A Setup for Evaluating Detectors and Descriptors for Visual Tracking
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ABSTRACT

In many cases, visual tracking is based on detecting, describing,
and then matching local features. A variety of algorithms for these
steps have been proposed and used in tracking systems, leading to
an increased need for independent comparisons. However, exist-
ing evaluations are geared towards object recognition and image
retrieval, and their results have limited validity for real-time visual
tracking. We present a setup for evaluation of detectors and descrip-
tors which is geared towards visual tracking in terms of testbed,
candidate algorithms and performance criteria. Most notably, our
testbed consists of video streams with several thousand frames nat-
urally affected by noise and motion blur.

1 INTRODUCTION

Visual tracking is a core component for robot navigation as well
as augmented reality. Although it may be accomplished by other
means (e.g., template- or model-based), it is in many cases (e.g. [2])
based on detecting, describing, and then matching local features.
Many algorithms for these subtasks have been proposed and used
in tracking.

However, existing evaluations [4, 5, 6] focus on object recogni-
tion and image retrieval rather than tracking: They use low-noise,
high-resolution still images, and large databases to match features
against. Execution time, a crucial criterion for designing real-time
systems, receives little to no attention, and considered algorithms
tend to be computationally expensive and often intractable for real-
time use; hence their results have limited validity for real-time vi-
sual tracking. Most notably, we are not aware of any work that
compares the respective algorithms on video streams, which is the
setup of interest for visual tracking applications in general and aug-
mented reality in particular.

Our evaluation is oriented towards visual tracking in all of
the factors mentioned above: the evaluated algorithms have been
proven in real-time applications, the performance measures are cho-
sen with respect to visual tracking, and our testbed consists of video
streams affected by noise and motion.

2 EVALUATION SETUP

Ground Truth. To evaluate algorithms on images taken with a
moving camera, ground truth information is needed, specifying
which point x; in frame j corresponds to point x; in frame i. For
general 3D scenes, this is very difficult to obtain without a 3D
model of the scene. Like most existing evaluations [4, 6] we there-
fore use planar scenes. where x; and x; are related by a homography
H;j. However, the methods used by existing evaluations to solve
for H;; are not feasible for arbitrary camera motion and/or several
thousand frames (the same is true for the setup of [5], which is not
restricted to planar scenes).
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Figure 1: Using the result of an adaptive color model (center), the
input image (left) is warped into a canonical reference frame (right).
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Figure 2: Warped frame (left), difference to reference image before
and after image alignment (center and right, respectively). The align-
ment was substantially improved. For the evaluation, only the area
inside the green rectangle is used, not including the markers (which
violate the assumption of an unprepared environment) and the sur-
rounding area (for which the homographic warp is incorrect).

For our work, we designed a semi-automatic algorithm to com-
pute H;j: We use four small red balls as markers (chosen because
they do not change appearance even for extreme changes in view-
point and placed such that their centers lie in the plane of the tex-
ture) and manually indicate their position in the first frame. They
are then tracked using an adaptive color model and template match-
ing (cf. Fig. 1). H;; is computed from the new positions of the
four balls, and finally, the warp is refined using image alignment
(cf. Fig. 2).

Testbed. The testbed consists of 30 different video streams with
a total of 2711 frames, showing five different planar textures in six
different motion patterns each (translational movement, in-plane ro-
tation, out-of-plane rotation, zoom, motion blur, as well as uncon-
strained camera motion exhibiting all of the above). The textures
were chosen to encompass features with different levels of contrast
and repetitiveness.

The algorithms’ performance was measured between consecu-
tive frames, simulating continuous tracking during smooth motion,
as well as between randomly chosen frames of a sequence, sim-
ulating tracking recovery after failure or re-visiting a previously
mapped scene. Including this randomized order, all algorithms and
algorithm combinations were evaluated for approximately 30,000
frame pairs.

Performance measures. Given the task of real-time tracking, we
consider execution time a crucial performance measure for both
detectors and descriptors, especially as faster execution and thus
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Figure 3: Exemplary results. (a) Repeatability vs. processing time for 640x480 (empty markers) and 320x240 pixels (filled), evaluated for
consecutive frames. Repeatability between random frames is significantly lower, and the ranking of the detectors is different. (b) Precision of
matching with image patch, varying the patch’s size and similarity measure (SSD sum of squared distances, ZM SSD zero-mean SSD, NCC
normalized cross correlation). Here, solid lines indicate the average performance on consecutive frames of smooth motion (i.e. with very
small baseline distances), while dashed lines indicate the average performance on a set of random frame pairs with potentially wide baseline
distances. (c) Precision of matching with SIFT. Solid/dashed lines as in (b). (d) Precision in the case of in-plane rotation. “patch+” is image patch

with SURF’s orientation assignment.

higher framerates might in return decrease prediction uncertainty
and thus improve tracking. Although timings are platform- and
implementation-specific, differences of orders of magnitude (such
as shown in Fig. 3a) are unlikely to change unless special hardware
acceleration is used.

The most relevant quality criterion for detectors is repeatabil-
ity [6]. For descriptors, ROC curves (precision/recall) are com-
monly used in the object recognition community [4, 5]. However,
due to speed constraints, virtually all visual tracking systems eval-
uate only the first nearest neighbor (INN), hence its precision is
the most relevant criterion in this context. Additionally, we mea-
sure the percentage of successful tracking for any of the possible
detector-descriptor combinations.

Candidate algorithms. The feature detectors that we evaluated so
far are: Harris Corner Detector, Shi-Tomasi Corner Detector, FAST,
Difference of Gaussians (DoG) and Fast Hessian; the descriptors
are: image patch (with and without scale information and orienta-
tion assignment), SIFT and SURF. As the implementation is crucial
(especially when measuring time), we used the original implemen-
tations where available, otherwise we used publicly available and
widely used versions.

3 EVALUATIONS

Algorithm configurations. To ensure that all algorithms are opti-
mally configured for the task of tracking, we first evaluated a variety
of parameters. For detectors, comprehensive results of this evalu-
ation may be found in a technical report [1]. For descriptors, two
exemplary evaluations are shown in Figs. 3b and 3c. For example,
Fig. 3c shows that the dimensionality of SIFT can be greatly re-
duced (compared to the default configuration) with hardly influenc-
ing performance. This has been exploited e.g. by [7], although our
results suggest to use a different configuration (4x4 windows with
2 or 3 bins instead of their choice of 3x3 windows with 4 bins).

Comparison. We then compared the detectors’ and descriptors’
performances in all scenarios that our testbed offers. We evaluated
both stages individually as well as in combination. Due to space
constraints and as we plan on extending the evaluations (cf. Sec-
tion 4), we present only one example of the results: Fig. 3d shows
the average 1NN precision as a function of the in-plane rotation

between the two frames. In this case, SIFT and SURF clearly out-
perform a simple image patch description, even if the latter uses
the same (here: SURF’s) orientation assignment. Our evaluations
also show that the alleged robustness of the histogram-based de-
scriptors does not help in the case of out-of-plane rotation, where a
patch descriptor performs slightly better, while the performance of
all descriptors decreases quickly.

4 ONGOING AND FUTURE WORK

We are extending our evaluations to more algorithms. In particu-
lar, we are planning to evaluate the classification-based approaches
around [3], which share the paradigm of local features, but “recog-
nize” them using previously trained classifiers rather than comput-
ing and matching a descriptor vector. It would also be interesting to
extend the evaluations to template-based matching, though in that
case, it would have to encompass a much wider scope, as the two
paradigms have less in common.
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