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Abstract Applications for real-time visual tracking can be
found in many areas, including visual odometry and aug-
mented reality. Interest point detection and feature descrip-
tion form the basis of feature-based tracking, and a variety
of algorithms for these tasks have been proposed. In this
work, we present (1) a carefully designed dataset of video
sequences of planar textures with ground truth, which in-
cludes various geometric changes, lighting conditions, and
levels of motion blur, and which may serve as a testbed for
a variety of tracking-related problems, and (2) a compre-
hensive quantitative evaluation of detector-descriptor-based
visual camera tracking based on this testbed. We evaluate
the impact of individual algorithm parameters, compare al-
gorithms for both detection and description in isolation, as
well as all detector-descriptor combinations as a tracking so-
lution. In contrast to existing evaluations, which aim at dif-
ferent tasks such as object recognition and have limited va-
lidity for visual tracking, our evaluation is geared towards
this application in all relevant factors (performance mea-
sures, testbed, candidate algorithms). To our knowledge, this
is the first work that comprehensively compares these algo-
rithms in this context, and in particular, on video streams.
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1 Introduction

Visual tracking is a core component for many applica-
tions including visual odometry (Cheng et al. 2006; Nistér
et al. 2004), visual Simultaneous Localization and Mapping
(SLAM) (Davison et al. 2007) and Augmented Reality (AR)
(Klein and Murray 2007). Although the specific require-
ments of these systems may vary with the application, they
all require the underlying visual tracking to be robust, ac-
curate, and fast enough to be computed in real time. While
some of the underlying techniques and algorithms have been
known for a longer time, visual tracking in real time is a
fairly young endeavor, enabled by the rapid increase in com-
putation power of modern hardware and the availability of
compact and cheap cameras.

While some visual odometry systems work with opti-
cal flow, most tracking applications use feature-based visual
tracking. In this case, interest point detection and feature de-
scription are the first steps of the system. Many algorithms
have been proposed to accomplish these tasks, and exist-
ing visual tracking systems use differing approaches. There
is however little recent literature quantitatively comparing
these approaches, and existing evaluations are mostly geared
towards other applications such as object recognition, which
limits the significance of obtained results for visual tracking.
In particular, we are not aware of any work that compares the
respective algorithms on video streams, which is the setup of
interest for visual tracking.

Main Contributions The main contributions of this work
fall into the following two categories:

1. We present a carefully designed dataset with ground
truth. It comprises 96 video streams displaying six dif-
ferently textured planar tracking targets with a total
of 6889 frames, featuring geometric distortions (zoom
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and rotation around three different axes), nine accu-
rately controlled levels of motion blur, as well as dif-
ferent lighting conditions, with all frames affected by
natural amounts of noise. This dataset may serve as a
testbed/benchmark for a variety of algorithm classes re-
lated to visual tracking, including: interest point detec-
tors, feature descriptors, detector-descriptor-based track-
ing, optical flow-based tracking, tracking-by-detection,
template- or model-based tracking, feature matching and
outlier removal strategies (Sect. 3).

2. We present an extensive evaluation of detector-descrip-
tor-based tracking, including two recognition-by-classi-
fication methods. Our evaluations use the above dataset
and encompass four stages: (a) evaluation of each algo-
rithm’s parameters in order to quantify their effect on
tracking performance and determine the optimal config-
uration for our task, (b) comparison of detectors in isola-
tion, (c) comparison of descriptors (including classifiers)
in isolation, (d) comparison of each detector-descriptor
combination as a tracking solution (Sects. 5 and 6).

In this order, the work develops from broadly applicable
towards more focused: the dataset was specifically designed
to be applicable to a broad spectrum of problems. The iso-
lated evaluation of the detectors (stage (b)) is also relevant
to several applications (specifically as interest point detec-
tion is likely to be the first step of any processing chain
in which it is used), while the last stage (d) is clearly fo-
cused on feature-based visual tracking and includes certain
assumptions (see Sects. 5 and 6) that might not be valid in
other contexts. The isolated evaluations will also prove use-
ful to analyze the results of the last stage (d) in detail.

Our work builds upon an improved version of the evalu-
ation setup introduced in Gauglitz et al. (2009).

Differentiation  Visual tracking is a broad term that is used
for a variety of problems. While some of our results are ap-
plicable to a wider scope, we would like to clarify our notion
of visual tracking and thus the scope of this work as follows:
We are primarily interested in six-degree-of-freedom pose
estimation of the observer (or vice versa, a single or multi-
ple well-defined objects with respect to the observer), i.e.,
inside-out tracking or camera tracking. We describe a num-
ber of applications which fall into this category in Sect. 2.2.
Despite the obvious commonalities, this is very different
from outside-in tracking (such as tracking humans by way of
a static video surveillance camera) in various aspects—e.g.,
the number of spatial degrees of freedom, the size of the tar-
get object, assumptions about deformations and static back-
ground, and treatment and significance of moving objects—
and therefore other algorithmic approaches and representa-
tions are interesting. See Yilmaz et al. (2006) for a survey
on object tracking.
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Restriction to Planar Textures The proposed setup (in par-
ticular, our method of obtaining ground truth, cf. Sect. 3.1)
limits our dataset and hence our evaluations to planar tex-
tures. This is an important restriction, and datasets that in-
clude general 3D objects have been proposed (Moreels and
Perona 2007; Winder and Brown 2007). However, as we will
discuss in Sect. 2.1, none of these setups feature a moving
camera and hence the datasets lack artifacts that are crucial
for the evaluation of visual tracking. It is our view that, espe-
cially in its application to inside-out tracking, the restriction
to planar scenes does not devalue the comparison, in partic-
ular since we focus on the first, local, image-based steps of
tracking, not the pose estimation part. Here, the difference
of 2D vs. 3D is less relevant, since these steps are inher-
ently two-dimensional—at this point, no structural informa-
tion about the scene is known anyways—and many condi-
tions that are not explicitly modelled and hence challenge
the algorithms’ robustness are represented in our dataset
(e.g., out-of-plane rotation). Effects not represented (such as
extreme local non-planarity and occlusion) cannot be han-
dled by any of the state-of-the-art approaches on this level
and have to be handled by the further steps (i.e., treated as
outliers) in either case.

Outline This paper is structured as follows: In Sect. 2, we
discuss literature on datasets, systems that employ visual
tracking, algorithms for interest point detection and feature
description, as well as existing comparisons of these algo-
rithms. Section 3 describes the collected dataset in detail,
including the method of how ground truth was obtained. In
Sect. 4, we provide an introduction to detector-descriptor-
based visual tracking, including a compilation of published
systems and a short review of each detector and descriptor
that is included in the evaluation. Section 5 details the setup
for the evaluation, including exact definitions of the per-
formance measures and implementation details. Section 6
presents and analyzes the obtained results. Finally, Sect. 7
presents our conclusions.

2 Related Work
2.1 Datasets

In many domains, certain datasets have successfully been
established as de-facto standards and used to compare and
evaluate state-of-the-art algorithms; for example, the Mid-
dlebury dataset for multi-view reconstruction (Seitz et al.
2006). The dataset of Mikolajczyk et al. (2005) has been
used for several comparisons of locally invariant detectors
and descriptors. However, these sets consist of only a few
static, high-resolution images per sequence with rather large
baseline distances, which limits their usefulness (and the
significance of obtained results) for visual tracking.
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Both Moreels and Perona (2007) and Winder and Brown
(2007) created datasets of three-dimensional objects that can
be used for descriptor design and evaluations, but neither
setup includes (or is feasible to do for) a moving camera,
and absence of video sequences with typical artifacts such
as jitter and motion blur limits their usefulness for tracking
as well.

Baker et al. (2007) produced image sequences including
moving objects that were designed to evaluate dense optical
flow. However, due to both the length of the sequences (eight
images per sequence) and the appearance of the scenes, they
are not well-suited to evaluate inside-out tracking.

Zimmermann et al. (2009) collected image sequences
of three different objects with approximately 12,000 im-
ages and made them available including ground truth.
Lieberknecht et al. (2009) presented a dataset of 40 se-
quences featuring eight different textures in five different
motion patterns each. This dataset might be the most similar
to ours in terms of purpose and scope (although the ground
truth is not made available). However, their motion patterns
all combine several motions (much like our pattern “uncon-
strained,” see Sect. 3.2) and are, effectively, rather similar
to each other. Hence, as with Zimmermann et al. (2009)’s
sequences, they do not allow a detailed analysis for different
conditions or tailoring of the testbed to custom situations
in which one wishes to emphasize performance on certain
conditions and/or exclude conditions that are known not to
occur: For example, in-plane rotation will be crucial in some
applications, but largely irrelevant and thus sensible to ex-
clude for visual odometry with a robot-mounted camera.

2.2 Applications of Visual Tracking

Visual Odometry The idea of using vision-based track-
ing for navigation of an autonomous robot can be traced
back to Moravec (1980) and Matthies and Shafer (1987).
To increase robustness, other information such as GPS data
(Nistér et al. 2004) or coarse map information (Levin and
Szeliski 2004) may be integrated. Cheng et al. (2006) de-
scribed how visual odometry has been in use on NASA’s
Mars Exploration Rovers since 2004. This case is especially
interesting due to the high level of autonomy and the limited
computation power available on board the rovers.

While the systems mentioned above are feature-based,
i.e., they keep track of a sparse set of “landmarks,” vi-
sual odometry can also be accomplished using optical flow
(Lee and Song 2004; McCarthy 2005). However, estimating
movement from optical flow is prone to long-term drift, as
the motion estimates and therefore the errors in the estimates
are integrated over time, and is only feasible for smooth mo-
tion (DiVerdi and Hollerer 2008; Campbell et al. 2004).

Simultaneous Localization and Mapping SLAM was first
explored using sensors such as laser range finders (Monte-
merlo et al. 2002, 2003). Pioneering work on visual SLAM,
i.e. using (only) cameras as sensors, has been done by Davi-
son et al. (2007). Further research explored the use of par-
ticle filters (Eade and Drummond 2006b), features at mul-
tiple scales (Chekhlov et al. 2006, 2007), and edge-based
features (Eade and Drummond 2006a; Klein and Murray
2008), as well as recovery from tracking failure (Williams
et al. 2007).

Augmented Reality Tracking for AR was first investigated
using fiducial markers (Kato and Billinghurst 1999; Fiala
2005). Later systems used markerless environments, but re-
quire a priori information, for example a 3D point model
of the scene (Skrypnyk and Lowe 2004), and/or additional
inputs such as accelerometers (Bleser and Stricker 2008).
Tracking of arbitrary, but a priori known targets has been
demonstrated despite occlusion and even deformation (Lep-
etit and Fua 2006), for multiple targets (Park et al. 2008),
and even on current generation mobile phones (Wagner et al.
2008, 2009). Abandoning markers, Lee and Hollerer (2008)
used the user’s outstreched hand to establish a coordinate
frame for unprepared environments. Finally, Klein and Mur-
ray (2007) proved that real-time tracking for AR is pos-
sible without any prior information about the scene. With
slight modifications and concessions regarding robustness,
this system was shown to work on a mobile phone (Klein
and Murray 2009).

Further applications include the online construction of
panoramas (DiVerdi et al. 2008; Wagner et al. 2010).

2.3 Interest Point Detectors

Corner Detectors Corners are among the first low-level
features used for image analysis and in particular, tracking
(Moravec 1980). Based on Moravec’s, Harris and Stephens
(1988) developed the algorithm that became known as the
Harris Corner Detector. They derive a “corner score” from
the second-order moment image gradient matrix, which
also forms the basis for the detectors proposed by Forst-
ner (1994) and Shi and Tomasi (1994). Mikolajczyk and
Schmid (2001) proposed an approach to make the Harris de-
tector scale invariant. Other intensity-based corner detectors
include the algorithms of Beaudet (1978), which uses the de-
terminant of the Hessian matrix, and Kitchen and Rosenfeld
(1982), which measures the change of direction in the local
gradient field. A more exhaustive list especially of intensity-
and contour-based detectors can be found in the evaluation
of Schmid et al. (2000).

To avoid costly window or filter operations, Trajkovic
and Hedley (1998) developed a detector that does not rely
on discrete image derivatives. Instead, the pixel value at the
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center of a discretized circle is compared to the values on the
circle. Rosten and Drummond (2005, 2006) developed this
idea further and sped up the process by reducing the number
of pixel tests with machine learning techniques.

Blob Detectors Instead of trying to detect corners, one
may use local extrema of the responses of certain filters as
interest points. In particular, many approaches aim at ap-
proximating the Laplacian of a Gaussian, which, given an
appropriate normalization, was shown to be scale invari-
ant if applied at multiple image scales (Lindeberg 1994).
Lowe (1999, 2004) proposed to select the local extrema of
an image filtered with differences of Gaussians, which are
separable and hence faster to compute than the Laplacian.
The Fast Hessian detector (Bay et al. 2008) is based on
efficient-to-compute approximations to the Hessian matrix
at different scales. Agrawal et al. (2008) proposed to ap-
proximate the Laplacian even further, down to bi-level octo-
gons and boxes. Using slanted integral images, the result can
be computed very efficiently despite a fine scale quantiza-
tion. Ebrahimi and Mayol-Cuevas (2009) observed that the
area underneath the filter kernel changes only very slightly
from one pixel to the next and thus propose to further ac-
celerate the process by skipping the computation of the fil-
ter response if the response for the previous pixel is very
low. They report significant speed-ups with only minor re-
peatability losses. Their idea (which, in a simpler, uncon-
ditional fashion has also been implemented by Bay et al.
2008) seems promising and could similarly be implemented
for other detectors as well.

Affine-Invariant Detectors In recent years, detectors have
been proposed that are invariant to affine changes (Mikola-
jezyk and Schmid 2002; Schaffalitzky and Zisserman 2002;
Tuytelaars and van Gool 2000; Matas et al. 2002; Kadir
et al. 2004). Affine-invariant detectors provide higher re-
peatability for large affine distortions (Lowe 2004; Mikola-
jezyk and Schmid 2002), but are typically expensive to com-
pute (Mikolajczyk et al. 2005; Moreels and Perona 2007).

2.4 Feature Descriptors

Early Approaches A variety of features derived from the
local image intensities have been proposed to derive robust
feature descriptors. Early ideas include derivatives for rota-
tionally invariant features (Schmid and Mohr 1997), deriva-
tives of Gaussians of different order (Freeman and Adelson
1991), filter banks derived from complex functions (Schaf-
falitzky and Zisserman 2002), phase information (Carneiro
and Jepson 2003), and others. Many of these have been eval-
uated by Mikolajczyk and Schmid (2005).
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SIFT and Follow-Up Works The Scale-Invariant Feature
Transform (SIFT) by Lowe (1999, 2004) is probably the
most well-known and widely used local descriptor, and has
stimulated several follow-up works. It achieves invariance to
changes in scale and rotation by operating in a local refer-
ence frame relative to a dominant scale and rotation that is
computed from the image. The descriptor is based on lo-
cal gradient histograms, sampled in a square grid around
the keypoint. Based on the same local reference frame, Ke
and Sukthankar (2004) applied principal component analy-
sis (PCA) to the image gradients to derive a more compact
representation. The “shape context” descriptor of Belongie
et al. (2002) is based on an edge histogram, sampled from
a log-polar grid. Combining above ideas, Mikolajczyk and
Schmid (2005) proposed an extension to SIFT by using log-
polar grids and applying PCA to reduce the dimensional-
ity. Bay et al. (2008) proposed SURF as a faster alterna-
tive to SIFT, adopting similar approaches for scale and ro-
tation invariance combined with efficient approximations to
speed up the computation: The descriptor is derived from
responses to box filters instead of the computationally more
expensive Gaussian filters.

Learning a Descriptor Rather than testing different “ad
hoc” approaches, Winder and Brown (2007) broke up the
descriptor creation pipeline into several modules and used
learning approaches to derive the optimal choice for each of
them. Many of their building blocks are derived from or in-
spired by ideas mentioned above (Winder and Brown 2007,
Winder et al. 2009).

Keypoint Recognition Using Trained Classifiers Lepetit
and Fua (2006) proposed a new approach to robust key-
point recognition: they formulate keypoint matching as a
classification problem using Randomized Trees as classi-
fiers. Ozuysal et al. (2007) simplified this approach struc-
turally by adopting a naive Bayes approach, thus simplifying
the trees to “ferns.” Taylor et al. (2009) presented another
training-based keypoint recognition approach, which, dur-
ing the training step, builds coarsely quantized histogram-
based representations. Their approach requires only 44 bytes
of memory per trained feature and allows for very fast
matching using bitmasks. As a drawback, all of these classi-
fiers need a training phase, although Calonder et al. (2008)
showed that by abandoning the strict “classification” inter-
pretation, the results may be re-interpreted and used in a
classic descriptor paradigm as well.

2.5 Evaluations of Detectors and Descriptors
Schmid et al. (2000) compared interest point detectors on

two still images under changes in rotation, viewpoint and il-
lumination, as well as with artificially added image noise.
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They found that the Harris Corner Detector outperformed
other existing approaches at that time. Mikolajczyk and
Schmid (2004) and Mikolajczyk et al. (2005) compared
affine invariant detectors. Mikolajczyk and Schmid (2005)
compared feature descriptors on sets of images. They found
SIFT and their extension to SIFT (see above) to be superior
to other approaches. Moreels and Perona (2007) explored
the performance of combinations of detectors and descrip-
tors with a testbed of three-dimensional objects rather than
flat pictures.

While the objective of Winder and Brown (2007) and
Winder et al. (2009) is to design a descriptor rather than
evaluation of fundamentally different algorithms, their ap-
proach of learning the optimal descriptor design requires a
similar framework and may be seen as evaluation of a family
of descriptors with a certain parameterization.!

However, all comparisons mentioned above are geared
towards object recognition and image retrieval rather than
tracking. This becomes clear from the chosen testbeds, the
performance measures chosen to evaluate the algorithms,
and the set of detectors and descriptors that are tested. Ex-
ecution time, a criterion crucial for designing real-time sys-
tems, receives very little or no attention, and reported exe-
cution times are in the order of seconds to several minutes,
which is intractable for real-time tracking.

In contrast, the evaluation in this work aims at visual
tracking in all of the factors mentioned above. Most notably,
the performance measures are chosen with respect to the ap-
plication of visual tracking and the testbed, which will be
detailed in the next section, consists of video streams with
several thousand frames affected by noise and motion blur
rather than a set of high-resolution, low-noise still images.

3 Dataset Design
3.1 Establishing Ground Truth

To evaluate algorithms on images taken with a moving cam-
era, ground truth information is needed, specifying which
point x; in frame j corresponds to point x; in frame i. For
general 3D scenes, this is very difficult to obtain without an
accurate 3D model of the scene, but for planar scenes, x; and
x; are related by a homography H;;(q) € N33 (Hartley and
Zisserman 2004; Schmid et al. 2000):

xj=H;j(q) - x; e

Here, x;;; are in homogeneous coordinates: x; = (x, y, DT
and refer to coordinates in the undistorted frames, that

INote that their work concentrates on descriptors—the result of the
interest point detector is already built-in into their dataset.

is, after distortions introduced by the lens have been cor-
rected for using the (known) internal camera calibration.
Solving for H;; may be done by projecting a known pat-
tern onto a static scene (Schmid et al. 2000) or indicating
reference points manually (Rosten and Drummond 2006;
Zimmermann et al. 2009). Another option is to use fidu-
cial markers that can be detected automatically (Fiala 2005).
However, they occlude a significant part of the image (ren-
dering it unavailable for the evaluation), require a minimum
viewing angle for detection, and their detection uses algo-
rithms similar to the ones to be evaluated, which potentially
biases the result.

For this work, we fabricated a precisely milled acrylic
glass frame which holds the planar texture and four bright
red balls (15 mm diameter) as markers placed such that their
center is in the plane of the texture. The markers were
chosen as their detection is more robust to blur (no cor-
ners/edges have to be detected) and out-of-plane rotation
(they look the same from any direction) than planar fiducial
markers. With an initial estimate of their position, the whole
textured area can be used to improve the accuracy of the
estimation (see step 5 below). The markers are 13 x 10.5”
apart, situated outside of the area for the texture, which is
11 x 8.5” (standard letter format). The area of the texture
itself is 9.5 x 7”, of which a margin of 0.75” is subtracted
to avoid border effects. This leaves an area of 8 x 5.5” to
be detected/tracked by the algorithms under evaluation. This
setup can be seen in Figs. 1 and 3.

‘We then implemented the following semi-automatic algo-
rithm to detect and track markers and texture in the videos:

1. The position and size of the balls are manually indicated
in the first frame of the sequence.

2. An adaptive color model in HSV color space is initial-
ized, which, applied to a new frame, produces a “proba-
bility map” that a given pixel belongs to the colored ball
(Fig. 1 middle). The most probable positions of the balls
are then identified using template matching with distance
constraints.

3. The color model is adapted to the appearance of the
balls in the new frame. For subsequent frames, a mix-
ture model using both the model from the first and the
previous frame is used to avoid long-term drift.

4. The position of each ball individually is refined us-
ing “inverse-compositional” image alignment (Baker and
Matthews 2001) with 3 degrees of freedom (x, y, scale)
between the current and the previous frame, and the ho-
mography between the current image and a canonical ref-
erence frame is computed (Fig. 1 right).

5. Finally, the homography is refined using image align-
ment between the reference frame and the current frame
(Fig. 2).
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This algorithm was embedded into an interactive tool al-
lowing the user to inspect the result and correct and re-start
the algorithm if needed.

Fig. 1 Adaptive color model: The image in the middle shows the
“probability map” that the adaptive color model generated for the im-
age on the left. The image is then warped into a canonical frame in
which the balls form a rectangle (right image)

e P ey | : |
S50
TR
Jll | o
|

(L0 1

Fig. 2 Result of image alignment: Difference between current frame
and reference frame before (left) and after image alignment (right). Im-
ages are shown inverted (i.e. white = image difference 0) and with in-
creased contrast. The alignment was substantially improved. The resid-
uals are due to change in appearance (lighting effects, motion blur),
sensor noise and interpolation artifacts

Overall, this semi-automatic tracking system produced
very stable warped video streams despite extreme viewing
angles and motion blur with a manageable amount of man-
ual labor. Examples of its output are depicted in Fig. 3.

3.2 Dataset

The testbed consists of 96 video streams, showing six differ-
ent planar textures in 16 different motion patterns each, all
recorded with a Unibrain Fire-i camera with a resolution of
640 x 480 pixels. The textures are shown in Fig. 4, and the
motion patterns are as follows:

— Unconstrained: free movement of a hand-held camera,
unconstrained except that the object of interest has to
stay in the field of view. The motion is mostly smooth,
some parts exhibit quick movements and motion blur. Fig-
ure 5(a) shows a reconstruction of one of the flight paths
(6 x 500 frames).

— Panning: located about 1 m from the object of interest, the
camera pans sideways, effectively causing the object to
move sideways with very little distortion (6 x 50 frames).

— Rotation: located about 1 m from the object of interest, the
camera rotates around its optical axis from 0° to 90°, re-
sulting in in-plane rotation of the object (6 x 50 frames).

— Perspective distortion: starting roughly perpendicular
above the object, the camera goes down in an arc, re-
sulting in perspective distortion (out-of-plane rotation) of

Fig. 3 Top row: a few examples of the 6889 frames in the testbed;
bottom row: the same frames, warped to the reference frame. These
examples illustrate the challenges that the dataset encompasses: scale
changes (first two images), rotation, perspective distortion, motion blur

I Is[=]=]_|°)

AL LT

Fig. 4 Used textures. From left to right: “wood,” “bricks,” “building,” “paris,
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(here: fastest setting), lighting (here: darkest condition). The black-
and-white pattern on the border was added to improve the image align-
ment result (cf. Sect. 3.1), algorithms to be evaluated may use only the
area inside
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mission,” “sunset”
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Fig. 5 Flight paths of selected
video streams, all axes in
centimeters. (a) Unconstrained
(with texture “building”),

(b) perspective distortion (with
texture “bricks”)

the object, cf. the flight path shown in Fig. 5(b) (6 x
50 frames).

— Zoom: the camera moves perpendicularly away from the
object, from 60 cm to 130[£10] cm (6 x 50 frames).

— Motion blur: mounted to a pan-tilt unit to precisely con-
trol its speed, the camera pans sideways with nine dif-
ferent speed settings. The speeds are the 1- to 9-folds of
0.02778°/s, or, equivalently, 1- to 9-folds of about 5.1
pixels per frame (6 x 9 sequences of length 13-89, vary-
ing length due to the varying time it takes for the object
to disappear).

— Static lighting: the camera is statically mounted on a tri-
pod and observes the scene under four different lighting
conditions. The transition from one condition to the next
is not included (6 x 4 x 20 frames).

— Dynamic lighting: the camera is statically mounted on a
tripod and observes the scene transitioning from bright
lighting to dark (a screen being moved in front of a soft
lamp) and back (6 x 100 frames).

The motion patterns “panning” through “zoom” were
conducted with the camera mounted to an appropriately me-
chanically guided, but manually operated contraption, hence
they are not exactly the same among the different textures
and contain certain amounts of motion blur and jitter. As
these conditions are exactly the same for all algorithms and
we desire robustness against all kinds of motions, this does
not affect algorithm comparison. All videos are encoded
with the lossless HUFFYUYV codec. In total, the dataset con-
sists of 6889 frames.

The camera movement is reconstructed from the position
of the target texture for the purposes of illustration (Fig. 5)
and binning algorithm performance according to the relative
change in camera positions.

To evaluate algorithms, the sequences can be used in con-
secutive order, thus simulating continuous tracking during
smooth motion, as well as in randomly (or otherwise) sam-
pled order, thus evaluating robustness against larger baseline
distances.

3.3 Distribution

Our dataset is publicly available, including all necessary ma-
terial. In particular, we are making available:”

— the 96 video sequences themselves,

— the camera calibration needed to correctly undistort the
frames,

— the computed ground truth for each frame as well as the
reconstructed camera paths,

— frame indices indicating proposed frame pairs for evaluat-
ing tracking in the case of larger baseline distances along
with the indices of the “bins” into which each frame pair
falls according to the relative camera pose between the
respective two frames.>

The next section provides an introduction to detector-
descriptor-based tracking, including a compilation of exist-
ing systems, and briefly reviews the algorithms that are in-
cluded in the evaluation. Section 5 will then describe our
evaluation setup in detail.

4 Detector-Descriptor-Based Visual Tracking

In recent years, many visual tracking systems have been pro-
posed. They differ in motivation, aim, implementation and
algorithms that are used. However, they can generally be
broken down into similar main components and largely fol-
low a structure as depicted in Fig. 6. In Sect. 4.1, we will
show how state-of-the-art systems fit into this structure.
One cycle of a visual tracking algorithm can be summa-
rized as follows: With a new frame captured from the video
source, an interest point detector is applied to detect candi-
date points for tracking. For each of the candidates, a fea-
ture descriptor is computed. This descriptor is then sought

Zhttp://ilab.cs.ucsb.edu/tracking_dataset_ijcv/.

3The significance of this will become clear in Sect. 5. Use of these
indices is optional but needed to directly compare with the results pre-
sented in Sect. 6.
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Fig. 6 Structure of a detector-descriptor-based visual tracking system

feature matching

pose estimation

to match with the descriptors of previously (e.g., in the last
frame) encountered features. Usually, the matching is con-
strained to those of the known features that are predicted to
lie close to the encountered position (“‘active search” Davi-
son et al. 2007 or “gated search” Klein and Murray 2007).
Here, the interest point detector is used to thin out the field
of potential candidates. However, if the cost of creating the
description per pixel is very small, the interest point detec-
tion can be omitted and the matching can instead be per-
formed over all pixels inside the predicted region (Davison
et al. 2007; Eade and Drummond 2006b).

Usually, the number of feature matches is much greater
than the degrees of freedom that have to be estimated. Thus,
the system is highly overdetermined, which allows for the
removal of outliers before the pose is estimated.

4.1 Existing Visual Tracking Systems

Table 1 lists existing feature-based visual tracking systems
along with the algorithms that are used in each of them for
the main components depicted in Fig. 6. This compilation
is not meant to be exhaustive, and the short bullet points do
not do justice to specific features and contributions of the
listed systems. Rather, it is meant to give an overview of the
applications of visual tracking and the algorithms that have
been employed for different components.

As seen from the compilation in Table 1, different inter-
est point detectors and feature descriptors have been used
in visual tracking systems. Wherever explicit timings are
available (e.g. Carrera et al. 2007; DiVerdi et al. 2008;
Klein and Murray 2007; Lee and Hollerer 2008; Wagner
et al. 2008), they indicate that a significant part of the over-
all processing time is spent on feature detection, description
and matching. These observations and the lack of indepen-
dent comparisons in the context of real-time visual tracking
motivate the evaluations in this work.

4.2 Interest Point Detectors

Due to the high dimensionality of image data, tracking ev-
ery single pixel is computationally prohibitive and incorpo-
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rates a lot of redundancy, as pixels do not move indepen-
dently. Instead, a sparse set of features is extracted from
the image. Although work has been done to detect and inte-
grate other features like edges (Eade and Drummond 2006a;
Klein and Murray 2008), features that build upon or around
single points are most commonly used for tracking.

There is no clear-cut definition as to what makes a point
“interesting,” although attempts have been made, for exam-
ple, via the entropy of the local neighborhood (Schmid et al.
2000), and detection of such points is only an intermedi-
ate step in any application. The most pragmatic definition
is “the right features are exactly those that make the tracker
work best” (Shi and Tomasi 1994). This means that any set
of points is acceptable, but the results ought to be consis-
tent, i.e.: in images that show the same scene, the algorithm
should detect the same points. This is especially relevant
for visual tracking and leads to the criterion of repeatabil-
ity, which will be defined more formally in Sect. 5.1.

The following sections review the detectors which are in-
cluded in the evaluation in this work.

4.2.1 Harris Corner Detector

Based on Moravec’s corner detector (Moravec 1980), Har-
ris and Stephens (1988) developed the following algorithm:
Given an image /, the algorithm first computes the follow-
ing matrix for every pixel (x, y), which is an approximation
to the local auto-correlation function of image /:

M(x,y)

Z wy v - [Lx (xr, )’r)Jz Z wy,v - Ix (X, Yr)ly(xr, yr)
u,v u,v

- Zwu,v Ay (xp, ,Vr)ly(xh )’r) ’ Zwu,v . [Iy(xr» yr)]2

u,v u,v

@)

I and I, denote the derivatives of image I, (x,,y,) :=
(x+u,y—+v),and w(u, v) is a window and weighting func-
tion. In the simplest case, w(u, v) can be a binary rectangu-
lar window. Harris and Stephens (1988) propose to use a
Gaussian window w(u, v) = exp{—(u? + v?)/202}.

The eigenvalues A1, Ao of M are proportional to the prin-
cipal curvatures of /. Based on them, the region can be
classified as either uniform (A; and A, small), edge region
(one small, one large) or corner region (both large). To avoid
the explicit computation of A; and A, Harris and Stephens
(1988) propose the following corner score, which is de-
rived based on the eigenvalues, but can be expressed without
them:

c(x,y) =rha —k- (A1 + A2)?
=det(M(x, y)) — k - [trace(M (x, y))]2 3)
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Table 1 Existing feature-based visual tracking systems. This compilation is not exhaustive

Reference Objective/prior knowledge Detector” Descriptor” Matching, outlier removal,
or additional inputs® pose estimation®

Bleser and Stricker (2008) tracking/3D model, IMU FAST patch, warped SSD, Kalman filter

Carrera et al. (2007) tracking/known target Harris SURF UKF

Chekhlov et al. (2007) SLAM/- Shi-Tomasi SIFT-like UKF

Cheng et al. (2006) odom./stereo, wheel odom., IMU Harris or sim. patch NCC, RANSAC, LSE

Davison et al. (2007) SLAM/initialization target Shi-Tomasi4 patch (11 x 11), warped NCC, EKF

DiVerdi et al. (2008) panorama creation/— Shi-Tomasi Optical flow & SURF¢ RANSAC (Horn 1987)

Eade and Drummond (2006b) SLAM/- FASTY patch, warped NCC, particle filter

Klein and Murray (2007) SLAM/- FAST patch (8 x 8), warped SSD, Tukey M-estimator

Lee and Hollerer (2008) tracking/init. with user’s hand DoG Optical flow & SIFT® RANSAC, Kalman filter

Lepetit and Fua (2006) tracking-by-det./known target cf. reference Randomized Trees RANSAC, LSE, P-n-P

Nistér et al. (2004)
Ozuysal et al. (2007)

Park et al. (2008)

Se et al. (2002)

Skrypnyk and Lowe (2004)
Taylor et al. (2009)
Wagpner et al. (2009)
Wagpner et al. (2010)
Williams et al. (2007)

odometry/—
tracking-by-det./known target
tracking-by-det./known targets
SLAM/trinocular camera
tracking/known scene
tracking-by-det./known target
tracking/known targets
panorama creation/—

recovery for SLAM/—

Harris

cf. reference
not specified
DoG

DoG

FAST
FASTY
FASTY
FAST

patch (11 x 11)

Ferns

Ferns

[scale, orientation]
SIFT

trained histograms
patch & reduced SIFT®
patch (8 x 8), warped
Randomized lists

NCC, RANSAC
RANSAC

RANSAC, P-n-P

LSE, Kalman filter
RANSAC, non-lin. LSE
PROSAC

NCC, PROSAC, M-estim.
NCC, M-estimator
JCBB, EKF

#Unless specified otherwise, the system aims to track or recover the full 6 degree-of-freedom pose and uses a single camera as the only sensor.
Abbreviations: IMU = inertial measurement unit, SLAM = simultaneous localization and mapping

b Abbreviations used in these columns will be explained in Sects. 4.2 and 4.3, respectively

¢Abbreviations: EKF = Extended Kalman Filter, JCBB = Joint Compatibility Branch-and-Bound (Neira and Tardos 2001), LSE = Least-squares
estimation, NCC = normalized cross-correlation, PROSAC = progressive sample consensus (Chum and Matas 2005), P-n-P cf. (Moreno-Noguer
et al. 2007), RANSAC = random sample consensus (Fischler and Bolles 1981), SSD = sum of squared distances, UKF = Unscented Kalman

Filter (Julier and Uhlmann 1997)

dDetector is only used to discover new features. Matching is performed against all pixels around the predicted feature position

®Hybrid approach: patch/Lucas-Kanade optical flow for frame-to-frame tracking, SIFT/SURF for long-term matching/detection

Subsequently, 8-neighborhood non-maximum suppression
is applied and candidates with a response of less than a
predefined percentage 6 of the maximum response encoun-
tered, c(x, y) < 6 - maxy y {c(x, y)}, are filtered out.

4.2.2 Shi-Tomasi’s “Good Features to Track”

Based on a theoretical analysis of which features will be
“good to track,” Shi and Tomasi (1994) derive an image mo-
tion model for affine motion and pure translation, which they
use for tracking and monitoring the tracked features. For
tracking, they suggest using the translation model, where the
matrix involved is equivalent to M (2). With the same rea-
soning as above, the eigenvalues A1, Ay of M are computed
and a candidate point is accepted if

c(x,y) =min(Ay, A2) > 0 - max{c(x, y)} (@)
X,y

Compared to the Harris score (3) this requires an additional
square root operation per pixel.

4.2.3 Difference of Gaussians (DoG)

The approach of detecting local extrema of the image fil-
tered with differences of Gaussians (DoG) was introduced
by Lowe (1999, 2004) as part of SIFT. The descriptor will
be reviewed in Sect. 4.3.2.

To achieve invariance against changes in scale, the detec-
tor builds a pyramid of images by convoluting the image /
with differences of Gaussian filters at different scales o':

DoGyo(x,y) =G(x,y, ko) —G(x,y,0)
1

=— e @YD) /2(ko)?
27 (ko)

1 2.2 2
_ o= (Y920
o2 ¢ )
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In practice, this is done by first convoluting with the Gaus-
sian kernels G (o) and then computing differences of the re-
sulting images:

Io=1% DoGy o, =1 % G(kog) — I * G(0yp)
I = I % DoGy ko = I % G(k*00) — I % G(kap)

As interest points, the algorithm selects local extrema,
which are found by comparing each sample to its eight
neighbors in the current image I, and the 18 neighbors
“above” (in I,_1) and “below” (in I,41). The interest point
locations are then refined to subpixel accuracy by fitting
a parabola to the sample point and its immediate neigh-
bors (Brown and Lowe 2002). Interest points with low con-
trast, i.e., |15 (X)| < Ocontr» Where x and & are the refined
extremum location and scale, are rejected. The ratio of the
principal curvatures are estimated using the eigenvalue ap-
proach from Harris and Stephens (1988) (cf. Sect. 4.2.1),
and feature points with an “edge response,” i.e., where the
ratio of the two principal curvatures is smaller than a thresh-
old Ocgge, are rejected as well.

4.2.4 Fast Hessian

The Fast Hessian detector, proposed by Bay et al. (2008) as
a basis for SUREF, is based on the determinant of the Hessian
matrix, which at scale o is defined as follows:

H(x,y, o)

2
_| seG@ =10y %za%mo)*l(x,y) ©
Gy G@) x1(x.y)  75G(0)*1(x,y)

As convolution with the Gaussian second order derivatives
is very costly especially for higher scales, Bay et al. approx-
imate them by filters that are composed of simple box filters
(Fig. 7 left) and can therefore be computed in constant time
using the integral image (Viola and Jones 2001). The com-
puted candidate score then is

c(x,y,0) = Dyx(0) - Dyy(0) — (0.9D5(0))>
~det[H(x,y,o0)] @)

where Dy, D,y and Dy, are the results of convoluting the
image with the filters depicted in Fig. 7 (left), and the factor
0.9 is added to approximate det[H (x, y, o )] more closely.
3 x 3 x 3-neighborhood non-maximum suppression and sub-
pixel refinement are then applied as for the DoG detector.
Likewise, candidates with ¢ below a threshold 6 are rejected.
To speed up the computation, one may optionally increase
the sampling intervals, i.e., compute ¢ only for every nth
pixel (Bay et al. 2008).
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Fig. 7 Left: Filters composed of box filters as used by Fast Hessian
as approximations to second order derivatives of Gaussians. Weights
of black and white regions as denoted, grey regions have weight zero.
Figure adapted from Bay et al. (2008). Right: Bresenham circle. The
black point is the current candidate point p, the 16 grey points are
the discretized approximation of the outlined circle around it. Figure
adapted from Rosten and Drummond (2006)

4.2.5 Features from Accelerated Segment Test (FAST)

Rosten and Drummond (2005, 2006) developed a high-
speed corner detector which they coined FAST, for Features
from Accelerated Segment Test. The algorithm operates on
a discretized circle around a candidate point p as shown in
Fig. 7 (right). p is classified as a corner if there exists a con-
tiguous arc of at least nine pixels that are all brighter or all
darker than p by a threshold ¢. The algorithm was further ac-
celerated by training a decision tree to test as few pixels as
possible for classifying a candidate pixel as corner or non-
corner. With this decision tree, only 2.26 pixels are tested
for each candidate on average, whereas with the naive algo-
rithm, 2.8 are tested (Rosten and Drummond 2006).

In contrast to all aforementioned detectors, detection with
the FAST algorithm does not inherently provide a mea-
sure of the “strength” of a feature. In order to apply non-
maximum suppression, the following score is computed for
each candidate point:

c(p):max{ Dy =Tyl —t. ) g —1Ip| —;} (8)

geSt qesS—

where S is the subset of pixels on the circle that are brighter
than p (by ¢) and S_ the subset of pixels that are darker than
p (by t) (Rosten and Drummond 2006).

4.2.6 Center-Surround Extrema (CenSurE)

Like Lowe (2004)’s DoGs, the filters designed by Agrawal
et al. (2008) aim at approximating a Laplacian of a Gaussian
filter, though simplified further: In the first step, the filter is
reduced to a bi-level filter, i.e., with filter values —1 and 1.
Approximating the Laplacian of a Gaussian then yields a
torus-shaped filter kernel as depicted in Fig. 8 (left). As this
filter is computationally rather expensive, three approxima-
tions are proposed, each getting less symmetric, but easier
to compute (Fig. 8 right).

As mentioned above, box filters can be efficiently com-
puted at any scale using an integral image. For octagons and
hexagons, Agrawal et al. (2008) propose the use of slanted
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Fig. 8 CenSurE’s bi-level filters. The circle (left) is the ideal, fully
symmetric bi-level approximation of the Laplacian. From left to right,
the approximations are coarser (less symmetric), but easier to compute:
octagon, hexagon, square. Figure adapted from Agrawal et al. (2008)

integral images, where the value stored at each pixel (x, y)
is the sum of intensities in the trapezoidal area above (x, y).
Octagons and hexagons can then be decomposed into a few
trapezoids and thus also be efficiently computed at any scale.

3 x 3 x 3-neighborhood non-maximum and edge re-
sponse suppression are applied in a similar fashion as in the
DoG and Fast Hessian detectors. Agrawal et al. (2008) con-
clude that the octagon filter represents the best trade-off be-
tween speed and repeatability.

4.3 Feature Descriptors

After “interesting points” have been identified, a descrip-
tion has to be found that can be used to identify and match
them across images. Ideally, this description is unique to
every world point X, but identical for all views x; = P; X
of X. This ideal case is only possible in extremely simpli-
fied environments, but proposed descriptors aim to capture
the texture of the local neighborhood while being invariant
to changes in illumination, scale and rotation.

As for the interest point detectors, the following sections
review the descriptors which are included in the evaluation.

4.3.1 Image Patch

The most straightforward description of a feature point is
the image patch around the point itself. Computation of
this “descriptor” only requires (sub)sampling the image at
a given location. It does not have any of the desired in-
variance properties described above, although invariance to
uniform illumination changes can be achieved by normal-
izing the patch’s intensity values. Tracking systems that
use image patches for matching either assume that the
viewpoint (relative position and orientation of camera and
patch), and therefore the patch appearance, has changed
very little since it was last observed (Cheng et al. 2006;
Nistér et al. 2004), or use an estimate of the current cam-
era position to warp the last appearance of the patch to what
it would look like if viewed from the estimated camera po-
sition (Davison et al. 2007; Eade and Drummond 2006b;
Klein and Murray 2007).

4.3.2 Scale Invariant Feature Transform (SIFT)

For each keypoint p, the SIFT algorithm (Lowe 1999;
Lowe 2004) first assigns an orientation ¢, in order to make

the descriptor invariant to image rotation: The gradient mag-
nitude m and orientation « are computed for each pixel
around p, and a histogram of these orientations, weighted
by m and a Gaussian window around p, is computed. &) is
set to the highest peak in the histogram.

The scale o), and orientation a, of keypoint p now de-
fine a local coordinate system in which the subsequent steps
operate. A new orientation histogram (with all orientations
now relative to «,) with B bins is computed for each sub-
region of a N x N grid around p, again weighted by the
respective m and a Gaussian window around p. The de-
scriptor finally consists of the N - N - B histogram values.
Default values for N and B are 4 and 8§, respectively, yield-
ing a descriptor of length 128, but this work will evaluate
other choices as well.

4.3.3 Speeded Up Robust Features (SURF)

Similar to SIFT, SURF (Bay et al. 2008) first assigns an ori-
entation to each keypoint: A circular region around the key-
point is convoluted with two Haar wavelets. The size of re-
gion and wavelets as well as the sampling step are dependent
on the scale o at which the keypoint was detected. The filter
responses, weighted with a Gaussian around the keypoint,
are then represented as vectors in a two dimensional space
and summed up with a rotating angular window. The longest
resulting vector determines the orientation of the keypoint.
As for SIFT, scale and orientation now define a local
coordinate system for the computation of the descriptor.
A square region around the keypoint is split up into 4 x 4
subregions and the following feature vector is computed:

[de’zdy,zldxl,ZIdyl} )

dy and dy, are the filter responses to the Haar wavelets and
all sums are over regularly spaced sample points in the
respective subregion. Concatenating the feature vectors of
each of the subregions yields the SURF descriptor of length
4-4.4 =64 (Bay et al. 2008).

4.3.4 Keypoint Classification with Randomized Trees

Lepetit and Fua (2006) formulate recognition of keypoints
as a classification problem using Randomized Trees as
trained classifiers. In particular, the set of all possible ap-
pearances of an image patch i is considered one class C;.
While creating a “forest” of Randomized Trees, each node
n gets assigned two randomly chosen pixel displacements
Pn, qn- For a candidate keypoint x, the node tests if the pixel
at x + p, is darker than the pixel at x 4 g,. If so, the key-
point is referred to the left child, otherwise to the right child,
until it finally reaches a leaf.
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During training, a set of views is generated for each key-
point (“class”), depicting the changes that the classifier shall
be robust against (e.g., affine warps and Gaussian noise).
Each sample is “dropped down” each of the trees, eventually
reaching one of the leaves. Afterwards, a posterior probabil-
ity for each class C; and leaf /; can be extracted, denoting
the probability that a sample of C; reaches leaf /;, and, with
Bayes’ theorem, the probability that a sample that reaches
leaf [; belongs to class C; (Lepetit and Fua 2006).

Using trained classifiers has a few conceptual advantages
over descriptor-based matching:

— For recognition, a keypoint is simply “dropped down” the
classification trees, which is faster than computing a com-
plex descriptor (such as SIFT or SURF) plus matching
against a potentially large database.

— The classifiers can be trained to be robust against exactly
the conditions that are expected to occur, including ran-
dom background if looking for an isolated object.

— During the training step, the algorithm can select the key-
points that are the most stable under the presented view-
ing conditions.

The drawbacks are the requirement of a training step,
but also the limited scalability: as discussed further in
Sect. 6.2.1, the number of keypoints is inherently limited.

4.3.5 Keypoint Classification with Ferns

The Randomized Trees of Lepetit and Fua (2006) represent
the full joint probabilities for each possible combination of
node test results (thus branching out to 2" leaves for n node
tests). To compress this representation, one may employ a
naive Bayesian approach and assume that the node tests are
independent of each other (the “tree” then collapses into a
single “string” of nodes). To avoid either extreme, Ozuysal
et al. (2007) follow a Semi-Naive Bayesian approach and
model only some of the dependencies by partitioning the
node tests into groups: within each group, the joint proba-
bilities are fully modelled, while each group is assumed to
be independent from the other groups. Thus, the classifier
trees now structurally look like “ferns.” Training and classi-
fication are conducted as for Randomized Trees.

5 Setup for Evaluating Detectors and Descriptors for
Tracking

5.1 Evaluation of Interest Point Detectors

Tested Interest Point Detectors The interest point detectors

that were evaluated are Harris (Harris and Stephens 1988),

Shi-Tomasi (Shi and Tomasi 1994), DoG (Lowe 1999), Fast
Hessian (Bay et al. 2008), FAST (Rosten and Drummond
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2006), and CenSurE (Agrawal et al. 2008). As discussed in
Sect. 2, many other detectors have been proposed in the lit-
erature. The reasons for the selection above are as follows:
these detectors are considered to be state-of-the-art and have
been widely used (Harris, Shi-Tomasi, SIFT), they were
previously shown to outperform other detectors (Schmid
et al. 2000; Rosten and Drummond 2006; Bay et al. 2008;
Agrawal et al. 2008), and they are used in state-of-the-art
visual tracking systems (cf. Table 1).

Performance Measures As motivated in Sect. 4.2, the cri-
terion that is most relevant for visual tracking as well as
for other domains (Bay et al. 2008) is repeatability (Schmid
et al. 2000):

repeatability

NG €8i,xp € SHINH; - xa — Hj - xpl <€}
B |Si

(10)

where S;, §; are the sets of points detected in frames i and
J, respectively, and Hj is the homography between the kth
frame and the reference frame. Even with perfect ground
truth, a re-detected point will not be at exactly the same
position as in the old frame: This is most obvious in the
case of detectors that do not work with subpixel refinement,
where the detected point has to “jump” to the next pixel at
some point during object or camera movement (a more de-
tailed list of reasons may be found in Rosten and Drummond
20006). For our evaluations, ¢ is set to 2.

It should be noted that Schmid et al. (2000) define the de-
nominator of (10) as min{|S;[, |S;|}. However, this leads to
a seemingly perfect repeatability of 1 if the detector returns,
for example, 100 points in the first frame and only one point
in the second frame, as long as this single point is among
the 100 detected earlier, which is misleading. Our choice
of denominator comes at the price of a non-symmetric per-
formance measure, but ensures that it reflects the way that
a tracking system operates: it tracks from one frame fo the
next, hence a non-symmetric performance measure seems
acceptable.

Unfortunately, the repeatability criterion is biased in fa-
vor of algorithms that return many keypoints: as a trivial ex-
ample, an algorithm that simply “detects” every single pixel
has a repeatability of 1. Alternative measures have been pro-
posed (Mohanna and Mokhtarian 2006), but they rely on
subjective decisions and are not relevant for the application
of visual tracking. One possibility is to adjust the parame-
ters for the comparison so that different detectors return the
same number of points (see, e.g., Bay et al. 2008), but this
assumes that all detectors work equally well for any number
of features, which is not the case as Fig. 10(a) will show, and
the difference in performance outweighs the criterion’s bias.
Additionally, the number of features that a detector works
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well with might be an important factor in the decision of
which detector to use in a specific application, so instead of
trying to equalize this value, we will report it together with
the repeatability.

Moreover, the repeatability criterion as given in (10) al-
lows arbitrarily small sets of points: A single, perfectly sta-
ble point will produce a repeatability of 1. However, if we
want to use the detector for a tracking system that estimates
a pose with d degrees of freedom, we need at least d/2 cor-
rectly re-detected (and identified) points. In our setup, we
require 4 points to correctly obtain the homography. There-
fore, we amend (10) and set the score to O if the number of
re-detected points is smaller than 4. This is especially im-
portant during the first stage of our evaluations, in which we
determine the parameter configuration to be used: In prelim-
inary evaluations, we observed that DoG and Fast Hessian
obtained high repeatability scores for very high thresholds,
resulting in very few features. Choosing the parameters such
that repeatability as given in (10) is maximized thus fre-
quently led to less than 4 re-detected points. The above cor-
rection alleviates that problem and ensures that maximizing
repeatability also maximizes the chance of tracking success.

5.2 Evaluation of Feature Descriptors

Tested Feature Descriptors The feature descriptors that
were evaluated are image patch, SIFT (Lowe 1999), SURF
(Bay et al. 2008), classification via Randomized Trees (Lep-
etit and Fua 2006), and classification via Ferns (Ozuysal
et al. 2007). The reasons for this selection are analogous
to the arguments for choosing the detectors as listed in
Sect. 5.1: The chosen descriptors are widely used, were
shown to outperform others and/or perform comparably
(Mikolajczyk and Schmid 2005; Bay et al. 2008), and are
used in state-of-the-art visual tracking systems (cf. Table 1).
The keypoint classifiers were given the first frame of
the “unconstrained” motion pattern of the respective texture
(along with the correct warp) for training. The same detec-
tor was used during both training and evaluation. As for the
descriptors, several parameter configurations were evaluated
(including parameters regarding the training step).

Matching Paradigm for Descriptors To simulate a track-
ing system with pose estimation affected by uncertainty, we
match each descriptor against all descriptors from the previ-
ous frame that fall within a circular region of interest around
the current descriptor’s location. We set this radius to 50
pixels due to the consideration that, if simulating a frame-
to-frame tracker, we assume that a pixel can hardly move
farther in a single frame, as otherwise motion blur will likely
prohibit successful tracking (cf. repeatability results on mo-
tion blur, Fig. 10(h)). This value is of course application-
specific and, in this evaluation, arbitrary to a certain extent,

but the size of this region relates to the uncertainty inher-
ent to the system and is thus independent of the specific
detector/descriptor used.* Its influence on the descriptors’
performance will be evaluated (and shown to be limited) in
Figs. 13(a) and 16.

The first nearest neighbor (INN), i.e., the descriptor with
the smallest distance in descriptor space, is identified and
established as its match.

Performance Measures The performance criterion used is

precision of INN

. number of correct matches an

" number of correct + false matches

Other criteria can be used, for example recall (ratio of
retrieved matches to number of relevant candidates within a
certain database) or precision of the first k nearest neighbors.
Whether or not a criterion is relevant depends on the match-
ing strategy that is used (Mikolajczyk and Schmid 2005): as
most real-time tracking systems (Sect. 4.1) evaluate only the
INN, the precision of the 1NN is the most relevant criterion
in this context. The classification provided by the classifiers
may be interpreted as “one-dimensional descriptor vector,’
and the classification precision (more accurately, the “best
guess” classification precision) is exactly equivalent to (11).

To evaluate the performance of the descriptor indepen-
dent of the detectors’ repeatability, we simulate the ideal
detector by detecting points in the first frame and then re-
projecting them into all subsequent frames using the ground
truth warp (Calonder et al. 2008). Hence, each point does in-
deed have a unique correct match. This artificial constraint
will be removed in the next stage of the evaluation.

Descriptor vs. Classifier Paradigm It is important to note
that there are crucial differences in the problem as posed
for the descriptors (patch, SIFT, SURF) compared to the
trained classifiers (Randomized Trees and Ferns): By using
classifiers, one inherently employs tracking-by-detection, or
model-based tracking (the model being the image(s) that
were used to train the classifiers). While descriptors may be
used in a model-based fashion as well (by computing de-
scriptors for a reference image and then matching against
those instead of matching against the previous frame), this
is not advisable in the general case, as the descriptors have
to be computed in every frame either way and this merely
throws away the advantage of short baseline distances.

This difference has important implications for the inter-
pretation of our results:

4To reduce it, one has to improve the pose prediction, increase the
framerate, and/or restrict the allowed movements, which are all exter-
nal factors from the point of view of this evaluation.
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— While for the descriptors, one needs the result of two
frames to evaluate precision, the classifiers always
“match” against the trained model, i.e., one “new” frame
is sufficient for evaluations, and the only sensible mea-
sure of baseline distance is to the viewpoint of the training
frame. It is therefore important to note that, in all figures
in which results are grouped by the relative position or
orientation of two frames, these results refer to different
pairs of frames for the descriptors as compared to the
classifiers.

— While it is straightforward to constrain the region that a
descriptor vector is matched against (and given the task
of tracking reasonable to do so), this is less straightfor-
ward for the classifiers, which will simply classify each
point according to their model. This means that the num-
ber of candidates is inherently larger for the classifiers.
Note however that Fig. 13(a) will show that the influence
of this factor is limited.

— Lastly, given “simple” circumstances, it is possible that
all keypoints can be matched correctly using descriptor
vectors (i.e., precision = 1), whereas the number of key-
points that can be recognized correctly using a classifier
is inherently limited to the number of keypoints that the
model was trained to recognize (here: 600, which was de-
termined to be a good parameter in Fig. 12(a)). If more
points are detected in a particular frame, the precision will
necessarily drop, even with a “perfect” classifier.

These differences have to be kept in mind when interpret-
ing, e.g., Fig. 13.

5.3 Evaluation of Detector-Descriptor-Based Tracking

As mentioned before, neither feature detection nor descrip-
tion are isolated tasks. Instead, our goal is to reliably track
an object of interest, or, equivalently, estimate the (relative)
pose of scene and observer. In our setup, this is equivalent to
estimating the homographic warp between the frames. Al-
though we argued for why the detector’s repeatability and
the descriptor’s precision are the most important perfor-
mance measures for the two individual stages, we want to
evaluate the actual success rate for tracking for any detector-
descriptor combination.

Tested Solutions We tested each possible combination of
the above detectors and descriptors. Additionally, we em-
ployed RANSAC (Fischler and Bolles 1981), which is fre-
quently used (cf. Table 1) and well-suited for this task, as
an outlier removal step (cf. Fig. 6), and computed the ho-
mographic warp from the largest set of inliers found after
200 iterations. Note that our focus remains on evaluation
of the (combination of) detector and descriptor; the use of
RANSAC as well as specific parameters are arbitrary albeit
reasonable choices for a possible application scenario.
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As before, descriptors are sought to match against de-
scriptors from the previous frame in a circular region of in-
terest of 50 pixel radius to simulate a tracking system with
pose estimation affected by uncertainty.

Performance Measures ~As a performance metric we mea-
sure the distance between the true (ground truth) position
of the red markers and their projected position using the es-
timated homography. We define a frame to be successfully
tracked if the average error between the estimated and the
true positions of the ground truth markers is less than five
pixels. This yields a higher-level metric than the ones em-
ployed above, in particular, it yields one value per frame in-
stead of one per keypoint.

5.4 Testbed

We used the dataset described in Sect. 3. As briefly men-
tioned above, there are two different use cases: To simulate
continuous tracking, the performance measures (repeatabil-
ity, precision, tracking success) are evaluated on consecu-
tive frames. To evaluate robustness against larger baseline
distances, we randomly chose 10n frame pairs of each se-
quence, where n is the length of the sequence, and evalu-
ated for these frame pairs (note that this does not make a
difference for the classifiers). The pairs were binned by the
relative pose change between the two frames (e.g., angle of
rotation for in-plane rotation), and the obtained performance
results were averaged for each bin. In the context of track-
ing, this is relevant for tracking-by-detection, recovery af-
ter tracking failure over a few frames, or re-visiting a previ-
ously mapped scene (closing of a loop). If both conditions
are shown in the same graph, the latter will be indicated by
dashed lines.

5.5 Implementation

The software framework for this evaluation was implement-
ed in C4+. For the evaluated algorithms, the implementa-
tions of the original authors were used where available (Fast
Hessian+SURF,> FAST, classification with Randomized
Trees,’ classification with Ferns).8 Implementations of Har-
ris and Shi-Tomasi are provided with the OpenCV library.”
The Harris implementation by Edward Rosten, which was
used in the comparison in Rosten and Drummond (2006)
and which he kindly made available to us, was found to

Shttp://www.vision.ee.ethz.ch/~surf/.
Shttp://svr-www.eng.cam.ac.uk/~er258/work/fast.html.
http://cvlab.epfl.ch/software/bazar/index.php.
8http://cvlab.epfl.ch/software/ferns/index.php.

9http://sourceforge.net/projects/opencvlibrary/—note that taking the
library functions as-is does not provide control over the windowing
kernel.
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be equivalent (i.e., detect the same set of points), which
we take as an indication that both implementations are cor-
rect and implement exactly the original algorithm. For the
comparison, OpenCV’s implementation was used, as it was
slightly faster. The original DoG+-SIFT implementation is
only available as a binary executable!® which does not allow
the flexibility needed for this evaluation. Instead, two pub-
licly available SIFT implementations were used, from Rob
Hess!! and Andrea Vedaldi.'? Due to subtleties in, for ex-
ample, location refinement and thresholding, the implemen-
tations are not exactly equivalent. The comparison shows re-
sults for Vedaldi’s implementation, which was found to per-
form slightly faster and better. For CenSurE, we use an im-
plementation from WillowGarage, which is “[...] based on
CenSurE with some modifications for increased speed and
stability.”!3 The patch descriptor only requires (sub)samp-
ling the image at a given location.

It should be noted that, unlike in some of the visual
tracking systems in Table 1, the image patch does nor get
warped according to its expected appearance in the target
frame. As none of the descriptors claim to be fully in-
variant to perspective distortion, this step would improve
the performance for all of them, so the (in)ability of per-
forming a correct estimate is a property of the system and
independent of this evaluation. With respect to a system
that predicts the camera pose and warps the image accord-
ingly, the tests below therefore show how much error can
be tolerated. Similarly, we employ the corner detectors only
on the full-scale image—for some applications, it might
be desirable to embed them into a multi-scale framework
(see, e.g., Chekhlov et al. 2006; Klein and Murray 2007;
Wagner et al. 2009).

Execution time is measured only for the core part of the
algorithms, that is, without the unifying interface needed
for the evaluation or any initialization or memory allocation
steps that could be moved to a pre-processing step.

Reported timings refer to an IBM Thinkpad T60 with a
1.83 GHz Dual Core CPU (only one core used for the com-
putations) running Linux.

6 Results and Analysis
6.1 Interest Point Detectors
6.1.1 Parameter Configurations of Detectors

A total of 25 parameters for the various detectors were eval-
uated in terms of their impact on the performance of the al-

Ohttp://www.cs.ubc.ca/~lowe/keypoints/.
Whittp://web.engr.oregonstate.edu/~hess/.
Zhttp://vision.ucla.edu/~vedaldi/code/siftpp/siftpp.html.
Bhttp://pr.willowgarage.com/wiki/Star_Detector.

repeatability

—{—— Harris
—<—— Shi-Tom
—4A—— DoG
——— FHess
—O—— FAST
—%—— CenSurE

building paris mission bricks sunset wood
texture

Fig. 9 Repeatability on the different textures, motion pattern “un-
constrained.” Here, solid lines indicate performance for consecutive
frames, dashed lines indicate performance for randomly selected pairs
(5000 per texture). The bold gray lines indicate the average over all
detectors

gorithm, namely, execution time, number of detected fea-
tures and repeatability. We found that, while some param-
eters have a clear optimal value and/or only limited im-
pact (within a certain range of reasonable values) on two
or all three measures, some parameters incorporate a trade-
off between, for example, time and repeatability, and that
ill-chosen values may significantly reduce the performance.
Due to space limitations and the amount of data from this
particular stage, the results are not presented here; the inter-
ested reader is referred to a technical report (Gauglitz et al.
2010). We then fixed one set of parameters for the following
comparisons. The numerical values can be found in Table 3
in the Appendix.

6.1.2 Comparison of Detectors

Figure 10 presents the obtained detector comparison results,
specifically, the repeatability under various conditions.

Figure 10(a) shows the repeatability vs. the number of
detected points (in the textured region of interest) achieved
by the detectors by varying the respective thresholds. For all
following experiments, the threshold was set to the value
given in Table 3 (indicated by the respective marker in
Fig. 10(a)).

Figure 10(b) explores the tradeoff repeatability vs. ex-
ecution time, both in the case of consecutive frames and
random frame pairs. For the latter, the repeatability of all
detectors decreases significantly, however, the performance
of the “center-oriented” detectors, especially Fast Hessian,
drops much farther. This result is broken down by texture in
Fig. 9, and by the relative baseline distance in Fig. 10(c).
It can be analyzed further using the isolated motion pat-
terns Figs. 10(d)—(g): while large perspective distortion is
the biggest challenge for all detectors, the corner detectors
maintain higher repeatability for medium angles. As per-
spective distortion occurs frequently in many “real-world”
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Fig. 10 Repeatability (Rep.) of detectors under various conditions.
(a)—(c) use the motion pattern “unconstrained”; for (d)—(j), the sub-
captions indicate the used motion pattern. All results averaged for all
textures and frame pairs. (a) Rep. on consecutive frames vs. num-
ber of detected points (in the region of interest), varying the respective
threshold parameter. For comparison, the dashed gray line indicates the
repeatability of randomly selected points, thus clearly visualizing the
criterion’s bias. (b) Rep. vs. execution time, for all consecutive frame
pairs (above line) and 30 000 pairs of randomly selected frames (5000
per texture) (below line). (¢) Rep. on random frame pairs as a func-
tion of the baseline distance between the two frames. (d)—(g) Rep. as
function of geometric changes. For each figure, 5 x 500 random frame
pairs (500 per texture) of the respective motion pattern were evaluated
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(i) “static lighting”

(j) “dynamic lighting”

and then binned and averaged according to the relative change in the
camera’s position between the two frames. (h) Rep. in the case of
motion blur, both during motion (solid lines) and compared to the first,
still frame (dashed lines). For absolute values of the speeds 1-9 refer
to Sect. 3.2. (i) Rep. for the four different light conditions, both within
one condition (solid lines) and compared to the first condition (dashed
lines). (j) Rep. for dynamic light changes. Here, the repeatability is
shown over time (i.e. frames) and filtered with a median filter of length
15 to make the figure legible (note that (j) is the only figure that shows
repeatability for single frames). While on average, all detectors show
the same behavior, detailed analysis of lighting changes for each tex-
ture (not shown) reveal differences
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Fig. 11 Precision for different descriptor variants, averaged for all
detectors and textures; consecutive frames (solid lines) and 5 x 500
randomly selected frame pairs (dashed lines); motion patterns “un-
constrained.” (a) Precision of matching with an image patch, varying
the patch’s size and the similarity measure (SSD = sum of squared
differences, ZM SSD = zero mean SSD, NCC = normalized cross

camera paths as well as our pattern “unconstrained,” this re-
sult is important.

The difficulty of the corner detectors to cope with motion
blur (Fig. 10(h)) and the texture “wood” (Fig. 9) is apparent.

Fast Hessian performs best for small baseline distances
for almost every texture (Fig. 9), as well as for panning mo-
tion (Fig. 10(e)) and motion blur (Fig. 10(h)).

None of the detectors cope well with the increased noise
level of the darker static lighting conditions (Fig. 10(i)). Fig-
ure 10(j) is the only figure that shows repeatability over time,
namely, while the lighting is changed (note that the output
is smoothed with a median filter to make the figure legi-
ble). While all detectors show the same behavior on average,
detailed analysis of lighting changes for each texture (not
shown) reveal differences: interestingly, there are two tex-
tures in which Fast Hessian outperforms all others and main-
tains reasonable repeatability throughout the light change,
but two others where it fails to find any features and is out-
performed by all others.

6.2 Feature Descriptors and Classifiers

6.2.1 Parameter Configurations of Descriptors and
Classifiers

As for the detectors, we first evaluated different parame-
ters for the descriptors. Figure 11(a) reveals that the gain of
increasing the patch size beyond 11 pixels is very small—
indeed, existing systems use patch sizes of 8 or 11 (cf. Ta-
ble 1). In the following, a normalized patch of size 11 and
sum of squared differences (SSD) as similarity measure are
used.

Figure 11(b) shows the matching precision of SIFT while
varying the number of subwindows and the number of bins

correlation). (b) Precision of matching with SIFT, varying the number
of subwindows and the bins for each of the windows. (¢) Precision of
matching with SURF, varying the size of the subwindows. (d) Com-
parison of descriptors with and without orientation assignment. Here,
the orientation assignment of SURF is used for patch as well

per window. The default parameters (4 x 4 and 8, respec-
tively) result in high precision, but a long descriptor vector
(128). For the comparison, we decided to use a configura-
tion of 4 x 4 windows and 3 bins, which performs almost as
well, and decreases storage requirements and time needed
for matching by 63%.

According to Fig. 11(c), SURF performs best with the
default of window size 4 and the ‘standard’ configuration
(for details on the ‘extended’ configuration see Bay et al.
2008) and is hence used for the comparison.

Figure 11(d) shows that for large parts of our testbed, ori-
entation assignments are, on average, not beneficial for any
of the descriptors, as in-plane rotation does not occur fre-
quently enough to outweigh the disadvantage of discarding
the original orientation. With the exception of Figs. 13(f)
and 17(g), it is therefore not used in the evaluation. These
two figures hence deserve special attention for applications
that require rotation invariance.

The keypoint classifiers using Randomized Trees and
Ferns have a whole array of parameters concerning the train-
ing (number of views generated during different phases,
number of model points to train for), properties of the
Trees/Ferns (number, depth) and the underlying image re-
gion (size of patch). While some parameters only influence
the training phase (e.g., number of training samples), other
parameters define memory requirements and running time.
Figure 12 shows three examples of the parameter evalua-
tions. The number of model points, N, is especially interest-
ing in two respects: First, it includes a trade-off between the
upper bound on how many points can be correctly classified,
regardless of the viewing conditions (cf. Sect. 5.2), and the
expressiveness of the classification (too many classes will
“blur” the classification results), which can be observed in
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Fig. 12 Impact of different parameters for the classifiers on their clas-
sification precision, averaged for all frames, textures and detectors,
motion pattern “unconstrained.” (a) Number of model points, dashed
lines depict the time needed to classify a single point. The superlinear

Table 2 Time to compute a single descriptor. Note that this table con-
ceals an important advantage of the keypoint classifiers: their result is
a classification, which may be fed directly into outlier removal/pose
estimation algorithms, while the descriptors first have to be matched
against descriptors of previously seen keypoints. The absolute values
are implementation and hardware specific, but the relative order of
magnitude is unlikely to change unless special hardware acceleration
is used

Descriptor  Patch SIFT SURF R. Trees  Ferns

Time[s] 5x107° 1x1073 2x107* 7x107° 5x107°

Fig. 12(a) for Randomized Trees.'* Second, it heavily influ-
ences the running time, as for each classification, vectors of
length N have to be added (one for each Tree/Fern in the
set) and the optimal value extracted.

The number of tests per Tree/Fern and the number of
Trees/Ferns influences especially the memory requirements,
and extension beyond the depicted ranges was found to be
impractical. The performance was reported to level off soon
beyond this range by Lepetit and Fua (2006) and Ozuysal
et al. (2007), respectively.

The parameter values used for the comparison can be
found in Table 4 in the Appendix.

6.2.2 Comparison of Descriptors and Classifiers

Figure 13 presents the obtained descriptor/classifier compar-
ison results, specifically, the precision under various con-
ditions.!> Table 2 lists the corresponding execution times.

14Ozuysal et al. (2007) show the same effect, though for larger N, for
Ferns.

I5Note that the condition “zoom” was omitted: the results would be
misleading, as it is the detector that is responsible for identifying the
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increase in the time for Ferns might be caused by extreme memory
requirements, the test with 1000 points aborted on our test machine.
(b) Number of trees and depth and (¢) number of ferns and depth

For interpretation of these results, it is important to keep
the differences between descriptors and classifiers in mind,
namely, (1) results grouped by baseline or orientation dis-
tances refer to different frame pairs, (2) for the descriptors,
the matching is constrained to a certain region around the
feature, and (3) the precision of the classifiers is inherently
limited if the number of points detected on the current frame
exceeds the number of model points (cf. Sect. 5.2). While
(1) should not influence the value, and the influence of (2) is
shown to be limited in Fig. 13(a), (3) may, depending on the
detector, reduce the precision significantly. We nevertheless
opted for showing both results together for the sake of space
and because, if the above limitations are kept in mind, one
might still gain useful insights from the comparison.

Figure 13 shows that, assuming the perfect detector,
the precision for all descriptors is rather similar in most
conditions, and very high for short baseline distances
(Figs. 13(b)—(d)). The radius of the search region, and there-
fore the number of candidate features that a new feature is
matched against, has limited impact (Fig. 13(a)). As men-
tioned in Sect. 5.2, the radius is set to 50 pixels for all other
experiments due to considerations about the application of
visual tracking.

In-plane rotation of more than about 10° necessitates ori-
entation assignments (Fig. 13(f)), and, as for the detectors,
perspective distortion is the hardest challenge for all descrip-
tors (Fig. 13(g)).

Matching during fast motion works very well with all
three descriptors even for extremely blurred frames (solid

“scale” of the keypoint; however, due to our setup of reprojecting the
keypoints, this information is lost. Refer to Fig. 17(e) for tracking suc-
cess including all information.
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Fig. 13 Precision (Prec.) of descriptors and classifiers under vari-
ous conditions. (a)—(d) Use the motion pattern “unconstrained”; for
(e)—(j), the subcaptions indicate the used motion pattern. All results
averaged for all respective frame pairs and textures. Note that there
are important differences in how the problem is posed for the descrip-
tors vs. the classifiers, which favor the descriptors in this figure. See
Sect. 5.2 for details. (a) Prec. vs. size of the search region. For all
remaining experiments, the radius is set to 50 pixels. (b) Prec. bro-
ken down by detector-descriptor combination, solid lines: consecutive
frames, dashed lines: 5 x 5000 random frame pairs. (c¢) Prec. broken
down by textures, solid/dashed lines as in (b). Here, the reason that
“wood” performs so well is that there are very few keypoints, so that
the number of candidate points (from which the correct one has to be

light condition
(i) “static lighting”

frame no.

(j) “dynamic lighting”

identified) is very small. (d) Prec. vs. baseline distance. (e)—(g) Prec.
as function of geometric changes. For each figure, 5 x 500 random
frame pairs of the respective motion pattern were evaluated. In (f), pre-
cision is evaluated both with orientation assignment (dashed lines) and
without (solid lines, used for all other experiments due to the result of
Fig. 11(d)). (h) Prec. in the case of motion blur, matching against the
first, still frame (dashed lines) and between frames under motion (solid
lines). For absolute values of the speeds 1-9 refer to Sect. 3.2. (i) Prec.
for the four different light conditions, both within one condition (solid
lines) and compared to the first condition (dashed lines). (j) Prec. for
dynamic light changes, shown over time (i.e. frames) and filtered with
a median filter of length 15 to make the figure legible (note that (j) is
the only figure that shows precision for single frames)
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Fig. 15 Reprojection error by detectors

lines in Fig. 13(h)), and SIFT outperforms others if match-
ing from a non-blurred to a blurred frame (dashed lines in
Fig. 13(h)). The latter is somewhat surprising given that the
gradients on which SIFT relies should be significantly al-
tered due to the (directed) motion blur.

Matching within or across static light changes (Fig. 13(i))
and even during transition (Fig. 13(j)) poses little problems
for all of the descriptors (despite high noise levels for low
light condition), even the simple intensity normalization for
patch seems sufficient for all but the darkest light condition.
SIFT is the most robust under light changes.

While the absolute precision values for the classifiers
are low, they confirm that due to the training step, the im-
pact of pose changes is reduced and the performance is
rather constant throughout a range of baseline distances
(Fig. 13(d)), in-plane rotation (Fig. 13(f)) and perspective
distortion (Fig. 13(g)).

6.3 Tracking Success of Detector + Descriptor

Histograms of the tracking accuracy (i.e., reprojection error)
obtained by the various combinations are shown in Figs. 14
and 15, broken down by descriptors and detectors, respec-
tively. As mentioned above, in the following we define a
frame to be “successfully tracked” if the reprojection error
is less than 5 pixels (dashed line in Figs. 14 and 15).

Figure 16 illustrates the influence of the size of the search
region. As before, the radius is set to 50 pixels for all remain-
ing experiments.
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Fig. 16 Tracking success rate vs. size of the search region. Here,
marker shape indicates detector (see legend in Fig. 10), color indicates
descriptor (see legend in Fig. 13). For all remaining experiments, the
radius is set to 50 pixels

Figure 17(a) shows the success rate for each detec-
tor/descriptor combination, both for consecutive frames
(i.e., frame-to-frame tracking) and random frame pairs. Es-
pecially for frame-to-frame tracking, the difference among
the three descriptors (patch, SIFT, and SURF) is very small
and overweighted by the differences among detectors. Com-
binations with CenSurE as detector perform very well,
which is due to the very good performance on the “wood”
texture, as may be concluded from Fig. 17(c). As already
indicated in Fig. 9, the corner detectors (Harris, Shi-Tomasi,
and FAST) are not able to cope with this texture and lead
to tracking failure for any descriptor. CenSurE and DoG are
the best detectors for use with the classifiers, while using
FAST is apparently not a good idea (Fig. 17(a)).

Looking at the results of individual combinations broken
down by baseline distance (Fig. 17(d)), {DoG/CenSurE}
+ {Randomized Trees/Ferns} now clearly outperform all
other solutions for baseline distance of more than 10 cm,
with the best non-trained solution being { DoG/CenSurE} +
SIFT. The computationally cheapest solution, FAST+-patch,
fails in roughly 25% more cases than DoG+-SIFT (i.e., the
classic SIFT combination). The textures “wood” and ‘“‘sun-
set” are responsible for a significant part of this (Figs. 17(b)
and 17(c)).

While the classifier-based solutions do not perform well
in the case of panning (Fig. 17(f)) and are less robust
than {DoG/CenSurE} + SIFT in the case of in-plane ro-
tation, they clearly outperform descriptor-based solutions
in the case of perspective distortion (Fig. 17(h)), where
{DoG/CenSurE} + {Randomized Trees/Ferns} perform
close to perfect up to 50° out-of-plane rotation.

In the case of motion blur (Fig. 17(1)), all classifier-based
solutions perform rather poorly, as do all combinations with
corner detectors. Fast Hessian 4 {patch/SIFT/SURF} per-
form best, both for tracking during motion and a start-
ing motion, which is not unexpected given the results of
Fig. 10(h).
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Fig. 17 Tracking success rate (Tsr.) of all detector-descriptor/clas-
sifier combination under various conditions. (a)—(d) use the motion
pattern “unconstrained”; for (e)—(j), the subcaptions indicate the used
motion pattern. All results averaged for all respective frame pairs and
textures. In (d)—(j), the shape of the marker indicates the detector (leg-
end as in Fig. 10) and the color indicates the descriptor (legend as in
Fig. 13). To reduce clutter, only a few combinations are highlighted
and identifiably marked, although the results for all 30 combinations
are shown in light gray to convey the spread of performance. (a) Tsr.
averaged for all textures and broken down by descriptors and detectors
(legend as in Fig. 13). (b) Tsr. averaged for all detectors and broken
down by descriptors and textures (legend as in Fig. 13). (¢) Tsr. av-
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eraged for all descriptors and broken down by detectors and textures
(legend as in Fig. 10). (d) Tsr. as a function of the baseline distance
(motions “unconstrained,” 5 x 5000 random frame pairs). (e)—(h) Tsr.
as function of geometric changes, 5 x 500 random frame pairs of the re-
spective motion pattern. (i) Tsr. for different levels of motion blur, both
during motion (solid lines) and to the first, still frame (dashed lines).
(j) Tsr. for the four different lighting conditions, both within one condi-
tion (solid lines) and compared to the first, brightest condition (dashed
lines). (k) Time until tracking fails (averaged over textures) during the
lighting changes from light to dark (left half) and back (right half).
Figures 14-19 are best viewed in color, please refer to the online ver-
sion of this article
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Fig. 18 Tracking success as a function of the respective frame (pair)’s
(a) repeatability and (b) INN precision. The reason for the low success
rate in the case of 100% precision is the fact that in these failed frames,
too few points were detected: thus even though all of them were cor-
rectly matched, the homography cannot be recovered. In this graph,
this effect is so strong because the likelihood of 100% precision is very
small, but the smaller the number of points, the higher the (random)
chance of matching all of them correctly

For tracking in low light conditions (Fig. 17(j)), again
the CenSurE-based solutions perform best. The results for
tracking during light change (Fig. 17(k)) are rather mixed,
but confirm several trends mentioned above, e.g., solutions
with SIFT perform well (though, interestingly, better with
the corner detectors), and Randomized Trees/Ferns perform
best with CenSurE as detector.

6.4 Further Analysis

Figure 18 show the average tracking success rate given a
certain level of repeatability (a) and precision (b). Note that
these figures do not necessarily display a strict causal rela-
tionship: several artifacts can be observed that can only be
explained with other influences, e.g., the descriptor’s preci-
sion which limits the repeatability’s impact, and the num-
ber of points, which may cause tracking to fail despite high
precision. However it becomes clear that if either repeata-
bility or precision fall below 0.3, it significantly reduces the
chances of successful tracking.

Next, we investigate the impact of the next step in the pro-
cessing chain (cf. Fig. 6), namely, outlier removal. As men-
tioned above, our use of RANSAC as well as specific pa-
rameters is arbitrary and other algorithms such as MLESAC
(Torr and Zisserman 2000), PROSAC (Chum and Matas
2005) or M-estimators (Zhang 1997) could be used (cf. Ta-
ble 1). Figure 19 shows the tracking success rate of all detec-
tor-descriptor combinations as a function of the number of
RANSAC iterations allowed. Especially the combinations
based on detectors that return many keypoints (the corner
detectors and CenSurE, cf. Fig. 10(a)) benefit from more it-
erations, which will generally be a computationally more ef-
ficient solution than opting for a more expensive descriptor
(cf. Table 2). However, the increase is limited. Given enough
iterations and with certain assumptions with respect to error
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Fig. 19 Impact of the number of iterations for RANSAC on the track-

ing success rate. Legend as in Fig. 17 (shape indicates detector, color
indicates descriptor)

measures, RANSAC is effectively similar to MLESAC and
PROSAC, hence Fig. 19 may serve as a rough indication for
their chances of success.

7 Conclusions

We have presented an extensive dataset of videostreams that
we make available with all data necessary to run evaluations
of different kinds. In terms of conditions that the dataset in-
cludes (textures with different levels of difficulty, geometric
distortions, levels of motion blur, lighting conditions), it is
more extensive than other available datasets. We hope that
other researchers will find it useful as a testbed for a variety
of algorithm classes in the context of visual tracking.

Using this dataset, we have presented a comprehensive
evaluation of detectors and descriptors for feature-based vi-
sual tracking: we first evaluated an array of algorithm pa-
rameters as to their impact on tracking performance in or-
der to obtain the best configuration for each algorithm, then
compared both detectors and descriptors in isolation, and fi-
nally compared a total of 30 detector-descriptor combina-
tions as tracking solutions. To our knowledge, this is the first
work that compares these algorithms specifically in the con-
text of visual tracking.

The value of this evaluation lies in the abundance of data
presented in Figs. 9-19, and in presenting quantitative evi-
dence for many trends. Given the many different conditions
on which the algorithms were evaluated, unknown require-
ments of specific applications and the trade-offs involved, it
is difficult to derive universally valid recommendations or
proclaim a single “winner.” Also, some of the results (such
as: combinations with SIFT tend to be more robust than
combinations using an image patch) are hardly surprising.
However, there are many detailed insights that emerge from
this analysis, including the following:

The tested center-oriented detectors (DoG, Fast Hessian,
CenSurE) provide higher repeatability than the corner de-
tectors (Harris, Shi-Tomasi, FAST) for smooth motion and



Int J Comput Vis (2011) 94:335-360

357

short baseline distances, but they are more susceptible es-
pecially to perspective distortion. Fast Hessian and Fast
Hessian-based tracking solutions cope best with strong mo-
tion blur. In terms of size of the image patch descriptor,
a point of diminishing returns is reached around 11 x 11
pixels. The dimensionality of SIFT can be significantly re-
duced without affecting its precision by reducing the num-
ber of bins of the underlying histograms. For a perfect de-
tector, the matching precision of different descriptors would
be similar, but differences emerge in combination with dif-
ferent (obviously non-perfect) detectors. Interestingly, Cen-
SurE + SIFT performs slightly better than DoG + SIFT. A
non-trained tracking solution that handles out-of-plane ro-
tation beyond 20° satisfactorily has yet to be found—this
confirms findings by Moreels and Perona (2007) in a differ-
ent context. Trained classifiers clearly outperform descrip-
tors for medium baseline distances (especially in the case of
out-of-plane rotation), but only if combined with an appro-
priate detector: Randomized Trees and Ferns perform espe-
cially well with CenSurE, and especially badly with FAST.

We also presented data on computation times for all algo-
rithms, for different textures, influence of the search radius,
the computation allotted for outlier removal, and correlation
between the low-level metrics repeatability and 1NN preci-
sion and the high-level metric tracking success.

Our data may be used in several different ways: First, it
shows what level of performance to expect and which claims
about the algorithms can be confirmed in practice and which
ones cannot, in particular for the image quality available in
real-time tracking. Second, it provides quantitative support
for the decision as to which detector or descriptor to choose
for a particular tracking problem, how to choose parameter
values, and what tweaks are most promising to increase per-
formance of a given system. Third, especially due to the de-
tailed multi-stage evaluation approach, it provides insights
into strengths and drawbacks of the algorithms, and may
stimulate ideas of how to improve existing algorithms, how
to combine them (both at algorithm and/or system level), or
which avenues are promising for future research.

In terms of limitations of our work, it should be noted
that, despite the high-level metric of tracking success, our
evaluations are still to be considered analytical in nature:
they focus on insights on the different algorithms rather than
recommending the perfect tracking solution. For the lat-
ter, application-specific requirements such as supported mo-
tions, processing power and required framerate would have
to be known, and the evaluations would have to encompass
even more components (e.g., outlier removal strategies, pose
estimators and predictors), system integration features such
as multi-scale frameworks or patch warping (cf. Sect. 5.5),
as well as non-feature-based solutions such as alignment-
based techniques (Benhimane and Malis 2004; Adams et al.
2008). Moreover, although we report execution times, we do

not explicitly explore the trade-offs involved in budgeting a
fixed amount of time for different components or voluntarily
adjusting the framerate. We hope that the presented dataset
will prove useful for future work in these areas.
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Appendix

Tables 3 and 4 list the parameter values that were used in
the comparisons for detectors and descriptors/classifiers, re-
spectively, except where specifically indicated otherwise in
the respective figure caption.

Table 3 Parameter values for the interest point detectors

Detector Parameter Value
Harris k 0.15
threshold 6 0.001
w(u, v) exp{—u? +v%)/20?}
o 2
kernel size 20
gradient kernel Sobel
Shi-Tomasi threshold 6 0.022
w(u, v) exp{—u? + v%)/20?%}
o 1.5
kernel size 1.50
gradient kernel Sobel
DoG octaves 4
levels per octave 3
00 1.6
Qedge 10
Ocontr 0.02
Fast Hessian octaves 4
threshold 6 4
sampling step n 1
initLobe 3
FAST threshold ¢ 20
CenSurE scales 6
response threshold 6

line thresh. (binarized) 10
line thresh. (projected) 10
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Table 4 Parameter values for the descriptors and classifiers

Descriptor Parameter Value
Patch size 11 x 11
avg. intensity normalized to zero
SIFT subwindows 4 x4
bins per window 3
SURF standard scheme (not extended)
window size 4
Rand. Trees # of views to detect stable points 3000
& Ferns # of points in model N 600
minimum detection rate 0
# of views for training 10000
patch size 32
Rand. Trees # of trees 20
tree depth 12
Ferns # of Ferns 30
# of tests per Fern 12
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