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Figure 1. Live AR-based remote collaboration with our prototype. Left: the local user in front of a car engine, identifying a particular element which
the remote user has marked with the yellow dot. Right: the remote user’s view onto the scene, which (at this moment) shows more context than the
local user’s current view. The latter is shown as an inset on the bottom left as well as being projected onto the model. The remote user can browse this
environment independently of the local user’s camera and can set annotations, which are immediately visible to the local user in AR.

ABSTRACT
We present a system that supports an augmented shared vi-
sual space for live mobile remote collaboration on physical
tasks. The remote user can explore the scene independently
of the local user’s current camera position and can commu-
nicate via spatial annotations that are immediately visible to
the local user in augmented reality. Our system operates on
off-the-shelf hardware and uses real-time visual tracking and
modeling, thus not requiring any preparation or instrumenta-
tion of the environment. It creates a synergy between video
conferencing and remote scene exploration under a unique
coherent interface. To evaluate the collaboration with our
system, we conducted an extensive outdoor user study with
60 participants comparing our system with two baseline inter-
faces. Our results indicate an overwhelming user preference
(80%) for our system, a high level of usability, as well as per-
formance benefits compared with one of the two baselines.
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INTRODUCTION
In recent years, the use of video conferencing has become
ubiquitous. However, with current technology, users are lim-
ited to passively watching disjoint video feeds which provide
no means for interaction with the remote physical environ-
ment. As effective collaboration often involves sharing, ex-
ploring, referencing, or even manipulating the physical envi-
ronment, tools for remote collaboration should provide sup-
port for these interactions. Researchers have explored various
means to do so; however, two of the most common limitations
in existing work are that the remote user’s view onto the scene
is constrained to the typically small field of view of the local
user’s camera, and that any support for spatially referencing
the scene is contingent upon a stationary camera.

In this work, we leverage computer vision and the paradigm
of augmented reality (AR) to facilitate more immersive inter-
action with the remote environment in general, and to address
the aforementioned limitations in particular. We describe a
fully functional system for mobile remote collaboration, run-
ning on off-the-shelf hardware, in which the remote user can
(a) control a virtual camera and thus explore the live scene in-
dependently of the local user’s current camera position, and
(b) communicate via spatial annotations that are immediately
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visible to the local user in AR (cf. Figure 1). Our system does
not require any preparation or instrumentation of the envi-
ronment. Instead, the physical scene is tracked and modeled
incrementally in real time and in 3D, using monocular vision-
based simultaneous localization and mapping (SLAM) and
subsequent surface modeling. The emerging model then sup-
ports anchoring of annotations, virtual navigation, and syn-
thesis of novel views.

We further present an extensive outdoor user study with 60
participants (30 teams) comparing our system with two base-
lines. Both user ratings and task performance are discussed
in detail. To our knowledge, our study is among the first user
studies overall to rely purely on visual SLAM technology as
an enabling technology (rather than as the subject of interest)
in an outdoor environment.

RELATED WORK
Research on remote collaboration and telepresence is multi-
faceted; for example, several systems focus on creating fully
immersive, three-dimensional telepresence experiences with
increasingly lower instrumentation barriers (e.g., [28, 37]).

Support for spatial references to the remote scene in video-
mediated collaboration or telepresence has been an active re-
search topic. Notable early works include “VideoDraw” [41]
and the “DoubleDigitalDesk” [44]. Modalities that have been
investigated include remote pointers [2, 5, 11, 21], drawing
onto a live video stream [7, 11, 14, 21, 22, 34], and transfer-
ring videos of hand gestures [17, 22, 33]. These annotations
are then displayed to the collaborator on a separate screen
in a third-person perspective [11, 18], on a head-worn dis-
play [2, 17, 33], or via projectors [14].

However, in order to support spatially referencing physical
objects, all of these systems either assume a stationary cam-
era (at least during the relevant interaction), since otherwise
the virtual annotations lose their referents [2, 7, 11, 14, 17,
21–23], or require extensive equipment and prepared environ-
ments to track and thus maintain the locations of the annota-
tions [5, 33]. Further, the remote user’s view onto the physi-
cal scene is either restricted to a stationary camera [11, 22]
or tightly coupled to the local user’s head or body move-
ment [2, 5, 17, 21, 23], thus forcing the remote user to con-
stantly re-orient and ask the local user to hold still (or, in
the case of [2], enforcing this by freezing both users’ views)
when referencing an object.

One alternative is to use a robot which can be controlled by
the remote user [14, 24]; however, this requires specialized
hardware and limits the range of operation.

In our work, we leverage computer vision-based tracking and
modeling and the paradigm of collaborative AR [3] to support
world-stabilized annotations and virtual camera movements.
Early implementations of both concepts for the purpose of
collaboration are reported by Mayol et al. [29] and Lee and
Höllerer [26].

Our system follows the conceptual framework for an AR-
based collaboration system proposed in Gauglitz et al. [12],
and our user study follows a similar pattern. However, while

the prototype described therein works in planar environments
only and offers only a camera “freeze” feature without any
further navigation or view synthesis, our system operates in
environments of arbitrary geometric complexity (which has
implications for almost all components of the system), and
provides a feature-rich virtual navigation that allows the re-
mote user to explore the environment independently of the
local user’s current camera position. (Conceptually, this has
been described as a possibility in Gauglitz et al. [12].) Fur-
ther, our system consists of two stand-alone off-the-shelf
hardware entities that communicate via wireless network.

Sodhi et al. [39] present a system with a similar vision. They
use a customized setup with a mobile device and two active
depth sensors mounted onto a monopod which gives the abil-
ity to reconstruct the environment (on the local user’s side)
and to reconstruct and transfer hand gestures (from the re-
mote user’s side) in 3D. In contrast, our system needs only
an off-the-shelf tablet, but uses simpler annotations. Another
difference worth noting is the method of scene navigation by
the remote user: Sodhi et al. equip the remote user with a mo-
bile device as well and use the device’s physical movement
to navigate the remote (virtual) environment, while we use
virtual navigation. We contrast the two approaches in more
detail below. They conducted a usability study reporting re-
sults with respect to ease of use, etc., but no comparative or
performance-based evaluation was reported.

The system by Adcock et al. [1] also reconstructs the environ-
ment via active depth sensors and allows the remote user to
control the viewpoint (via a touch interface) and draw anno-
tations, which are displayed using a statically mounted pro-
jector.

Further, Jo and Hwang [20] presented an interactive, fully
mobile system which allows for world-stabilized drawings,
albeit only for panoramas (i.e., rotation movements). Two
particular interesting aspects of this work are the physical
navigation of the panorama by the remote user and switch-
ing between front and back cameras (upon permission by the
local user).

With respect to reconstructing a physical scene from image
data and navigating it based on this reconstruction, our work
bears similarity in particular with Snavely et al.’s “Photo
tourism” [38] and similar works. However, while Photo
tourism deals with a (potentially large) set of photos in a batch
manner and offers offline navigation, we process a live video
in real time and offer live viewing of the evolving model. Fur-
ther, we extract a detailed 3D surface rather than using planar
surface proxies for the rendering.

With respect to individual features, our system bears similar-
ity with further works: Tatzgern et al. [42] very recently pre-
sented an AR system which allows the user to switch between
a live video (“AR view”) and synthesized views of a recon-
structed environment (“VR view”). Lastly, Sukan et al. [40]
presented a study comparing physical navigation with virtual
navigation via saving and revisiting virtual snapshots. Here,
we employ similar techniques for the interaction with a re-
mote environment.
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Figure 2. System architecture of both the local user’s system (left; running on an Android-based lightweight tablet or smartphone) and the remote
user’s system (right; running on a commodity PC with Ubuntu). The main components are described in the text in detail.

SYSTEM OVERVIEW
Figure 2 shows an overview of the system architecture of
both the local user’s and the remote user’s system. Since
device hardware (camera and display), network communica-
tion, real-time processing, and background tasks are involved,
both systems employ a host of components and threads.

LOCAL USER’S SYSTEM
The local user’s interface, running on a lightweight tablet, is
intentionally simple. From the user’s perspective, it behaves
exactly like a live video of the user’s own view plus AR an-
notations, i.e., a classic magic lens. (We emphasize that the
local user’s view is not affected by remote user’s camera con-
trol.) The only control the user exerts during its operation
is by manipulating the position and orientation of the device.
We note that the system could equally be used with other AR
displays such as a head-worn or projective display.

Under the hood, the system runs a SLAM system and sends
the tracked camera pose along with the encoded live video
stream to the remote system. The local user’s system receives
information about annotations from the remote system and
uses this information together with the live video to render
the augmented view.

The system is implemented as an Android app, running on
several state-of-the-art Android devices. For the user study,
we used a Google Nexus 7 2013, a 7” tablet powered by a
Qualcomm Snapdragon S4 Pro with 1500 MHz Krait quad
core CPU. The core SLAM implementation, including access
to the live camera frames and support for rendering for them,
has been provided to us by Qualcomm. Communication with
the SLAM system, handling of the raw image data, and ren-
dering are implemented in C/C++, while higher-level app
structure, user interface, and network communication are im-
plemented in Java, with data exchange between the two layers
via JNI. The live frames are encoded as a H.264 video stream.
A minimal HTTP server streams the data (encoded video,
tracked camera pose, and other meta-data) upon request from
a remote connection, and manages remote requests for inser-
tion/deletion of annotations (encoded as HTTP requests).

The system operates at 30 frames per second. We measured
system latencies using a camera with 1000 fps which ob-
served a change in the physical world (a falling object passing

a certain height) as well as its image on the respective screen.
The latency between physical effect and the local user’s tablet
display — including image formation on the sensor, retrieval,
processing by the SLAM system, rendering of the image, and
display on the screen — was measured as 205± 22.6 ms.

REMOTE USER’S SYSTEM
The remote user’s interface, running on a commodity PC
(without high-end GPUs or such), starts off as a live video
stream, but is augmented by two controls, the camera control
and annotation control.

The system consists of five main modules — network module,
3D modeler, camera control, annotation control, renderer —
and the framework to hold them together. Due to this modular
framework, different implementations for each module can be
readily swapped in and out upon the start of the program via
command line arguments. For example, for comparing our
prototype against two baseline interfaces in our user study,
we simply replaced the respective modules with simpler ones.
In a similar fashion, we also implemented modules that load
virtual 3D models (instead of modeling from live video) and
allow for other types of camera control.

The latency between physical effect and the remote user’s dis-
play — including image formation on the local user’s sensor,
retrieval, processing by the SLAM system, video encoding,
transmission via wireless network, video decoding, render-
ing, and display — was measured as 251± 22.2 ms; i.e., less
than 50 ms between the local and the remote user’s display.

Network module
The network module receives the data stream from the local
user’s device, sends the incoming video data on to the de-
coder, and finally notifies the main module when a new frame
(decoded image data + meta-data) is available.

3D modeler
From the live video stream and associated camera poses, we
construct a 3D surface model on the fly as follows. We select
keyframes based on a set of heuristics (good tracking quality,
low device movement, minimum time interval & translational
distance between keyframes), then detect and describe fea-
tures in the new frame using SIFT [27]. We then choose the
four closest existing keyframes, match against their features
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# of keyframes in model 1–10 11–25 > 25

Keypoint detection 32± 2 32± 3 34± 2
Keypoint description 904± 124 868± 144 795± 167
Stereo matching 121± 59 166± 38 153± 45
Merging & filtering of vertices <1± 1 5± 1 9± 2
Updating tetrahedralization <1± 1 2± 2 3± 3
Calculating graph costs 10± 6 51± 14 128± 28
Solving graph cut <1±<1 1±<1 1± 1
Extracting & smoothing surface 4± 8 9± 21 21± 9

Total time 1082± 140 1159± 175 1201± 208

Table 1. Average timings of the 3D modeler to process and integrate one
new keyframe into the model, running on a single core of a 3 GHz Intel
i7 CPU with 4 GB RAM. All times are given in milliseconds, with asso-
ciated standard deviations. Incorporating all logs from the user study to
be discussed below, the data in the three columns are based on 300, 429,
and 481 keyframe integrations, respectively.

(one frame at a time) via an approximate nearest neighbor
algorithm [30] and collect matches that satisfy the epipolar
constraint (which is known due to the received camera poses)
within some tolerance as tentative 3D points. If a feature has
previously been matched to features from other frames, we
check for mutual epipolar consistency of all observations and
merge them into a single 3D point if possible; otherwise, the
two 3D points remain as competing hypotheses.

Next, all tentative 3D points are sorted by the number of sup-
porting observations and are accepted one by one unless one
of their observations has been previously “claimed” by an al-
ready accepted 3D point (which, by construction, had more
support). We require at least four observations for a point to
be accepted, and we further remove a fraction of points with
the largest 3D distances to their two nearest neighbors. The
algorithm is thus robust to even large fractions of mismatches
from the stereo matching stage.

To obtain a surface model from the 3D point cloud, we imple-
mented the algorithm by Hoppe et al. [16]: First, a Delaunay
tetrahedralization of the point cloud is created. Each tetra-
hedron is then labeled as “free” or “occupied,” and the inter-
face between free and occupied tetrahedra is extracted as the
scene’s surface. The labeling of the tetrahedra works as fol-
lows: A graph structure is created in which each tetrahedron
is represented by a node, and nodes of neighboring tetrahedra
are linked by edges. Each node is further linked to a “free”
(sink) node and an “occupied” (source) node. The weights of
all edges depend on the observations that formed each ver-
tex; for example, an observation ray that cuts through a cell
indicates that this cell is free, while a ray ending in front of a
cell indicates that the cell is occupied. Finally, the labels for
all tetrahedra are determined by solving a dynamic graph cut
problem. For details on how the edge weights are computed
we refer the reader to [16].

We refined Hoppe et al. [16]’s algorithm by taking the ori-
entation of observation rays to cell interfaces into account,
which reduces the number of “weak” links and thus the risk
that the graph cut finds a minimum that does not correspond
to a true surface.

As Hoppe et al. describe, both updating the graph costs and
solving the graph cut can be implemented in a incremental

manner, with cost almost independent of the overall model
size. As these steps were found to take up a negligible amount
of time in our application (cf. Table 1), for simplicity we did
not even implement the incremental algorithm. Nonetheless,
the entire processing of a new keyframe and updating of the
3D surface model is completed within 1-1.5 seconds (cf. Ta-
ble 1), which is easily fast enough for our purposes, as it is
smaller than the interval at which keyframes are added on av-
erage. Currently, the vast majority of the time is taken up by
the keypoint description, which is independent of the model
size. If necessary, the computation could be significantly sped
up by using a more efficient descriptor implementation or al-
gorithm and/or implementing the incremental graph update.
Thus, the overall modeling algorithm is highly scalable to en-
vironments much larger than demonstrated here.

Camera control (virtual navigation)
The remote user’s ability to navigate the remote world via a
virtual camera, independent of the local user’s current loca-
tion, is one of the key contributions of our work.

As mentioned earlier, Sodhi et al. [39] provide a similar fea-
ture, but use physical device movement for navigation. While
this is arguably very intuitive, using physical navigation has
two disadvantages; one being generally true for physical nav-
igation and the other one being specific to the application of
live collaboration: First, the remote user needs to be able to
physically move and track his/her movements in a space cor-
responding in size to the remote environment of interest1, and
“supernatural” movements or viewpoints (e.g., quickly cov-
ering large distances or adopting a bird’s-eye view) are im-
possible. We refer to Bowman et al. [4] for a more detailed
discussion of physical vs. virtual travel, and Sukan et al. [40]
for a comparison on a particular task in the context of AR.
Second, it does not allow coupling of the remote user’s view
to the local user’s view (and thus have the local user con-
trol the viewpoint) without breaking the frame of reference in
which the remote user navigates. Lanir et al. [25] presented a
study on the issue of control of viewpoint with mixed results,
suggesting that it may be dependent on the particular task.

We thus decided to use virtual navigation, and we deem it
important that our navigation gives the remote user the option
of coupling his/her view to that of the local user.

Within virtual navigation, we decided to use a keyframe-
based navigation as explained in the following for several rea-
sons: first, mapping unconstrained 3D navigation to 2D con-
trols requires relatively complex interfaces [19]; second, our
model is inherently constrained by what has been observed by
the local user’s camera, and a keyframe-based approach offers
a natural way to constrain the navigation accordingly; third,
a keyframe-based approach allows for image-based rendering
with high levels of fidelity.

Therefore, the camera control module continually stores new
keyframes with their associated camera poses from the live
video stream if the tracking quality is good enough. (These
1In fully immersive virtual reality, “redirected walking” [36] can
be used to “fit” a virtual environment into a smaller physical space
under certain conditions.
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keyframes are independent of the ones used by the modeler;
they serve a different purpose and are maintained separately.)
Keyframes that have become obsolete because they are close
to a newer keyframe are automatically discarded.

The individual controls were designed to be as intuitive as
possible and resemble controls familiar from other explo-
ration tools such as Google Street View and Photo tourism
[38]. Viewpoint transitions are implemented by smoothly in-
terpolating between the camera poses and are rendered as vi-
sually seamlessly as possible (cf. the description below).

Freeze & back to live
The application starts with the remote view coupled to the
local user’s live view. With a single right-click, the remote
user “freezes” his/her camera at the current pose, for example
in order to precisely set annotations, or as a starting point
for further navigation. Whenever the remote user’s view is
not coupled to the local user’s view, the latter is displayed
to the remote user as an inset (cf. Figure 3). A click onto
this inset or pressing 0 immediately transitions back to the
live view. (This feature, resembling the “Frame & Freeze”
technique by Güven et al. [15], is the only camera control
feature implemented in the prototype in [12].)

Panning & zooming
By moving the mouse while its right button is pressed, the
user can pan the view in a panorama-like fashion (rotate
around the current camera position). To prevent the user from
getting lost in unmapped areas, we constrain the panning to
the angular extent of the modeled environment. To ensure
that the system does not appear unresponsive to the user’s in-
put while enforcing this constraint, we allow a certain amount
of “overshoot” beyond the allowed extent. In this range, fur-
ther mouse movement away from the modeled environment
causes an exponentially declining increase in rotation and vi-
sual feedback in the form of an increasingly intense blue gra-
dient along the respective screen border (Figure 3). Once the
mouse button is released, the panning quickly snaps back to
the allowed range. Thus, the movement appears to be con-
strained by a (nonlinear) spring rather a hard wall.

The user can also zoom into and out of the view with the scroll
wheel. Zooming is implemented as a change of the virtual
camera’s field of view (rather than dollying) to avoid having
to deal with corrections for parallax or occlusions from ob-
jects behind the original camera position.

Click to change viewpoint
When the user right-clicks into the view, we compute the 3D
hit point, and subsequently find the camera whose optical axis
is closest to this point (which may be the current camera as
well). We then transition to this camera and adapt yaw and
pitch such that the new view centers around the clicked-upon
point. This allows the user to quickly center on a nearby point
as well as quickly travel to a far away point with a single click.

Saving & revisiting viewpoints
Further, the user can actively save a particular viewpoint to re-
visit it later (similar to the navigation investigated by Sukan et
al. [40]). Pressing Alt plus any number key saves the current
viewpoint; pressing the respective number key alone revisits

Figure 3. Screenshot of the remote user’s interface.

this view later. Small numbers along the top of the screen
indicate which numbers are currently in use (see Figure 3).

We postulate that this keyframe-based navigation is simple
and intuitive and allows for flexible exploration of a scene.
However, there are situations in which it is limited: it does
not allow navigation to a never-visited viewpoint, or control
over each degree of freedom individually, as may be desired
by advanced users for fine-grained maneuvering [4, 19].

Annotation Control
In addition to being able to control the viewpoint, the re-
mote user can set and remove virtual annotations. Annota-
tions are saved in 3D world coordinates, are shared with the
local user’s mobile device via the network, and immediately
appear in all views of the world correctly anchored to their
3D world position (cf. Figures 1 and 3).

For this prototype, we implemented only simple, animated
spherical markers. If annotations are outside the user’s cur-
rent field of view, an arrow appears along the border of the
screen pointing towards the annotation (see Figure 3; also
cf. [12]). Annotations are “pulsing” with 1 Hz and 15% am-
plitude to increase their visual saliency. Together with the in-
dependent viewpoint control as described above, the remote
user can thus effectively direct the local user to elements out-
side the local user’s current field of view.

The remote user sets a marker by simply left-clicking into
the view (irrespective if “live” or “decoupled”). The depth of
the marker is derived from the 3D model, presuming that the
user wants to mark things on physical surfaces rather than in
mid-air. Pressing the space bar removes all annotations. More
complex and/or automatic erasure management [11, 20] could
be integrated as desired.

These annotations were sufficient for our task (cf. user study
tasks below), but other tasks may require more complex an-
notations. As discussed earlier, other works have experi-
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mented with 2D drawings [14, 22, 34] or transfer of hand
gestures [17, 18, 22], which are undoubtedly more expressive
but thus far have been used mostly with stationary cameras.
More complex annotations like this could be integrated (now
world-stabilized as well) as needed.

Renderer
Finally, the renderer renders the scene using the 3D model,
the continually updated keyframes, the incoming live camera
frame (including live camera pose), the virtual camera pose,
and the annotations. In addition to a generally desirable high
level of realism, a particular challenge rather unique to our ap-
plication is the seamless transition to and from the live video
(also cf. [42]). That is, as the virtual camera approaches the
physical camera, the views should become identical, with no
noticeable transition from “model view” to “live view.” We
achieve this by using image-based rendering as follows.

The 3D model is rendered as a polygonal model, upon which
the images of the live frame and closest keyframes are pro-
jected using projective texture mapping. As the virtual cam-
era moves, the different textures are faded in and out by adapt-
ing their opacity. In areas which are modeled accurately, tran-
sitions are thus completely seamless, with lighting effects nat-
urally blending in. More sophisticated image-based rendering
techniques (e.g., [6]) could be integrated as appropriate.

We note that the live view may extend beyond the area cur-
rently modeled in 3D. To ensure that these areas do not sud-
denly “disappear” immediately after transitioning away from
the live view, we extend the model with a proxy plane (at the
model’s average distance to the camera) on which textures
can be projected. To soften artifacts, we blur the parts of the
projective textures that fall onto this part.

In effect, when the remote user’s virtual camera pose is identi-
cal (coupled) to the local user’s current physical camera pose,
the rendered image is identical to the live video, and transi-
tions to and away from it are seamless.

Due to the nature of our camera control, the camera is often
at the location of a previously cached keyframe (albeit with
possibly modified yaw, pitch, or field-of-view), which enables
image-based rendering with high levels of fidelity. The 3D
model is rarely visible as a polygonal model, thus modeling
artifacts are rarely apparent. However, the more accurate the
model, the better the transitions can be rendered, and the more
precisely annotations can be anchored.

We encourage the reader to inspect the virtual navigation and
the rendering in the supplemental video.

SYSTEM LIMITATIONS & DISCUSSION
While our prototype delivers a robust, real-time AR experi-
ence, there are some assumptions and system limitations.

Level of detail of model
Building upon a tetrahedralization of a sparse point cloud, the
modeling approach taken here is very fast (as demonstrated
above), but results in a model that does not exhibit the level
of detail as achievable, for example, with dense volumetric
fusion [9, 32, 35]. While the existence of the 3D model is

quintessential for anchoring of annotations and rendering, a
relatively coarse level of detail is, arguably, acceptable, as
the keyframe-based navigation and rendering de-emphasize
modeling artifacts.

However, techniques to create a more detailed model exist,
and since our system is modular — none of the other compo-
nents depend on this particular modeling algorithm — other
algorithms could be plugged in as needed. This includes algo-
rithms to densify the point cloud [10] while keeping the over-
all approach the same, using other, computationally more in-
tensive, vision-based algorithms [35], or (where permissible
by the application) active depth sensor-based modeling [32].

Static scene
Our system generally assumes that the scene is static. While
the SLAM system on the local user’s side is quite robust to
partial and/or gradual changes in the scene, adapting the mod-
eling, navigation and rendering would require an active detec-
tion and invalidation of changed regions.

Stereo initialization
Like any monocular SLAM system, our system requires a
stereo initialization (i.e., a distinct camera movement) before
it tracks robustly. This is done quickly and thus not a prob-
lem if the user is aware of the requirement; however, we feel
that it stands in the way for truly transparent and user-friendly
operation. The research community is investigating ways to
reduce this burden [13, 31].

Occlusion of annotations on local side
Currently, the 3D model is available only on the remote user’s
side. Thus, annotations can be correctly occluded by the
physical scene by the remote user’s renderer, but not by the
local user’s renderer. While other depth cues (most notably,
parallax) still indicate the annotation’s location, it would be
desirable to enable occlusion. The remote system could send
either the model geometry or alternatively some sort of local
visibility information per annotation back to the local device.
Designing an elegant, bandwidth-efficient solution for either
approach is an interesting aspect for future work.

One-way annotations
Our system currently limits creation of annotations to the re-
mote user. The rationale is that the local user can spatially
refer to the environment with his/her hands (as seen in Fig-
ure 1 and the supplemental video) — it is the remote user who
needs additional means (cf. related work using one-way an-
notations [11, 22, 25]). However, if deemed appropriate, it
would be straightforward to also allow the local user to create
annotations, for example by tapping onto his/her screen.

USER STUDY: DESIGN & METHOD
To evaluate our system, we conducted a remote expert–local
worker user study comparing our system with two baselines:
a video+audio only interface and an interface with static an-
notations (also called “markers” throughout the study). Both
the local and the remote users were study participants.

We first conducted several pilot study trials with a total of 20
users (10 teams), during which we refined study parameters,
overall procedure, and training procedure.
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Figure 4. One example out of 80 individual tasks. These instructions
were provided to the remote user, who then needed to communicate the
information to the local user.

Task & Physical setup
We chose a “car repair” task for the study. The local user
stood in front of a car, hood open, and received help from the
remote user in “identifying the problem” (cf. [7] for a sim-
ilar scenario). The study took place outdoors, and while we
used a relatively isolated location with no direct sunlight, sev-
eral environment factors were beyond our control, including
weather, light conditions, passers-by, and noise from a nearby
street and a nearby airport. The study’s external conditions
were thus close to a real scenario. Network infrastructure and
the remote user’s PC were mounted onto a cart and positioned
adjacent to the car such that the participants could communi-
cate verbally, but not see each other.

To make sure that the individual tasks were roughly equiva-
lent, quick enough to perform, independent of the individual
user’s dexterity, and not dangerous in any way, we used proxy
tasks that would require similar communication between the
users but little or no physical labor, such as locating individ-
ual elements and finding pieces of information. For example,
instead of unscrewing a bolt, we asked the users to identify
its size by testing it with a set of provided nuts, which re-
quires the same communication between the users in order
to identify the correct element but little physical labor. For
each individual task, the remote user was given simulated ex-
pert knowledge in the form of a specific question (e.g., size of
a particular screw or cable, rating of a particular fuse, serial
number of a part) and a diagram indicating where the answer
could be located (see Figure 4). The remote user then had to
communicate this information to the local user, who had to
locate the requested information and write it down.

Conditions
In all conditions, the two users were able to talk to each other
without restrictions.

• Interface A: video only. The live video from the local
user’s camera is streamed to the remote user; the remote
user does not have any means of interacting with the video
or providing visual/spatial feedback. This is similar to us-
ing today’s standard video conferencing tools.

• Interface B: video + static markers. In addition to the
features in condition A, the remote user can click into the

video to create a marker visible to both users. However,
the marker’s position is stored in screen coordinates and
thus moves with the camera rather than “sticking” to the
world object. This condition is effectively similar to related
works that assume a stationary camera [11].

• Interface C: our prototype as presented above.

As in Gauglitz et al. [12], conditions B and C both allowed
up to five concurrent markers in different colors, with further
clicks re-setting the oldest marker.

Experimental Design
We used a within-subjects design with one independent vari-
able (interface type) and one dependent variable (task com-
pletion time). We also recorded the number of errors and
obtained several user ratings via questionnaires. The order of
the interfaces was completely balanced, with each of the six
possible orderings traversed by five of the 30 teams. For each
team, three lists with 15 tasks were created at random, with
the remaining tasks reserved for training.

Our hypotheses about the study’s outcome were as follows:

H1 Users will complete the task faster with interfaces B and
C than with interface A.

H2 Users will complete the task faster with C than with B.

H3 Users will prefer interface C over both A and B.

Participants
60 users (18–30 years (mean 20.8), 29 female, 31 male)
participated in the main study, working together in 30
teams (8 female/female, 7 female/male, 6 male/female, 9
male/male (local/remote user)). Each user received a com-
pensation of USD 10; all teams additionally competed for a
bonus of USD 10 / 20 / 40 per person for the top 5 / second
fastest / fastest error-free task performances for all three con-
ditions combined.

In two teams not included in the numbers above, one user was
color blind. It remains unclear whether this affected the task
performance. However, we used color extensively (markers,
labels in the car, etc.), and at least one of the users was unable
to disambiguate a few of the elements. We thus decided not
to include the data from these two trials in the analysis.

Procedure & Training
Each participant completed a color blind test and a pre-study
questionnaire with background information. The general
setup and task were then explained in detail.

For each session, the study administrator explained the re-
spective interface features in detail, then the users conducted
several training tasks with the respective interface. Each user
completed a minimum of five training tasks for each new fea-
ture and was asked explicitly if they were comfortable using
the interface before proceeding to the timed session. After
each session, the users filled out an intermediate question-
naire rating this interface. Lastly, each user filled out a post-
study questionnaire and received their compensation.
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Figure 5. Histogram of task times per interface.

During the pilot study trials, it quickly became clear that not
all of the camera control features that our prototype (inter-
face C) featured were necessary for this particular environ-
ment and task, and that the limited amount of time prohibited
explaining and training the user on each of them. We thus
concentrated the training on a subset of features that appeared
to be most useful in this context, namely, the freezing of the
camera, and the saving/revisiting of viewpoints. However,
the other features (panning, zooming, change viewpoint via
click) were still available and were occasionally discovered
and used by participants.

To ensure a consistently high quality of the required stereo
initialization, the study administrator conducted the initializa-
tion step (until the modeler had started to extract 3D surface)
before handing the device to the local user.

USER STUDY: RESULTS & DISCUSSION

Task performance
Overall, 98.5% of the tasks were answered correctly (21
errors at a total of 30×3×15 tasks). Analyzing the num-
ber of errors, Mauchly’s test indicated that the assump-
tion of sphericity against interface had not been violated
(W(2) = 0.95, p = 0.50), and no significant effect of inter-
face on the number of errors was found using a one-way
repeated measures ANOVA (F(2,58) = 0.47, p = 0.63, and
η2partial = 0.016). Additionally, we note that 5 of the 21 er-
rors were made on two particular subtasks in which the expert
knowledge diagram may have been confusing. We conclude
that all users worked meticulously and thus that the compari-
son of the task times is meaningful.

Analyzing the task times, Mauchly’s test indicated that the
assumption of sphericity had not been violated (W(2) = 0.99,
p = 0.93). With a one-way repeated measures ANOVA, we
found a significant effect of interface on task completion
time with F(2,58) = 6.94, p = 0.0020, and η2partial = 0.19. Post
hoc comparisons using Tukey’s HSD test indicated that users
were significantly faster with both interfaces B (M = 313.6,
SD = 69.6) and C (M = 317.5, SD = 57.6) than with interface
A (M = 364.7, SD = 96.7), thus supporting hypothesis H1. No
significant difference was found between B and C; hence, hy-
pothesis H2 was not supported.

Questionnaires
In the intermediate questionnaires filled out immediately after
each session (i.e., before the next interface was introduced),

Figure 6. Results from intermediate questionnaires: interface ratings.

Figure 7. Results from intermediate questionnaires: individual features.

the users were asked to rate their level of agreement on a 7-
point scale to the statements, “This interface helped me to
solve the task,” “This interface made me feel confident that
I was doing the task correctly,” and “I had difficulties using
this interface.” The responses are aggregated in Figure 6.

For these ratings, we decided to use a non-parametric test for
the analysis to avoid the assumptions of interval data, normal-
ity and spherecity.

According to Friedman’s test, the ratings in response to the
first two statements differ significantly among the interfaces
(χ2(2) = 34.5, p < 10−7, and χ2(2) = 37.8, p < 10−7, re-
spectively). Pairwise comparisons with Bonferroni’s correc-
tion applied indicated that both B and C were rated better
than A. For the third question (“I had difficulties...”), Fried-
man’s test also indicated a significant difference (χ2(2) = 8.1,
p = 0.017), but pairwise comparisons with Bonferroni’s cor-
rection applied only revealed a possible borderline significant
difference between A and C at p = 0.019 (compared to the
corrected threshold of 0.017).

Users were further asked to rate the helpfulness of individ-
ual features on a 5-point scale from “extremely helpful” to
“not helpful at all” (Figure 7). Wilcoxon’s paired signed rank
test (V = 25, p < 10−4) showed that the anchored markers (in
interface C) were perceived as more helpful than the static
markers (in interface B), with 80% of the users perceiving the
former as “extremely helpful.” The camera control features
were perceived as “extremely” or “very” helpful by 77% of
the remote users.

In the post-study questionnaire, users were asked to rank
the three interfaces (“Which interface did you like best /
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Figure 8. Results from post-study questionnaire: interface preference.

would you choose to use for a real task?”). There is a sig-
nificant difference in ranking according to Friedman’s test
(χ2(2) = 71.42, p< 10−15). Pairwise comparisons (with Bon-
ferroni’s correction applied) indicated that all pairwise dif-
ferences are significant. 80% of the users selected interface
C as their first choice (cf. Figure 8), supporting H3. The
preference for C is 83% among tablet users and 77% among
PC users, but this difference was not significant according to
Wilcoxon’s paired signed rank test (V = 29, p = 0.45).

Open-ended questions on the questionnaires revealed several
interesting details, most notably an inadvertent side effect of
the world-stabilization of markers: Since the markers in inter-
face C had a constant world size, they ended up being quite
large when the user got very close to the object, and were thus
too large for some tasks, as described by this user: “Overall,
the markers and viewpoints were extremely helpful. However,
[...] for the tasks where text needed to be located, the marker
was much bigger than the words.” Having constant screen
size, the markers in B did not have this side effect.

Several users expressed their preference for interface C, but
commented that too many keys had to be memorized: “[C]
was more useful [...] but it was sometimes difficult to remem-
ber which buttons would navigate to which screen shots, what
to press to unfreeze the pane, and so on. However, I imagine
it would get much easier with additional practice”; “[C] was
by far the most helpful user interface, but it was a bit difficult
to use due to the [number of] buttons.”

Discussion
To summarize the results, an overwhelming majority of the
participants (in both roles) preferred our system over both
baselines (H3 supported); users performed significantly faster
with it than with a video-only baseline (H1 supported); but no
significant difference in task performance was found in com-
parison with a static marker condition (H2 not supported).

Differences in task performance
We note two particular artifacts of the study design that may
have reduced the differences in task performance between the
interfaces in general and counteracted potential benefits of
interface C in particular:

First, as users started, the difficulty of verbally giving spatial
and directional instructions — including confusion regarding
“left” and “right” (relative to the car’s driving direction or
the user’s perspective?) and “up” and “down” (in world
or screen coordinates?), as well as misidentification of ele-
ments — was very apparent, which supports the need for spa-
tial annotations. However, as an artifact of the training, the
within-subjects design, and the small task environment, users

quickly became experts in giving and understanding direc-
tions for this particular task, possibly more so than becoming
experts in using the interfaces. Oftentimes, users came up
with names for different parts of the engine, which did not
have to be technically accurate in order to be effective (the
most creative moniker may have been “rainbow keyboard”
for the fuse box). As one user commented when asked about
the usefulness of the camera control: “[It] wasn’t very useful
since I already knew the layout of the engine from previous
tasks.” For real applications, we might assume the opposite:
users become familiar with the interfaces available to them
and communicate with new partners in new environments.
To account for this, different environments could be used for
each training and interface session, which however poses a
challenge in terms of practicality and ensuring fair conditions
across all sessions.

Second, because of the increasingly familiar environment,
and additionally motivated by the incentives, the tasks be-
came very fast-paced. Thus, the remote user’s mental load
of understanding the next instructions (cf. Figure 4), aligning
them with his/her mental model of the engine, and then with
his/her view of the scene, was oftentimes slower than the ac-
tual task execution, which required little physical labor and
could thus be completed very quickly. As the time-critical
path shifted from the local to the remote user, a potential ben-
efit of the virtual camera control — namely, that the remote
user could browse and familiarize him/herself with the en-
vironment (e.g., for the next task) — became less relevant,
while a potential downside (increased complexity) became
more relevant. One user commented: “Using the multiple
views was a little more hectic on the ‘expert’s’ side, but only
because we were trying to complete the tasks as quickly as
possible. In a situation in which this technology would be
used, this feature would no doubt be very helpful for quality
and efficiency of task completion.” We note that this is also an
artifact of the study setup: in a real application, no simulated
expert knowledge has to be understood, and the local user’s
task may require more physical labor or travel.

Other factors that may have played a role are: While the
users’ ratings suggest that they did not perceive interface C
as more difficult to use, it may require more training for opti-
mal use (cf. comments on the number of keys above). Lastly,
with C, some users took extra time to carefully position the
camera to save viewpoints for later use, but the amortization
of this time investment was limited by the short task duration.

Type of task
In this work, in order to validate our system design and es-
tablish its usefulness, we chose a relatively simple task with
clearly defined roles, as commonly used in this context (e.g.,
[2, 5, 11, 12, 34]). Looking forward, it would be important
to study more complex collaborative tasks. As the features
that the system provides are very general in nature, we are
confident that they provide benefits in a variety of contexts.

CONCLUSIONS
In this paper, we described a system for mobile remote col-
laboration that uses real-time computer vision-based track-
ing and modeling of the environment to facilitate live, remote
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controlled AR annotations and remote virtual scene naviga-
tion. We believe that these features add promising new di-
mensions to remote collaboration. We further presented an
extensive comparative user study.

Our system was overwhelmingly preferred by users. With re-
gard to task performance time, our study showed a significant
benefit compared with only one of the two baseline interfaces.
We discussed several artifacts which may have contributed to
this outcome. Some of these are common to many studies of
collaboration, such as small environments, proxy tasks, and
simulated expert knowledge. Thus, we hope that our study
also informs the design of future studies in this area. Alto-
gether, our results demonstrate the maturity and usability of
our system, as well as producing insights into which aspects
of the interface can be further improved. Limitations of the
system which future work might target have also been dis-
cussed above.

While the system is complex under the hood, we feel that
one important advantage of our approach is that it seamlessly
extends the ubiquitous videoconferencing paradigm; it adds
to it, but it does not take anything away. If desired, the user
can fall back to simply watching the live video feed.

In the bigger picture, our work bridges and creates a syn-
ergy between video conferencing (Skype, Apple FaceTime,
Google Hangouts, etc.) and remote world exploration (Mi-
crosoft Photosynth, Quicktime VR [8], Google StreetView,
[43], etc.) in a unique coherent interface via live collabora-
tive AR. However, our prototype has only started to tap into
the significant potential of this synergy. Areas to explore in-
clude the integration of more complex annotations such as
gestures or gaze [29] in a world-stabilized manner and the in-
tegration of cloud-based data (e.g., maps/larger models of the
environments). The live navigation of remote worlds — both
within virtual navigation as well as in comparison with phys-
ical navigation [20, 39] — also warrants further investigation.

This synergy could further be explored beyond the two-user
remote expert–local worker scenario, with respect to both
roles and numbers of users: We note that the presented
paradigm is equally applicable to scenarios with shared ex-
pertise or a local expert (e.g., in an educational context), and
naturally extends to more than one local user and/or more
than one remote user. Here, the environment model is to inte-
grate video streams and annotations from all users.
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