersampled in the long direction. This leads to blurriness in the
long direction. Second, because the orientation of the triangle in the
texture is arbitrary, alignments of the axis of the pixels do not neces-
sarily line up between adjacent triangles in the mesh. This leads to
visible differences in larger environments where each triangle has a
lower resolution, which allows the edges of pixels to be discerned.
Bilinear filtering alleviates some of this issue but does not solve it.

In addition, the spatially incoherent mapping of the triangle poses
challenges for traditional hardware techniques such as mipmapping
and anisotropic filtering. Mipmapping can still be utilized by manu-
ally building the mip chain using the same method as copying the
texture data when the geometry changes. The number of mip levels
must be limited based on the size of individual triangles rather than
the resolution of the entire texture. This can be thought of as having
a separate mip chain for each triangle. Since the border must remain
as one pixel, there is increasing levels of wasted texture space for
higher mip levels. Anisotropic filtering is extremely challenging
because the size of the sample area can extend particularly far at
glancing angles. Exploration into more spatially coherent mappings,
such as automatic UV unwrapping algorithms that minimize distor-
tion and minimize waste, could provide a more elegant solution to
these issues.

Due to the real-time performance and fixed memory footprint, our
method is viable for integration into other rendering applications.
The algorithm works independently of the texture size and even
aspect ratio, although the more different actual mesh triangles are
from their mapped counterparts, the more distorted the distribution
of resolution is.

The quality of the mesh generated by the HoloLens has a large
impact on the quality of the scan. Missing geometry causes pro-
jections to bleed through their objects, overwriting the correct data.
Our current method also does not take into account the quality of
camera frame when projecting onto geometry. This leads to glancing
angles and distance views to overwrite potentially better data from
past frames.

User experience with the application can also be improved. Cur-
rently, the application does not guide the user toward areas of the
mesh that have not been textured yet. Possible solutions include
a heads-up display style arrows that point in the direction the user
should look and so forth. The status and quality of scan are also
not reported to the user. Potentially, our application could show a
coverage amount or simplified image that shows the relative quality
of the texture so far in that area. Also, our application does not dif-
ferentiate between lack of texture and lack of geometry data. Both
show up as transparent, which might cause confusion or make the
user waste time trying to scan an area with no geometry. Because
the HoloLens treats black as transparent, dark areas are also hard
to differentiate between the overlay and the real world. Fixing this
issue would require balancing color accuracy and user visibility.

235

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Scan of the small (top) and large (bottom) environments. From left to right: textured mesh, close-up of textured mesh, mesh geometry.
Notice the difference in resolution in the two close-ups.

Figure 6: Comparison of textures for small (right) and large (left)
environments. The textures are the same size, but because there are
significantly more triangles in the large environment, the triangles are
smaller relative to the small environment.

5 CONCLUSION

In this paper, we have demonstrated a real-time method to generate
a standard UV texture of fixed size to color a dynamically changing
mesh provided by the HoloLens. By utilizing the mobility and con-
venience of a headset device such as the HoloLens, we demonstrate
modeling both small and fairly sizable environments in short periods
of time. Because the user can view the creating of the mesh in real-
time, it is also very simple to use, as they can see which portions of
the mesh still need to be scanned. Because we provide a standard
UV texture, it is trivial to integrate the mesh into common rendering
pipelines and 3D applications, while also providing the fastest possi-
ble render time with no texture state changes necessary. The method
is also fast enough to be integrated directly into a real-time pipeline.

There are still several shortcomings and extensions that we have
observed. One, we currently do not apply any criteria for projecting
camera frames onto the mesh. By utilizing a quality method, as was
done in [2], we can prevent low-quality frames from overwriting
better past data. We would still recommend factoring in how stale
the data is to keep the texturing as up-to-date as possible. If such a
method is integrated, adjacent triangles would most likely come from
different frames, causing potential seams due to color or quality. A
seamless mosaicing technique, such as [10], can be used to alleviate
most of these issues.

Our method is heavily influenced by the quality of the geome-

try, especially because of its use as a proxy for both occlusion and
rendering. Due to a variety of reasons, the HoloLens has difficulty
scanning geometry from specific materials and complex objects.
When projecting, occlusion is approximated with the proxy geom-
etry, which can lead to projections onto occluded geometry. The
quality of the output is also inferior to view-dependent methods such
as [4] because access to multiple views allows for the illusion of
more detailed proxy geometry and multiple accurate viewpoints.

Potential extensions include using the mesh as environment input
into image-based lighting (IBL) techniques. Reflections can be dy-
namic where the user is looking while past data can fill in reflections
in the other directions. By using IBL and possibly a combination of
local cubemaps and screen-space reflections, it can be possible to
more realistically render virtual objects in the real world in real-time.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Pradeep Sen for discussions and
comments. This work was supported in part by ONR grant N00014-
16-1-3002.

REFERENCES

[1] F. Bernardini, I. Martin, and H. Rushmeier. High-quality texture re-

construction from multiple scans. IEEE Trans. on Visualization and
Computer Graphics, 7(4):318–332, 2001. doi: 10.1109/2945.965346

[2] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Un-

structured lumigraph rendering. In Proc. of the 28th Annual Conf.
on Computer Graphics and Interactive Techniques - SIGGRAPH ’01,

pp. 425–432. ACM Press, New York, New York, USA, 2001. doi: 10.

1145/383259.383309

[3] C. Chen, M. Bolas, and E. S. Rosenberg. View-dependent virtual reality

content from RGB-D images. In IEEE Int. Conf. on Image Processing,

pp. 2931–2935, 2017.

[4] P. Debevec, Y. Yu, and G. Borshukov. Efficient View-Dependent

Image-Based Rendering with Projective Texture-Mapping. pp. 105–

116. Springer, Vienna, 1998. doi: 10.1007/978-3-7091-6453-2 10

[5] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Structure from motion

without correspondence. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), vol. 2, pp.

557–564. IEEE Comput. Soc. doi: 10.1109/CVPR.2000.854916

[6] M. Dou and H. Fuchs. Temporally enhanced 3d capture of room-sized

dynamic scenes with commodity depth cameras. In 2014 IEEE Virtual
Reality (VR). IEEE, Mar. 2014. doi: 10.1109/vr.2014.6802048

[7] P. Fechteler, W. Paier, and P. Eisert. Articulated 3D model tracking

with on-the-fly texturing. In 2014 IEEE Int. Conf. on Image Processing

236

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

(ICIP), pp. 3998–4002. IEEE, Oct. 2014. doi: 10.1109/ICIP.2014.

7025812

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-d map-

ping: Using kinect-style depth cameras for dense 3d modeling of

indoor environments. The International Journal of Robotics Research,

31(5):647–663, Feb. 2012. doi: 10.1177/0278364911434148

[9] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for RGB-

d cameras. In 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. IEEE, Nov. 2013. doi: 10.1109/iros.2013.6696650

[10] V. Lempitsky and D. Ivanov. Seamless Mosaicing of Image-Based

Texture Maps. In 2007 IEEE Conf. on Computer Vision and Pat-
tern Recognition, pp. 1–6. IEEE, Jul. 2007. doi: 10.1109/CVPR.2007.

383078

[11] R. Maier, J. Stuckler, and D. Cremers. Super-resolution keyframe

fusion for 3d modeling with high-quality textures. In 2015 Int. Conf.
on 3D Vision. IEEE, Oct. 2015. doi: 10.1109/3dv.2015.66

[12] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shot-

ton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon. Kinect-

Fusion: Real-time dense surface mapping and tracking. In 2011 10th
IEEE Int. Symp. on Mixed and Augmented Reality, pp. 127–136. IEEE,

Oct. 2011. doi: 10.1109/ISMAR.2011.6092378

[13] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J.

Davison. SLAM++: Simultaneous Localisation and Mapping at the

Level of Objects. In 2013 IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 1352–1359. IEEE, Jul. 2013. doi: 10.1109/CVPR.

2013.178

[14] A. Sankar and S. M. Seitz. In situ CAD capture. In Proc. of the 18th
Int. Conf. on Human-Computer Interaction with Mobile Devices and
Services - MobileHCI ’16, pp. 233–243. ACM Press, New York, New

York, USA, 2016. doi: 10.1145/2935334.2935337

[15] F. Steinbrucker, C. Kerl, and D. Cremers. Large-scale multi-resolution

surface reconstruction from RGB-d sequences. In 2013 IEEE Int. Conf.
on Computer Vision. IEEE, Dec. 2013. doi: 10.1109/iccv.2013.405

[16] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J. J.

Leonard. Kintinuous: Spatially extended kinectfusion. In RSS Work-
shop on RGB-D: Advanced Reasoning with Depth Cameras. Pittsburgh,

PA, Jul. 2012.

[17] Q.-Y. Zhou and V. Koltun. Color map optimization for 3d reconstruc-

tion with consumer depth cameras. ACM Trans. Graph., 33(4):155:1–

155:10, Jul. 2014. doi: 10.1145/2601097.2601134

237

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on March 09,2021 at 05:23:03 UTC from IEEE Xplore. Restrictions apply.

		2018-08-20T13:12:19-0400
	Preflight Ticket Signature

