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Abstract—We present an approach and prototype implementation to initialization-free real-time tracking and mapping that supports

any type of camera motion in 3D environments, that is, parallax-inducing as well as rotation-only motions. Our approach effectively

behaves like a keyframe-based Simultaneous Localization and Mapping system or a panorama tracking and mapping system,

depending on the camera movement. It seamlessly switches between the two modes and is thus able to track and map through

arbitrary sequences of parallax-inducing and rotation-only camera movements. The system integrates both model-based and model-

free tracking, automatically choosing between the two depending on the situation, and subsequently uses the “Geometric Robust

Information Criterion” to decide whether the current camera motion can best be represented as a parallax-inducing motion or a rotation-

only motion. It continues to collect and map data after tracking failure by creating separate tracks which are later merged if they are

found to overlap. This is in contrast to most existing tracking and mapping systems, which suspend tracking and mapping and thus

discard valuable data until relocalization with respect to the initial map is successful. We tested our prototype implementation on a

variety of video sequences, successfully tracking through different camera motions and fully automatically building combinations of

panoramas and 3D structure.

Index Terms—Visual tracking, simultaneous localization and mapping, panorama mapping, model selection, GRIC score, keyframe-based,

initialization-free, augmented reality
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1 INTRODUCTION

OVER the past decade, there has been a tremendous
amount of work on real-time monocular vision-

based tracking and mapping (T&M) systems, that is, sys-
tems that simultaneously determine the position and/or
orientation of the camera with respect to a previously
unknown environment and create a model of this envi-
ronment. In addition to other applications, T&M is an
important enabling technology for Augmented Reality
(AR) in unprepared environments.

Two important characteristics of a T&M system are the
type of camera motion and the geometry of the environment
that it supports. For example, a system may assume a planar
environment [31] or a camera that is rotating around its
optical center [7], [42]. Simultaneous Localization and Map-
ping (SLAM) systems such as [6], [8], [17], [27] can deal
with environments of arbitrary geometry and any camera
motion that induces parallax. However, with few exceptions
[4], they do not support rotation-only camera motion: Their
mapping is intrinsically built upon triangulation of features;
thus, they require that each feature be observed from two

distinct camera locations and may produce degenerate
maps or fail completely if the camera rotates from one part
of the environment to another.

Therefore, most SLAM systems need to be initialized
with a distinct “traveling” movement of the camera for
each newly observed part of the environment, and the
required travel distance is directly proportional to the dis-
tance to the environment. This restriction is acceptable for
vehicle navigation or if building a model of the environ-
ment is the user’s main intent. However, it is a major lim-
itation for the use of SLAM systems in AR, where the
environment modeling is assumed to be done in the back-
ground and ideally transparent to the user, who should
not be required to move a certain way in order to make
the system work. Moreover, rotation-only “looking
around” is a very natural motion and may occur in many
AR applications [21], [42].

Our particular motivation is the use of a T&M system for
remote collaboration [10], where the emerging model of the
environment is used to allow a physically remote user to
view and navigate the environment, and AR annotations
that are registered to this model are used to communicate
visual/spatial information. For this and many other appli-
cations, the paradigm for modeling the environment should
be to make the best possible use of all data that can be
casually collected and to enable viewing and placement of
annotations for as much time as possible. In particular, this
means not forcing the user to concentrate on model build-
ing, and not discarding all frames that stem from rotation-
only movements (as in most SLAM systems) or translations
(as with panorama mapping).

In this paper, we present an approach and prototype
implementation that fulfills these criteria: We describe a
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real-time tracking and mapping system that explicitly
supports both parallax-inducing and rotation-only camera
motions in 3D environments, does not need a separate
initialization step, and continues to collect data despite
intermittent tracking loss (see Fig. 1). In the case of inter-
mittent tracking loss, it creates several disjoint maps
which are later merged if possible. One key element of
our approach is the use of the “Geometric Robust Infor-
mation Criterion” (GRIC) by Torr [41] (adapted to sup-
port large search regions (Section 6.1) and absolute pose
models (Section 6.2)) to decide whether the current cam-
era motion can best be represented as a parallax-inducing
motion or a rotation-only motion.

An earlier version of our system was presented at ISMAR
2012 [11]. We have significantly extended this work, incor-
porated new features and improvements, obtained new
quantitative and qualitative results, and added discussion.
Most notably, we have generalized the model estimation
and selection to include both two-view relations as well as
3D-model-based pose estimation, thus showing that an
important core component of state-of-the-art SLAM systems
can be integrated in our framework.

2 RELATED WORK

2.1 Monocular Vision-Based SLAM

SLAM is the problem of determining the pose of the
observer relative to an unknown environment while concur-
rently creating a model of the environment (which may
have arbitrary geometric complexity) as the observer moves
around. In the case of monocular vision-based SLAM [6], the
only sensor used to accomplish this task is a single camera.

Filter-based SLAM systems [3], [6], [8] maintain esti-
mates of both camera and feature positions (i.e., the map) in
a large state vector which is updated using Kalman filters in
each frame. In contrast, keyframe-based systems [17], [18],
[26] track features in each frame, but use only selected
frames to update their map, typically using bundle adjust-
ment for the latter. While all aforementioned systems are
based on sparse features, Newcombe et al. [27] presented a
keyframe-based system that uses dense mapping. They

report extremely robust results, but (in contrast to the above
systems) require a GPU for real-time operation.

In both types of systems, the map is designed to store
structure-from-motion (SfM) data, that is, feature positions
in 3D that have been triangulated using observations from
multiple viewpoints. Thus, they require parallax-inducing
camera motion in order to bootstrap their map [6], [17], [27],
as otherwise, the features cannot be triangulated and inte-
grated into the map. In some systems [17], [27], the initiali-
zation is performed as a dedicated separate step, and
tracking quality crucially depends on the quality of this ini-
tialization. Rotation-only motions are supported only if they
are constrained to the already observed part of the scene.

For filter-based systems, an alternative, 6D parametriza-
tion of the feature locations [3] can provide a remedy: Here,
rotation-only motions are supported by admitting features
with a depth prior that represents extreme uncertainty and
filtering the features through multiple motion models [4] to
constrain their uncertainty. However, this support comes at
a high computational cost: The already high cost of filtering
of each feature point is further increased by doubling the
dimensionality of the feature state vector as well as comput-
ing the results for multiple motion models (note that Civera
et al. [4] use seven models in each frame). As a result, the
number of features that can be tracked in real time, which is
typically already smaller for filter-based SLAM than for
keyframe-based SLAM,1 is further decreased: With just one
motion model, Civera et al. [3] mention map sizes of up to
one hundred features, compared to several thousand for
PTAM [17]. For the approach with multiple models [4], no
real-time implementation is described. In the case of long
sequences of camera rotation, many of those computation
cycles are spent filtering data where no gain is to be
expected (namely, on re-estimating the (still undefined) fea-
ture depth).2

Therefore, we consider it an advantage of our approach
that we explicitly switch to panoramic mapping if supported
by the observations, thus taking advantage of some of the
advantages that panoramic mapping offers, such as a robust
outlier-resilient model (homography) and a straightforward
mapping of the entire frame instead of sparse features, both
of which are especially important for AR. On the other hand,
the approach of Civera et al. [4] may be preferable when
modeling the transition between two types of movement or
when only some of the features exhibit parallax.

While admitting features without depth could in princi-
ple be adopted for keyframe-based SLAM (in [19], this
approach is employed to admit features before their depths
are known), the ability to rely on them exclusively would
require fundamental and possibly costly changes to the
underlying mapping and bundle adjustment. We are not
aware of any existing keyframe-based SLAM system which
explicitly supports rotation-only movements.

Fig. 1. Our system supports both parallax-inducing and rotation-only
camera motion. In the former case, it acts as a SLAM system and mod-
els 3D structure in the environment; in the latter case, it acts as a pano-
rama mapper. It seamlessly switches between the two modes, thus
being able to track and map through arbitrary sequences of parallax-
inducing and rotation-only camera movements and—fully automatically
and in real time—creating combinations of 3D structure and panoramic
maps, as shown here.

1. For an interesting analysis of the relative computational cost of
the two approaches see Strasdat et al. [39].

2. Conceptually, whether or not existing features can be triangu-
lated using a new camera view depends more on the camera movement
than on each individual feature (particularly since feature depths are
likely to be correlated), and could thus be decided once per frame. In
[3], [4], however, the question is answered for each feature individually.
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2.2 Panorama Tracking and Mapping

Like a SLAM system, a panorama tracking and mapping
system aims at modeling the environment while determin-
ing the pose of the camera,3 but in this case, the camera is
assumed to rotate around its optical center, so that only its
orientation has to be determined. An early real-time system
is Envisor [7]. Wagner et al. [42] describe a system that oper-
ates robustly and in real time on a mobile device.

2.3 Stereo and Non-Visual Environment Modeling

In theory, using stereo cameras eliminates the problem of
requiring the camera to travel, since the baseline required to
triangulate features is built-in. In practice, however, using
stereo cameras is only a partial remedy, since the baseline
has to be significant in relation to the distance to the envi-
ronment in order to reliably estimate depth. Thus, a wear-
able stereo system would be unable to map a building
across the street without requiring the user to provide addi-
tional baseline by traveling (while a panorama system,
though unable to provide depth, would produce very
usable information).

Further, systems based on alternative sensor types
should be considered. In particular, active depth sensors
based on time-of-flight or structured light [22], [28] have
recently generated significant interest and can arguably
provide for more detailed models and more robust track-
ing when lighting conditions for vision-based tracking
are unfavorable. However, all of these systems have
other inherent limitations such as limited range, inability
to work in sunlight, power consumption, and need for
additional special hardware.

We thus argue that there are both theoretical and practi-
cal interests in solving T&M using monocular vision.

2.4 Model Selection, GRIC Score and Applications

Model selection is defined as choosing the model that
best describes a set of observations. Various metrics

(frequently dubbed “information criteria”) have been
proposed to assess the fitness of a particular model given
the data, for example minimum description length [34],
AIC [1], and BIC [36]. Torr described both a maximum
likelihood [40] and a Bayesian formulation [41] of GRIC,
and we use the latter in this work. These information cri-
teria are general in nature and can be applied to various
types of models. In SfM, the GRIC score has been
applied particularly to detect homographies in order to
avoid them during keyframe selection [32], [33]. In con-
trast, we use the GRIC score to select between two mod-
els, but we use the data in either case.

3 SYSTEM OVERVIEW

Our concept borrows two key ideas from Klein and
Murray’s PTAM system [17], [18], [19], namely, the central
role of keyframes and the splitting of tracking and mapping
into two parallel threads.

The split and design of the threads follows two guide-
lines: 1) the tracking thread should be as fast as possible
and leave all tasks that are not imminent in order for the
next frame to be processed to the mapping thread, which
runs asynchronously in the background; and 2) the first
steps in the pipeline should not be dependent on the motion
model (parallax-inducing versus rotation-only) that will be
selected, in order to minimize redundant computations.

Fig. 2 presents a conceptual overview of the system’s
operation. Briefly summarized, the system operates as fol-
lows: The tracking thread receives a new frame and locates
features via template-based matching, which stem either
from the previous frame or, if a map of the environment has
already been built, were projected from the map into the
frame. From these feature correspondences, it then esti-
mates both a model for parallax-inducing camera motion as
well as a model for rotation-only motion, and selects the
model that better represents the data via comparing their
GRIC scores. Under certain conditions, a keyframe is
inserted. Consecutive keyframes of the same kind (SfM or
panorama) are collected into a keyframe group. The mapping
thread operates on these sets of collected keyframes and cre-
ates an appropriate environment model (SfM or panorama).

3. Depending on the exact interpretation of the word “localization,”
one may argue that a panorama tracking and mapping system is a
SLAM system, as advocated by Lovegrove and Davison [24]. This inter-
pretation would render the term “tracking and mapping,” which we
chose to refer to the general class following [17], [31], [42], obsolete.

Fig. 2. Conceptual overview of the system’s operation.
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The tracking and mapping threads are described in detail
in Sections 4 and 5, respectively. Section 6 describes the
problem of model selection and the GRIC score.

3.1 Two-View Relations and Model-Based Poses

Conceptually, two two-view relations (namely, the essen-
tial matrix E and the homography H) are all-encompass-
ing in that they describe all cases of camera movements
that can occur in a static environment. Consequently, our
previous implementation used only these two models
[11]. However, this implementation does not make opti-
mal use of the environment model that is built in the back-
ground; by sequentially estimating E from potentially
small baselines, tracking remains relatively brittle and jit-
tery (cf. Fig. 10).

Therefore, we have extended our concept to include both
two-view relations (for initialization, after tracking loss, or
when rotating into uncharted territory) as well as two
model-based absolute poses ½Rjt� and ½Rj0� 4 (whenever the
camera observes a part of the environment for which a 3D
model has been built). It should be noted that, in each frame,
we still estimate only two models (the two-view relations or
the absolute pose models); thus, the computational load has
not increased.

The integration of absolute pose models has two further
advantages: First, it allows to distinguish rotation-only
movement from planar environments (which is difficult in
the model-free case, since in both cases, the resulting trans-
formations are described by the same relation, namely, a
homography). Second, it decreases the risk of fragmentation
of the model into connected sub-maps of alternating types
(which a linear sequence of E’s and H’s may produce, as
discussed in [11]), since the system can connect incoming
frames directly to an existing model (rather than only to the
previous keyframe).

Why is estimating ½Rj0� necessary? Unlike in the case of
E versus H, when a model is available, the absolute pose
½Rjt� is well-defined and can be estimated irrespective of
the (relative) camera motion. Thus, it is less obvious why
estimating ½Rj0� and the subsequent model selection step
is necessary. We do so for the following reason: Consider
the case that the camera observes a known scene (thus
using model-based tracking), then rotates towards unob-
served parts of the scene. Due to the rotation-only move-
ment, no new features can be triangulated. If ½Rjt� is the
only model-based pose that is estimated, and has priority
as long as enough triangulated features are visible, the
system will switch to H only when very few (if any) of
the existing features are left, risking tracking loss in
between and generating a panorama that has very little
overlap with the existing model. By estimating ½Rj0� and
thus explicitly switching to panorama mode (if ½Rj0�
proves to better represent the data), we can start building
the panorama immediately, ensuring that it is well-con-
nected to the existing structure by the time the system
switches to H, seamlessly continuing the panorama as it
extends into newly observed parts of the scene.

3.2 Data Structures

Fig. 3 visualizes the main data objects that store the current
system state and the emerging map as well as their relations.

The most central element is the keyframe group: each
keyframe group governs one sub-map consisting of a set of
keyframes which are either all linked by 3D pose informa-
tion (SfM group) or all linked by homographies (panorama
group). The keyframe group also determines the frame of
reference, with respect to which all pose information is
stored. A keyframe may be part of a panorama group as
well as a SfM group (e.g., keyframe 3 in Fig. 3), in which
case it gets assigned a pose in both groups. The set of key-
frames and keyframe groups can be thought of as a graph,
similar to the representations by Eade and Drummond [8]
and Klopschitz et al. [20]. Initially, this graph is linear, con-
sisting of a chain of E’s and H’s modeling the (linear) video
stream. As soon as the system has built a model of the envi-
ronment and is using model-based tracking however, new
keyframes are linked directly to the model, creating a
branching graph.

When tracking is lost, all links to the current map are lost,
and the tracker starts a new track. Initially, the new track is
completely unconnected to the previous data, but can later
be merged (if there is some overlap in what is observed dur-
ing both tracks) as explained in Section 5.3.

4 TRACKING

A flowchart of the tracking thread is presented in Fig. 4.
This section describes the main operations in detail.

When a new keyframe is added, new keypoints are
detected using a corner detector (such as FAST [35] or Shi-
Tomasi [37]) in all areas not already covered by keypoints.
We enforce a spatially well-distributed set of keypoints,
which was shown to improve tracking robustness [9], [13],
by overlaying a simple rectangular grid over the image and
selecting the strongest keypoint in each cell.

To project existing features into the frame and predict
their appearance, as much information about the feature as
possible is used. That is, if the 3D position and the normal
(cf. Section 5.4) of the feature are available, it is sampled
from the original keyframe using a fully qualified homogra-
phy (representing a 3D plane rotation). If only the 2D loca-
tion of the feature is known, the patch is sampled in 2D.

4.1 Coarse-to-Fine Feature Tracking

Frame-to-frame feature correspondences are created using a
multi-level (i.e., coarse-to-fine), active search patch tracker

4. More precisely, ½Rjt�prev � ½Rjð0; 0; 0Þ
T �, where ½Rjt�prev is the (fixed)

pose of the previous keyframe.

Fig. 3. Schematic overview of the main data structures used to store the
emerging map(s).
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with normalized cross-correlation (NCC)-based template
matching. On the full-resolution image, the feature location
is refined to subpixel accuracy by using a quadratic fit to
neighboring scores.

This is similar to the keypoint tracking by other systems
[17], [42], [43]; however in contrast to these system, the
multi-level tracking is executed on a per-feature basis
(instead of interleaved with the pose estimation), since we
do not know which type of camera motion to expect (and
thus which model to enforce) until after the tracking step.
We have designed, but not yet fully integrated, a more
sophisticated approach that retains the advantages of the
interleaved pose estimation, and discuss this approach in
Section 8.2.

4.2 Model Estimation and Outlier Re-Estimation

After all features are located in the full-resolution image, the
motion model is estimated. If a 3D model of the observed
scene is available (that is, there exists a SfM group which
contains sufficiently many of the successfully tracked fea-
tures), we estimate ½Rjt� and ½Rj0� using iterative gradient
descent of an M-estimator (cf. Table 1 bottom). Otherwise,
we instead estimate both a homography H and an essential
matrix E between the previous keyframe and the current
frame using MAPSAC (cf. Table 1 top).

The probability density function that is assumed for
inliers and outliers is an important part of the model selec-
tion process. Here, we make the common assumption that
inliers are distributed normally with measurement error s,
and outliers are distributed uniformly across the search
region. Thus, after model estimation, the measurement error
s and inlier ratio g, which are needed for the model selec-
tion step, are estimated using expectation-maximization.

Next, the GRIC score is computed for both models, and
the better model (i.e., the one with lower GRIC score) is

selected. The model selection and the GRIC score will be
explained in more detail in Section 6. If E is determined to
be the better fit, it is decomposed into a relative pose ½Rjt�rel.

In an attempt to retain individual features as long as pos-
sible, outliers are re-estimated after the model selection.
This is trivial in the cases of H, ½Rjt�, and ½Rj0�, since the
model defines a unique mapping for each point. In the case
of E, each outlier is re-estimated by running the NCC-based
template matching again on a thin rectangular matching
area that was rotated to align with the epipolar line. Fea-
tures that prove unreliable (i.e., that repeatedly are outliers
and need to be re-estimated) are removed.

If no keyframe is added (cf. next section), processing of
this frame is completed.

4.3 Inserting a New Keyframe

The current frame is added as a new keyframe knew when
several conditions (similar to the ones suggested by Klein
and Murray [17]) are met: 1) tracking quality is good (as
determined by the fraction of inliers that MAPSAC finds);
2) enough time has passed since the last keyframe insertion;
and 3) in the case of rotation-only motion (H and ½Rj0�),
when the median 2D distance that the keypoints “traveled”
since the last keyframe is large enough, and in the case of
parallax-inducing motion (E and ½Rjt�), when the median
feature triangulation angle is large enough.

If the estimated motion model connects knew to an exist-
ing keyframe group of the respective type (i.e., a SfM group
for E or ½Rjt�, and a panorama group for H or ½Rj0�), knew

gets merged into the existing group (detailed below for the
case of E, and straightforward in all other cases).

Otherwise, a new keyframe group consisting of knew

and the previous keyframe kprev gets created. Insertion of
a new group marks the beginning of a new sub-map,
but it does not invalidate any of the existing map data:
particularly during model-based tracking, where both
feature and camera positions are known in 3D, the
tracker can still refer to all currently registered features
and project them into incoming frames. Note that a
switch from ½Rj0� to ½Rjt� does not cause creation of a
new SfM group: coming from ½Rj0� implies that 3D fea-
tures are visible and thus that there is an SfM group to
which the new keyframe is connected even after inter-
mittent rotation-only motion.

Lastly, new features are detected in all uncovered image
regions by applying the same grid as in the first frame and
choosing new features for each cell that is not covered by
currently tracked features.

Merging essential matrices. While E can be decomposed
into relative pose information ½Rreljtrel� between the new
frame and the previous keyframe kprev, the scale of trel is

TABLE 1
Estimation Algorithms for the Four Models Considered Here

In each frame, only two models are estimated.

Fig. 4. Flowchart of the tracking thread.
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arbitrary. Before it can be integrated into an existing SfM
group, a common scale has to be found. In order to do so,
we use the set of all features that have been observed (and
thus have a triangulated position) in both the existing SfM
group as well as with respect to ½Rreljtrel�, and calculate the
ratios of their distances to kprev in both coordinate systems.
We then take the median of those ratios as a robust measure
of the scale between the two coordinate systems and scale
trel accordingly.

4.4 Relocalizing versus Starting a New Track

When tracking gets lost—i.e., when the number of inliers
for the selected model falls below a set threshold—the
standard strategy employed by most T&M systems (e.g.,
[17], [31], [42]) is to continuously try to relocalize the
camera with respect to the current map with each new
frame until successful. However, this means that track-
ing and mapping are suspended and no data is collected
until relocalization is successful.

Here, we employ an alternative strategy proposed by
Eade and Drummond [8]: instead of trying to relocalize, we
start a new track immediately, and leave it to the back-
ground thread to merge tracks if possible (cf. Section 5.3).
The benefit of this method, illustrated in Figs. 5 and 11, is
that the system continues to collect data even after tracking
failure occurs, and, if the tracks are later found to overlap,
merges the created maps. If they do not overlap, the maps
remain separate. (Note that in this case, a recovery-based
system would never recover.)

5 MAPPING

The mapping thread runs in parallel to the tracking thread
and is responsible for the following tasks:

1. triangulate new features,
2. run bundle adjustment,
3. merge disjoint tracks,
4. estimate feature normals, and
5. clean up residual data.
These tasks are allowed to be more computationally

intensive than the tracker’s tasks, since the system does not
depend on them in order to process the next frame.

Each of the tasks gets assigned a priority which depends
on the time it was last executed and the system’s current
state. In each iteration, the task with highest priority is exe-
cuted. For example, after a new keyframe is inserted, trian-
gulation of new features becomes important; if tracking got
lost and thus a new track is started, merging of tracks is pri-
oritized to enable quick merging of tracks. Thus, assuming
that the two threads run on two independent cores, the lat-
ter can happen as quickly as conventional relocalization.

5.1 Triangulating Features

A feature that was observed in at least two keyframes
within the same SfM group, but not bundle adjusted yet, is
triangulated and gets assigned a 3D location with respect to
this group’s frame of reference. When the tracker adds a
new keyframe with a new observation of a feature f , f is re-
triangulated using all information when the mapper cycles
through this step the next time.

5.2 Bundle Adjustment

SfM groups with at least three keyframes get passed
through a standard bundle adjuster [23] that globally
optimizes all keyframe (i.e., camera) poses and feature
positions in this group’s frame of reference. If there are
multiple such groups, the group with the newest

Fig. 5. Merging of tracks (top) versus relocalization (bottom). The rotation-only input video for the data shown here contains several rapid camera
motions (cf. description of the dataset in [5]), resulting in intermittent tracking loss. After each loss, our system starts a new partial panorama, and,
while the incoming live frames are being processed, stitches them together in the background. The final panorama (top and right) was stitched
together from 11 partial panoramas. In comparison, with the same tracking system but using relocalization, only the model at the bottom gets
created. (Here, two pairs of keyframes were estimated to have a small non-zero baseline, thus two parts of the panorama—displayed with a white
border—are offset slightly from the rotation axis.)
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keyframe (that is, the keyframe that got adjusted the
least number of times) is processed.

More sophisticated bundle adjustment strategies with
local and global adjustment steps [17] could be integrated
as needed.

5.3 Merging Disjoint Tracks

When tracking gets lost, the tracker immediately starts a
new, independent track, rather than continuously trying
to relocalize with respect to the existing map. In doing
so, the tracker continues to collect and “stitch together”
data even though the spatial relation to the first map is
initially unknown.

The algorithm that merges tracks is similar to the key-
frame-based recovery by Klein and Murray [18] (also
used in [31], [42], among others): as observed by Eade and
Drummond [8], recovery, loop closure, and (here) merging
of tracks are effectively similar to each other; the main dif-
ference lies in when the algorithm is executed and how its
result is used.

Whenever a new keyframe is taken, the system stores a
downsampled, blurred copy of the image (here: 80� 60 pix-
els, blurred with a Gaussian with s ¼ 1:5px), dubbed small
blurry image (SBI).

Merging of tracks is implemented as follows: The algo-
rithm chooses a keyframe k1 and computes the NCC of its
SBI with the SBI of all other keyframes. Keyframes on the
same track as k1 are omitted, as are keyframes to which a
previous merge attempt failed. The keyframe k2 with the
highest NCC score is selected, and the SBIs of k1 and k2 are
aligned to each other using inverse compositional image
alignment [2] of an affine homography HA. The features of
k1 are then projected into k2 using HA, and a regular
“tracking” step (cf. Section 4) is executed.

If the tracking step fails, k2 is “blacklisted” in k1 as a
failed attempt (so that the algorithm does not attempt the
same combination again), and k1 stores a timestamp of
when this merge attempt occurred. The next time the algo-
rithm tries to merge tracks, the keyframe that has not been
chosen as k1 the longest is chosen as k1.

If the tracking step succeeds in estimating a model that is
supported by a sufficient fraction of feature correspond-
ences, the two tracks are considered successfully merged.
Several different cases have to be considered in actually
merging the environment models, depending on the type of
transition connecting the two tracks, and whether or not k1

and k2 are already part of a keyframe group of the respec-
tive type. If available, the transition is preferred that would
not introduce a new keyframe group. (For example, if k1

and k2 are both part of a panorama group, and could be con-
nected with either H or E, H is preferred.) Adding of a
group (if needed) as well as merging of panorama groups is
straightforward (the latter only requires concatenating the
homographies accordingly). To merge SfM groups, features
that are observed in both groups are needed. To generate
those, we track the features that are connecting k1 and k2

one frame “into” k2’s group via epipolar search. Then, a
common scale is computed as described in Section 4.3.

The benefit of merging of tracks is visualized in the case
of panorama data in Fig. 5. In this particular case, the map

of the merged tracks consists of an almost complete hori-
zontal panorama, to which 1,605 frames (68 percent of the
input data) are registered. Another 410 frames are regis-
tered to partial panoramas (not shown) which the system
was unable to connect to the main model (whether these
should be counted as success or failure depends on the
application). In comparison, with the same tracking system
but using relocalization, while the system is able to recover
and expand the initial map several times, only 1,154 frames
(49 percent) are tracked; all other data (which “passed by”
while the system unsuccessfully tried to relocalize) are dis-
carded. A similar result for 3D data is presented in Fig. 11.

5.4 Estimation of Feature Normals

To properly predict a feature’s appearance from an
assumed camera pose, one needs to know not only its 3D
position, but also its local structure. Assuming that suffi-
ciently many features are located on locally approximately
planar surfaces, this structure can be defined by a normal
vector n, and the change in appearance between two views
of the feature is given by a homography H?, which can be
expressed in terms of n, the relative camera pose ½Rreljtrel�,
and the feature’s 3D position x [25], [44]:

H? ¼ Rrel þ
trel � nT
nTx

, H? ¼ Rrel

�
nTx � I3�3 þ trel � nT

�
:

(1)

(Note that H? is a homogeneous quantity, i.e., its scale is arbi-
trary.) The two views will be reasonably similar, as otherwise
the tracker would have failed to locate the feature. Yet, small
differences between them allow to estimate H? and thus n
using image alignment [25], [44].

If we assume n to be the only unknown, H? has only two
degrees of freedom, and it is possible to parametrize it
accordingly [25]. However, as Molton et al. [25] note, noise
in other variables will cause the projections to not coincide
precisely, such that one has to allow for at least two addi-
tional degrees of freedom for shift. We have had more suc-
cess with using an affine homography (as in [44]) with a
straightforward six-degree-of-freedom parametrization,
which we use in a standard inverse-compositional image
alignment framework [2], and afterwards extracting n from
the over-determined system given by Eq. (1) using singular
value decomposition.

Executing the image alignment step for each feature is
fairly expensive; however, it should be noted that it can be
run feature-by-feature in the background and is highly par-
allelizable, and none of the other steps are immediately
dependent on it. (While no normal estimate is available, the
tracker will continue to use a 2D projection of the feature.)

To maintain and refine the normal vector n over time,
instead of feeding it through a Kalman filter [25], [44], we
simply collect independent estimates of n from random
pairs of views, the average of which is taken as the currently
assumed value of n. This allows us to adapt elastically to the
amount of processing power available. For well-textured
and indeed planar features, the set of estimates is highly
consistent, while less textured and highly non-planar fea-
tures cause the image alignment to fail to converge or pro-
duce a set of wildly diverging estimates. This information
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could be used to further characterize the features and poten-
tially remove them; this idea is left to future work.

In our current implementation, apart from the added
value of having a richer environment model, estimation of
normals extended the lifetime of individual features (that is,
the number of frames that they were correctly tracked) by a
moderate but noticeable amount, as shown in Fig. 6.

6 MODEL SELECTION

If observed data may have arisen from several different mod-
els, one faces the problem of selecting the right model in
addition to the common problem of estimating the model
parameters. Model selection is a complex problem in particu-
lar if the models in question are of fundamentally different
kind, as is the case here: a homography is a bijective 2D map,
and thus the observed residual between an estimated and
measured feature location is 2D, whereas the essential matrix
maps a 2D point to a line in 2D, and thus the residual is 1D
(perpendicular to the line). This is analogous to trying to
determine whether an observed set of 2D points can best be
represented by a point or a line (see Fig. 7). It becomes appar-
ent that residuals alone are not sufficient to select the model.

For this reason, several different metrics have been pro-
posed [1], [34], [36], [40], [41]. Here, we use the Bayesian for-
mulation of the GRIC by Torr [41], which is based on the
Bayesian probability that a given model generated the
observed data. In this section, we first describe the GRIC
score for the case of the two-view relations E and H, then
its application to the estimation of the absolute poses ½Rjt�
and ½Rj0�. We use the same notation and variable names as
Torr [41]. The subscript m is used to indicate that a quantity
is dependent on the models that are being compared. logðxÞ
denotes the natural logarithm.

6.1 Generalized GRIC Score for Two-View Relations

The generic formula of Torr’s Bayesian GRIC score is

GRICm ¼ �2LMAP;m þ km log n; (2)

(cf. [41, Eq. (46)]) where km is the number of parameters of the
model, n is the number of observations, and LMAP;m denotes
the maximum a-posteriori log likelihood of model m given the
data, which is based on the probability density functions
(PDFs) that the data are assumed to stem from. (Note that the
GRIC score is a cost function, i.e., lower score indicates better
model fit.)

For the problem at hand, we assume a mixture of inliers
affected by Gaussian noise, and outliers sprinkled uni-
formly in the search region. Specifically (cf. [41, Eq. (15)]):

LMAP;m ¼
X

i

logðgi � pin þ ð1� giÞ � poutÞ (3)

with pin ¼
ffiffiffiffiffiffiffiffiffiffi
2ps2
p dm�D

cm
� exp �

e2
i;m

2s2

 !

; (4)

pout ¼ 1=v ; (5)

gi 2 f1; 0g indicates if correspondence i is an inlier, ei;m are the
individual reprojection errors, s is their standard deviation, D
is the dimensionality of each datum (here: a pair of 2D points,
i.e., D ¼ 4), dm is the dimensionality of the model manifold,
D� dm is the dimensionality of the error (for H, D� dm ¼ 2,
while for E, D� dm ¼ 1 (perpendicular to the epipolar con-
straint, in analogy to Fig. 7)), and cm and v are the volumes of
the spaces from which inliers and outliers, respectively, arise
(cf. [41]).

Let g denote the expected inlier ratio EðgiÞ, and maxi-
mize over gi:

) GRICm ¼ �2
X

i

logðmaxfg � pin; ð1� gÞpoutgÞ þ km log n

¼
X

i

minf�2logðg � pinÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ð�Þ

;�2logðð1� gÞpoutÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð��Þ

gÞ

þ km log n

(6)

ð�Þ ¼ �2log g

ffiffiffiffiffiffiffiffiffiffi
2ps2
p dm�D

cm
� exp �

e2
i;m

2s2

 ! !

(7)

¼
e2
i;m

s2
þ ðD� dmÞlog 2ps2 þ 2 log

cm
g

(8)

ð��Þ ¼ �2log
1� g

v

� �
(9)

¼ Tm þ ðD� dmÞlog 2ps2 þ 2 log
cm
g

(10)

Fig. 6. Effect of normal estimation on lifespan of features. The data in
this figure stems from the first part of the video to Fig. 1, in which the
camera slowly descends around the building on the left.

Fig. 7. Intuition of why model selection is difficult: Fitting a 2D point and a
2D line to a set of noisy measurements. Even though both models have
the same number of degrees of freedom (2), the dimensionality of the
error is different (2 versus 1), and the sum of errors is guaranteed to be
smaller in the case of the line, regardless of how “point-like” the distribu-
tion may appear. Cf. [40, Fig. 16].
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where Tm ¼ 2 log
g

1� g
� v
cm

� �
� ðD� dmÞ log 2ps2 : (11)

Thus, the final formula is given by:

GRICm ¼
X

i

r2

e2
i;m

s2

 !

þ n ðD� dmÞ log 2ps2 þ 2 log
cm
g

� �

þ km log n

(12)

with r2ðxÞ ¼ minfx; Tmg.
Difference to Torr’s formula. It should be noted that our

formula differs from that given by Torr ([41, Eq. (48)]),
even though both are based on PDFs of the form of Eqs.
(4) and (5). The difference is that in Torr’s formula, it is
assumed that the inliers are uniformly distributed in dis-
parity across the entire search region,5 i.e., D ¼ S (D and
S are contained in cm and v, cf. Table 2). For large search
areas, this is not the case: the search region is large
because we want tracking to be robust to fast camera
movement (including camera rotations), but we expect the
(2D) movement of all features to be strongly correlated;
the range of disparity D is still likely to be only a few pix-
els. Thus, setting D ¼ S causes the log likelihood for E to
decrease (because the observations do not match the mod-
el’s assumption) and creates a significant bias towards
selecting H. Hence, to alleviate this bias, we keep D inde-
pendent of S. A more detailed discussion and illustration
of this issue, as well as a proof that our formula is equiva-
lent to Torr’s for the special case D ¼ S, is given in [11].

6.2 GRIC Score for Absolute Pose Models

With appropriate model-specific parameters as given in
Table 2, Eqs. (11) and (12) are applicable to ½Rj0� and
½Rjt� as well, since the PDFs on which they are based fol-
low the shape of Eqs. (4) and (5). Arguably, this case is
actually less complex than the two-view relation case,
since the dimension of the error D� dm is the same for
both models (see Table 2).

Two aspects are worth noting: First, in analogy to the
two-view case, cm and v are defined as the volumes of the
spaces from which observations arise. This appears to
necessitate to define the “volume” V of the 3D model, and
to raise the question whether one assumes it to be part of
the noisy estimation process, or (in comparison with the

current measurement error), to be noise-free. However, a
look at the GRIC score equations (Eqs. (11) and (12)) and
Table 2 reveals that, in the comparison of ½Rjt� versus ½Rj0�,
only the quotient cm=v and difference D� dm are needed,
and the values of V and D fall out as constant terms.

Second, in the case of E versus H, one parameter to
the GRIC score is the range of disparity D that we expect
for E. Conveniently, this parameter gives some control
over how the process handles motions that are very close
to rotation-only, i.e., have a very small baseline and thus
very little parallax: the bigger D, the more likely H is
selected in those cases.

When comparing ½Rjt� and ½Rj0�, this free parameter does
not exist: all features are mapped to a unique image point.
Further, especially for a good model and slow camera
motion, the measurement noise s becomes very small, and
we observed that consequently, the GRIC score becomes
extremely accurate in discerning even small shifts in base-
line. Thus, ½Rj0� is rarely selected (despite the smaller value
of km, which gives it a slight advantage in case of close-to-
equal error sums). Probabilistically, this makes perfect
sense: the likelihood for ktk exactly equal to 0 is virtually
non-existent, and whenever the error distribution hints to
even the slightest shift, ½Rjt� should be selected.

Practically, however, motions with very small t—
imagine a camera mounted on a tripod with the optical
center and the rotation axis in slight misalignment—are
arguably better modeled as a panorama: For a panorama,
a small shift of the optical center causes minor distortion
artifacts, but no fatal harm to tracking and mapping.
(DiVerdi et al. [7] analyze this type of error in detail.)
For structure-from-motion, it results in features with
unreliable depth estimates from extremely ill-conditioned
triangulations, and, as soon as only those features are
visible, likely tracking failure.

Therefore, we adapt the model that is estimated as fol-
lows: instead of estimating ½Rj0�, we estimate ½Rjt 	 tmax�
(more precisely, ½Rjt�prev � ½Rjt� j ktk 	 tmax). Practically, we
implemented this by estimating ½Rjt�, but constraining ktk
to ½0; tmax� after each gradient descent iteration. tmax can be
understood as a soft threshold regulating how much base-
line shift the system shall observe before preferring ½Rjt�
over ½Rj0�, analogous to D for E versus H. By dividing by
the distance to the environment (which is available, since
we are in the model-based condition), tmax can be trans-
formed into a scale-independent feature observation angle
amax, which we use as input parameter to the system.

7 EVALUATION

We implemented our system prototype in C++, making use
of the OpenCV,6 TooN7 and libCVD8 libraries. Our system
runs in real time (at about 20-25 ms per frame) on a com-
modity PC without specific optimizations. Typical timings
are presented in Fig. 8. They are, of course, strongly depen-
dent on the hardware and parameter configuration (e.g.,
number of keypoints per frame) and presented here only as
a coarse reference point.

TABLE 2
GRIC Score Parameters for the Four Models Considered Here

L� L is the area of one camera frame, S � S is the area of the con-
strained search region, D is the range of disparity. See Section 6.2 for
discussion of V .

5. Torr [41] explicitly warns that “care should be taken to rederive
[this quantity] according to the exact distribution [...] in different
scenarios.”

6. http://opencv.willowgarage.com/.
7. http://www.edwardrosten.com/cvd/toon.html.
8. http://www.edwardrosten.com/cvd/.
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Currently, our implementation is not optimized to run in
real time on a mobile device. However, the most expensive
parts (in particular, the tracking with NCC-based matching,
cf. Fig. 8) are computationally similar to T&M systems that
were shown to operate in real time on such devices several
years ago [19], [42]. Thus, we argue that with appropriate
algorithmic and device-specific optimizations, running an
implementation of our concept on a mobile device is feasible.

We tested our system on a variety of video sequences,
including rotation-only sequences from a panorama dataset
by Coffin et al.9 [5], sequences from the “City of Sights”
repository10 [12], as well as further self-recorded videos,
using models from the “City of Sights” as backdrop. Results
from those videos are presented in Figs. 1, 5, 9, 10, and 11.

7.1 Tracking Accuracy

To evaluate the benefits of integrating model-based track-
ing, we ran our system with and without model-based
tracking (i.e., for the latter case, the left branch in Fig. 4 is
disabled) on 800 frames of video from the “City of Sights”
repository for which accurate ground truth of the camera
trajectory is provided. The 3D model that our system gener-
ates from this video sequence (with model-based tracking)
is shown in Fig. 9.

Since the reconstructions including camera locations are
arbitrary up to a similarity transform, we first aligned the
point cloud of the camera locations for both conditions to
the ground truth by aligning the first camera position, and
choosing scale and rotation such that the overall error was
minimal (in a least-squares sense). The results are presented
in Fig. 10, showing that with model-based tracking, tracking
is highly accurate and very smooth.

7.2 Qualitative Comparison with PTAM

In Fig. 11, we present a qualitative comparison of our proto-
type with PTAM11 [17], [18] on four representative videos:

For slow, smooth parallax-incuding camera movement
(see Fig. 11 far left), both systems produce very similar tra-
jectories. On a parallax-inducing movement followed by
extended rotation-only movement (see Fig. 11 second from
left), PTAM loses track and unsuccessfully attempts to
recover for the remainder of the sequence, while our

prototype keeps track throughout, attaching a panorama to
the triangulated model. In Fig. 11 second from right, both
systems lose track due to occlusion. PTAM successfully
recovers as the camera moves back to the known part of the
scene, but misses out on a long stretch, while our prototype
starts a new track and successfully connects the two; thus,
its final map covers a larger part of the environment.

Fig. 8. Breakdown of timings in tracking thread. These times were taken
on a commodity PC (Intel i7 Core, 4 GB RAM, Ubuntu 12.04), without
specific optimizations or the use of a GPU. All times are averaged per
frame over the entire sequence. Since creating a new keyframe is not
executed every frame, its contribution to the average time is minimal.

Fig. 9. Our system acting as a SLAM system, reconstructing the scene in
3D and recovering the camera trajectory fully automatically. Each recon-
structed 3D feature is visualized as a small image patch (sampled from
the frame in which it was first observed), oriented according to its esti-
mated normal vector.

Fig. 10. Tracking with and without model-based tracking. The point
clouds are aligned to the ground truth as described in the text. From top
to bottom: camera locations in 3D, absolute error per frame, jitter (i.e.,
camera displacement from one frame to the next) per frame.

9. http://tracking.mat.ucsb.edu.
10. http://cityofsights.icg.tugraz.at.
11. http://www.robots.ox.ac.uk/~ gk/PTAM/.
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Finally, on a parallax-inducing movement with relatively
quick movement in the middle (see Fig. 11 far right), PTAM
is able to maintain tracking, while our prototype loses track.
It automatically starts a new track (shown in light blue,
aligned separately to PTAM’s track), but is unable to connect
the two tracks.

Thus, the results demonstrate the conceptual advantages
of supporting rotation-only movement and linking of tracks
instead of recovery, but they also underscore that our cur-
rent implementation is to be regarded a proof-of-concept
prototype, and certain aspects are left unoptimized. In par-
ticular, tracking during parallax-inducing motion is not as
robust as PTAM.

8 DISCUSSION: ASPECTS FOR FURTHER

INVESTIGATION, APPLICATIONS AND LIMITATIONS

8.1 On Estimating the Probability Density Function

Optimally estimating both a motion model and the parame-
ters of the probability density function (PDF) of the measure-
ment error (e.g., standard deviation s of the measurement
error and inlier ratio g) is a chicken-and-egg problem: either
result requires the other. In many T&M systems, knowing
the PDF exactly is not crucial: with appropriate cost func-
tions, pose estimation algorithms (both via sample consen-
sus and M-estimators) are reasonably robust to noise in s

and g, and “bad” values may merely be an indicator for inev-
itable tracking failure. Model selection however gets more
accurate the better the estimate of the PDF is.

If the observed error distribution matches the expected
shape (i.e., Eqs. (4) and (5)), the described process via
expectation-maximization (Section 4.2) works well and
appears to produce accurate estimates of its parameters.
If however the observed distribution does not match the
expected shape, for example due to questionable tracking,
expectation-maximization appears to intensify the prob-
lem by producing unusable values. This effect can be lim-
ited by ad-hoc measures such as filtering over several

frames and clamping of the values, but we suggest that
further investigation is warranted to find an optimal
and principled solution balancing accurate estimates and
leniency for tracking.

8.2 On Improving Coarse-to-Fine Matching

The standard approach to coarse-to-fine matching (approxi-
mately as employed by [17], [42], [43]) is to 1) locate features
in a coarse (downsampled) image, 2) estimate the camera
pose, 3) reproject features into the higher resolution image
using the new pose estimate, 4) refine their position (in a
tightly constrained area), and lastly 5) refine the camera
pose using the refined features.

Unfortunately, this approach cannot be applied directly
here, because we do not know which type of camera motion
to expect (and thus which model to enforce) until after the
tracking step. As described in Section 4.1, thus far, we have
simply omitted the intermediate pose estimation (step 2).
This however results in a higher risk of losing individual
features, as they must be found independently in an effec-
tively larger search region.

There are several alternative approaches in which this
could be solved, for example, executing steps 2 to 5 for each
motion model under consideration, or selecting the model
after step 2. We have designed another, more sophisticated
approach, which retains the advantages of the interleave
pose estimation at little additional cost: We propose to esti-
mate a superset model which admits all features that are
inliers to either motion model under consideration (thus, the
tracking step remains agnostic to the type of model that is
later selected), yet constrains the features such that many
outliers can be identified. For model-based tracking, ½Rjt� is
this superset model, as it trivially encompasses ½Rj0�.

For the two-view relations H and E, the existence of such
a superset model is less obvious. However, a closer look
reveals that indeed, E fulfills these criteria: while the epipo-
lar geometry is, strictly speaking, not defined in the case of
rotation-only movement, an algorithm used to compute E

Fig. 11. Qualitative comparison of camera trajectories for PTAM (top) and our prototype (bottom) on selected videos, highlighting a few particular
characteristics. Each video is 300-500 frames long, the camera travels a few feet along a scene similar to the one in Fig. 9. The trajectories from
both systems were aligned to each other as described in Section 7.1. The color bar underneath each panel shows per-frame tracking/model selection
information over time. A blue circle indicates that our prototype selected a rotation-only model (note that this does not have a permanent effect (i.e.,
there is no effect on the map) unless a keyframe is added at that point). The circle’s radius is logarithmically proportional to the length of the rotation-
only sequence.
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will return some result �E, and true inliers for either H or E will
fulfill xT2 � �E � x1 ¼ 0 (cf. in particular [14, Section 11.9.3]).
Thus, while �E may lack a geometric interpretation (in the
case of rotation-only movement), it does provide a neces-
sary condition for any correct correspondence. Assuming
that outliers are statistically independent, the chances for a
random outlier to satisfy xT2 � �E � x1 
 0 are small.

We have implemented and verified this approach on sev-
eral videos (including rotation-only sequences, which, for
�E, is the most unfavorable case). However, we have not yet
integrated it fully with the rest of our system, so the evalua-
tion of potential robustness and performance improvements
remains to be done. One particular challenge is to robustly
estimate the PDF parameters (cf. Section 8.1) in the now
effectively much smaller active search regions.

8.3 On Merging of Maps

As discussed in Section 5.3, the algorithm we use to detect
overlap between disjoint tracks and thus initiate their merg-
ing is basically the same as what is commonly employed for
relocalization, which implies that similar detection perfor-
mance can be expected. An interesting area for future
research is to exploit the fact that we actually have more
data than what is available with the relocalization strategy:
instead of one individual new frame, we have a new map
consisting of multiple frames; thus, overlap detection could
potentially yield higher detection performance than relocali-
zation. This could be exploited even within the SBI-based
recovery framework: For example, Kim et al. [16] have
explored the use of “virtual keyframes,” i.e., renderings of
the model from strategically distributed viewpoints, rather
than actual keyframes. As we now seek to connect two mod-
els, this strategy could be applied on both sides.

Similarly, the overlap between the tracks may encompass
an area larger than a single frame. While we currently use
only features from one pair of keyframes to merge the
maps, the registration could be improved by explicitly cal-
culating and then using the entire extent of the overlap.
Note however that a much larger overlap is unlikely, since
otherwise it would likely have been detected earlier.

8.4 On Applications and Limitations of the Hybrid
Map

It is clear that hybrid maps consisting of both SfM and pano-
rama data (such as Fig. 1 or the map produced from Fig. 11
second from left) do not possess all qualities that one would
look for in an ideal environment map. Most obviously, the
panorama part lacks depth information, but furthermore,
the individual SfM reconstructions do not share a common
scale, since the rotation-only movement cannot propagate
scale. We emphasize that this is not a limitation of our
design, but an inherent limitation of the input data; the
alternative is not to create a fully 3D model, but to lose
tracking altogether. If a fully 3D model of the environment
is required, one has to either employ additional and/or
active sensors, or put constraints on the camera movement.

However, for many AR applications, where the main
purpose of the model is to register annotations, the hybrid
nature of the map (and lack of depth) may not be a major
concern, since the user automatically provides, and thus

allows registration of annotations for, exactly those view-
points that are needed. Specifically, if only a panorama is
provided and thus an annotation can be registered to a bear-
ing (but not depth) in this panorama, it implies that the user
has been looking at the scene from this viewpoint only and
thus mainly needs the annotation’s bearing (cf. work on
applications of AR annotations based on panoramas [21],
[42]). As soon as the user moves and thus the annotation’s
depth is needed for correct registration, this new viewpoint
can be exploited to create 3D structure and register the
annotation in 3D. Similarly, annotations in different parts of
the scene may be registered to a different SfM group with a
different scale factor, but these annotations are (by construc-
tion) outside the user’s field of view and not visible directly.
However, due to the topology provided by the hybrid map,
topological or navigational annotations (for example, direc-
tions towards an object outside the current field of view)
can still be displayed, which is not possible with uncon-
nected local reconstructions.

Further, even if one ultimately aims for a fully 3D model,
it is arguably better to collect the panoramas than to discard
them. For example, Pan et al. [30] describe how to first col-
lect panoramas, and then use them as single images with
wide field of view for 3D reconstruction afterwards.

9 CONCLUSIONS

We have presented an approach and prototype implemen-
tation for initialization-free real-time tracking and mapping
that supports both parallax-inducing and rotation-only
camera motions in 3D environments, and integrates both
model-free and model-based tracking. Our design para-
digm was to make use of all data that can be casually col-
lected, and to not require any particular assistance by the
user (such as a separate initialization step, or particular
types of camera motion).

Our system is able to track and map through motion
sequences that neither conventional six-degree-of-freedom
SLAM systems nor panoramic mapping systems can pro-
cess. Depending on the video sequence, the strategy of start-
ing a new track and later merging separate tracks (instead of
trying to relocalize with respect to the first map) can signifi-
cantly increase the amount of data represented in the final
environment model.

We believe that our approach is an important conceptual
step towards the vision of fully transparent tracking and
mapping for “Anywhere Augmentation” [15], making the
best use of the input data irrespective of the type of camera
motion (or, for example, the distance to the environment).
We emphasize that our current implementation is to be
regarded a proof-of-concept prototype, and many imple-
mentation details are unoptimized. In particular, tracking
robustness during general motion is not yet comparable to
systems such as PTAM [17] or DTAM [27]. However, we
have shown that the core components of state-of-the-art
SLAM systems—including model-based pose estimation,
which is a significant advancement over our earlier imple-
mentation [11]—can be integrated in a general framework
(see Fig. 4) such that tracking and mapping can continue
through both parallax-inducing and rotation-only motion.
From here, techniques that were proven to increase
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robustness or scalability—such as estimation of in-plane
rotation before the pose estimation [18], more advanced
map feature management including filtering of outliers,
proactive search for new features in existing frames [17],
and more sophisticated bundle adjustment strategies (cf.
Section 5.2)—can be integrated as appropriate. Further areas
for future work were outlined in Section 8.

There are several other areas with open research ques-
tions. For example, while we currently select only one
model for the entire frame (which is, theoretically, the cor-
rect thing to do, since the motion refers to the camera and
thus to the entire frame), there may be cases especially in
outdoor scenes in which the foreground exhibits enough
parallax to be modeled in 3D, while the background exhibits
little parallax and might benefit from the stable, dense map-
ping that homographies offer. This leads to an interesting
problem in which image segmentation and environment
modeling interact.

Finally, it remains an open question how a model that
consists of a mixture of structural data and (partial) panora-
mas can best be visualized, presented to, and navigated by
the user. This is not a concern if the model is used only as
an anchor for AR annotations, in which case the user never
actually sees the model, but only the annotations fused with
his/her view of the real world (cf. discussion in Section 8.4).
However, if the model is to be used in Virtual Reality as
well (for example, to allow a spatially remote user to view
the scene [10]), the model itself needs to be visualized and
navigated. This works very well in the case of panoramic
mapping, where the emerging model is easy to interpret
and browse. It is inherently more challenging in the case of
3D data (especially if the model is incomplete, so that the
viewpoints for which useful views can be rendered are
restricted), and, to our knowledge, an open research prob-
lem for the case of live, incomplete data that consists of mix-
tures of structural and panoramic data. By building on large
data collections and offline reconstructions, interesting
viewing modalities for mixed data like this have emerged
from the SfM community [38].
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