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Abstract

Augmented reality annotations and virtual scene navigation add
new dimensions to remote collaboration. In this paper, we present
a touchscreen interface for creating freehand drawings as world-
stabilized annotations and for virtually navigating a scene recon-
structed live in 3D, all in the context of live remote collaboration.
Two main focuses of this work are (1) automatically inferring depth
for 2D drawings in 3D space, for which we evaluate four possi-
ble alternatives, and (2) gesture-based virtual navigation designed
specifically to incorporate constraints arising from partially mod-
eled remote scenes. We evaluate these elements via qualitative user
studies, which in addition provide insights regarding the design of
individual visual feedback elements and the need to visualize the
direction of drawings.

CR Categories: H.5.1 [Information interfaces and presentation]:
Multimedia information systems—Artificial, augmented, and vir-
tual realities H.5.3 [Information int. and presentation]: Group and
organization interfaces—Computer-supported cooperative work

Keywords: CSCW; video-mediated communication; augmented
reality; telepresence; touch; gesture recognition; depth interpreta-
tion

1 Introduction

Advances in computer vision and human-computer interaction
paradigms such as augmented reality (AR) offer the chance to
make remote collaboration significantly more immersive and thus
to broaden its applicability. Specifically, integrating them allows
remote users to explore remote scenes based on collected imagery
[Uyttendaele et al. 2004; Snavely et al. 2006] as well as to commu-
nicate spatial information (e.g., referencing objects, locations, di-
rections) via annotations anchored in the real world [Jo and Hwang
2013; Sodhi et al. 2013].

In [Gauglitz et al. 2014], we presented a fully operational, mobile
system to implement this idea. The remote user’s system received
the live video and computer vision-based tracking information from
a local user’s smartphone or tablet and modeled the environment in
3D based on this data. It enabled the remote user to navigate the
scene and to create annotations in it which were then sent back
and visualized to the local user in AR. This earlier work focused
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Figure 1: A remote user points out an element in the environment
(here: a car’s engine bay) by drawing an outline around it. The
annotation is world-stabilized and displayed in augmented reality
to the local user (bottom left), who is holding a tablet.

on the overall system and enabling the navigation and communica-
tion within this framework. However, the remote user’s interface
was rather simple: most notably, it used a standard mouse for most
interactions, supplemented by keyboard shortcuts for certain func-
tions, and supported only single-point-based markers.

In this paper, we introduce a novel interface for the remote user
in the context of this previous system that allows for more expres-
sive, direct, and arguably more intuitive interaction with the remote
world (cf. Figure 1). Several elements of our interface are funda-
mentally different from similar existing work; we evaluate these
novel elements of this interface via qualitative user studies. Specif-
ically, our contributions in this paper include:

• A novel touchscreen-based interface for live augmented real-
ity based remote collaboration (Section 5);

• The integration of 2D drawings as world-stabilized anno-
tations in 3D, including an evaluation of how to inter-
pret (i.e., unproject) the two-dimensional drawings in three-
dimensional space (Section 6);

• A multitouch gesture-based virtual navigation interface de-
signed specifically to explore partially modeled remote scenes
based on a skeleton of keyframes, including multitouch orbit-
ing with “snap” and a hybrid approach to zoom, which com-
bines changing the field of view and dollying (Section 7).

2 Related Work

Classic videoconferencing or telepresence systems lack the abil-
ity to interact with the remote physical environment. Researchers
have explored various methods to support spatial references to the
remote scene, including pointers [Bauer et al. 1999; Fussell et al.
2004; Kim et al. 2013], hand gestures [Kirk and Fraser 2006; Huang
and Alem 2013; Oda et al. 2013], and drawings [Ou et al. 2003;
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Fussell et al. 2004; Kirk and Fraser 2006; Chen et al. 2013; Kim
et al. 2013]. Most notably in our context, Ou et al. [2003] inves-
tigated the use of drawings for collaboration including recognition
of common shapes (for regularization, compression, and interpreta-
tion as commands).

However, in all of these works, the remote user’s view onto the
scene is constrained to the current view of the local user’s cam-
era, and the support for spatially referencing the scene is contingent
upon a stationary camera.

More specifically, when drawings are used, they are created on a
2D surface as well as displayed in a 2D space (e.g., a live video),
and it remains up to the user to mentally “unproject” them and in-
terpret them in 3D. This is fundamentally different from creating
annotations that are anchored and displayed in 3D space, that is, in
AR.

Very recently, a few systems have been presented that support
world-stabilized annotations [Gauglitz et al. 2012; Jo and Hwang
2013; Sodhi et al. 2013; Gauglitz et al. 2014]. Of those, two
[Gauglitz et al. 2012; Gauglitz et al. 2014] support only single-
point-based markers, and two [Gauglitz et al. 2012; Jo and Hwang
2013] can cope with 2D/panorama scenes only. The system by
Sodhi et al. [2013] uses active depth sensors on both the local and
the remote user’s side and thus supports transmission of hand ges-
tures in 3D (along with a different approach to navigating the re-
mote scene); we will contrast their approach with ours in more de-
tail in Section 5.1.

In other areas such as computer-aided design or interactive image-
based modeling, the interpretation of 2D drawings in 3D is com-
monly used [Tolba et al. 1999; Igarashi et al. 2007; Zeleznik et al.
2007; Xin et al. 2008; van den Hengel et al. 2007]. However, the
purpose (design/modeling vs. communication), intended recipient
(computer vs. human collaborator) and, in most cases, scene (vir-
tual model vs. physical scene) all differ fundamentally from our
application, and the interpretation of 2D input is typically guided
and constrained by task/domain knowledge. Thus, these techniques
cannot immediately be applied here.

To our knowledge, freehand 2D drawings have not been used before
as world-stabilized annotations unprojected into 3D space for live
collaboration. While freehand drawings have been used to create
annotations in AR (e.g., [Kasahara et al. 2012]), the inherent ambi-
guity due to different depth interpretations has not been addressed
explicitly in this context.

With respect to virtual navigation, there is a large body of work con-
cerning 3D navigation from 2D inputs [Hanson and Wernert 1997;
Zeleznik and Forsberg 1999; Tan et al. 2001; Hachet et al. 2008;
Christie and Olivier 2009; Jankowski and Hachet 2013], including
works specifically designed for multitouch interaction (e.g., [Mar-
chal et al. 2013]). The motivation in this paper is not to propose
a novel multitouch interaction to compete with those works, but
rather to describe an appropriate solution given the particular con-
strained situation — that is, a partially modeled scene with highest
rendering fidelity from a set of known viewpoints.

Our work is further related to the virtual exploration by Snavely et
al. [2008]; we will discuss this relationship further in Section 7.

3 System Overview

We first give a brief overview of the collaborative system as a
whole, as illustrated in Figure 2. The local user uses a lightweight
tablet or smartphone. It runs a vision-based simultaneous localiza-
tion and mapping (SLAM) system and sends the tracked camera

Figure 2: Overview of the collaborative system including local
user’s system (left) and remote user’s system (right). In this paper,
we focus on the remote user’s interface (highlighted area).

pose along with the encoded live video stream to the remote sys-
tem. From there, the local system receives annotations and displays
them, overlaid onto the live video, to the local user; i.e., it acts as
a classic magic lens. This system was implemented as an Android
app, running on several state-of-the-art Android devices.

The remote user’s system, running on a commodity PC, receives the
live video stream and the associated camera poses and models the
environment in real time from this data. The remote user can set
world-anchored annotations which are sent back and displayed to
the local user. Further, thanks to the constructed 3D model, he/she
can move away from the live view and choose to look at the scene
from a different viewpoint via a set of virtual navigation controls.
Transitions from one viewpoint to another (including the live view)
are rendered seamlessly via image based rendering techniques us-
ing the 3D model, cached keyframes, and the live frame appropri-
ately.

For an in-depth description of the whole system we refer the reader
to [Gauglitz et al. 2014]. In the system described therein, the re-
mote user used a standard PC interface, using the mouse and key-
board shortcuts for annotation control and virtual navigation. While
the system as a whole was received very favorably (for example,
80% of the users preferred it over the two alternative interfaces,
cf. [Gauglitz et al. 2014]), individual elements of the remote user’s
interface in particular were found to be suboptimal.

Thus, in this paper, we concentrate on the remote user’s interac-
tion with the system and present and evaluate a new interface for it
(highlighted area in Figure 2).

4 User Evaluation & Feedback

The feedback from users who participated in our task performance-
based user study reported in [Gauglitz et al. 2014] served as moti-
vation and the initial source of feedback for this work. In that study,
30 pairs of participants used the prior system, as well as two alter-
native interfaces for comparison, to solve a particular collaborative
task and subsequently rated the interfaces and provided comments.
We will refer to these users as group 1.

We then incorporated novel elements and iterated the design as de-
scribed in the following sections. The system was demonstrated
during a three-hour open house event, where roughly 25 visitors (re-
ferred to as group 2) directly interacted with the system. Although
these interactions were very brief and unstructured, we were able to
observe how people intuitively used the system and which features
appeared to work well.
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Lastly, we asked eleven users to interact with the system follow-
ing a structured protocol and provide feedback on particular design
elements (group 3). They were compensated for their time com-
mitment of about 50 minutes with US$10. Of these study partici-
pants, five were female; the age range was 18–22 years. Four stated
that they were “somewhat familiar” with interactive 3D software
(e.g., 3D modelers). All had used small-scale touchscreens (e.g.,
smartphones) on a daily basis, but only one had used large-scale
touchscreens more than “occasionally to rarely.” Five of the partic-
ipants had participated in the earlier task performance-based study
and were thus also asked to comment on the differences compared
to the earlier design.

We will report on this user feedback in the respective design sec-
tions below.

5 The Touchscreen Interface

The remote user uses a touchscreen interface for all interactions
with the system. In this section, we describe the main elements of
the graphical user interface before focusing on two particular as-
pects — namely, the use of 2D drawings as world-stabilized anno-
tations in 3D and gesture-based virtual navigation — in Sections 6
and 7, respectively.

We encourage the reader to watch the supplemental video, in which
each feature of the interface is demonstrated.

5.1 Motivation for using a touchscreen vs. 3D input

One might argue that, for interaction in a three-dimensional space,
one should use an interface which affords three-dimensional input
and thus can, for example, create annotations in 3D. Sodhi et al.
[2013] described a prototype system which uses three-dimensional
input for the purpose of remote collaboration, by reconstructing the
remote user’s hand in 3D and transferring this reconstruction and a
3D “motion trail” into the local user’s space.

However, even if sensors that support unthethered, unobtrusive
3D input (e.g., high resolution active depth sensors) become com-
monplace, additional issues remain. First, unless such sensors are
matched with an immersive 3D display that can synthesize images
in any physical space (such as a stereo head-worn display), the
space in which the input is provided and the space in which ob-
jects are visualized remain separate, in much the same way as is the
case with a standard computer mouse. This has the effect that rel-
ative spatial operations are very natural and intuitive (e.g., moving
the mouse cursor downwards/indicating a direction in 3D, respec-
tively), but absolute spatial operations (e.g., pointing to an object,
which is arguably very important in our context) remain indirect
and require the user to first locate the mouse cursor/representation
of the hand, respectively, and position it with respect to the object
of interest. This issue can be well observed in the illustrations and
discussion by Sodhi et al. [2013].

Second, even with such an immersive 3D display, haptic feedback
is typically missing [Xin et al. 2008].

In contrast, touchscreens are not only ubiquitous today, but they
afford direct interaction without the need for an intermediate repre-
sentation (i.e., a mouse cursor), and provide haptic feedback during
the touch. In our context, however, they have the downside of pro-
viding 2D input only. Discussing the implications of this limitation
and describing and evaluating appropriate solutions in the context
of live remote collaboration is one of the main contributions of this
paper.

Figure 3: Screenshot of the remote user’s touchscreen interface

5.2 Interface elements

Figure 3 presents the elements of the graphical user interface. The
main part of the screen shows the main view, in which annota-
tions can be created (Section 6) and gesture-based virtual naviga-
tion takes place (Section 7).

A side pane contains, from top to bottom, (1) a button to save the
current viewpoint, (2) small live views of saved viewpoints, and (3)
the local user’s live view (whenever the main view is not identical
to it). A tap onto any of the views in the side pane causes the main
view to transition to that respective viewpoint.

A two-finger tap onto the main view while it is coupled to the local
user’s live view freezes the current viewpoint. (Note that only the
viewpoint is frozen; the live image is still projected into the view
[Gauglitz et al. 2014].)

When the user starts to draw an annotation while the main view
is coupled to the (potentially moving) live view, the viewpoint is
temporarily frozen in order to enable accurate drawing. In this case,
the view automatically transitions back to the live view as soon as
the finger is lifted. This feature was particularly well-received by
group 2.

Thus, all interface functions are immediately accessible on the
screen, allowing quick access and avoiding the need to memorize
keyboard shortcuts (which was noted as a drawback in the previous
system by group 1).

6 2D Drawings as Annotations in 3D Space

Using a single finger, the remote user can draw annotations into the
scene. A few examples are shown in Figure 4(a). Since the camera
is tracked with respect to the scene, these annotations automatically
obtain a position in world coordinates. However, due to our use of a
touchscreen, the depth of the drawing along the current viewpoint’s
optical axis is unspecified.

In principle, it is possible to ask the user to explicitly provide depth,
for example by providing a second view onto the scene and having
the user shift points along the unspecified dimension. This may be
appropriate for professional tools such as CAD. However, in our
case, we want to enable the user to quickly and effortlessly com-
municate spatial information, such as with hand gestures in face-to-
face communication. Thus, we concentrate on ways to infer depth
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automatically. In this section, we discuss and evaluate several alter-
natives to do so.

6.1 Depth interpretations

We start with the assumption that the annotation shall be in contact
with the 3D surface in some way; i.e., annotations floating in mid-
air are, for now, not supported.

Given an individual 2D input location p = (x, y), a depth d can thus
be obtained by un-projecting p onto the model of the scene. For
a sequence of 2D inputs (a 2D drawing) p1, ..., pn, this results in
several alternatives to interpret the depth of the drawing as a whole,
of which we consider the following:

• “Spray paint.” Each sample pi gets assigned its own depth
di independently; the annotation is thus created directly on
the 3D surface as if spray painted onto it (Figure 4(b)).

• Plane orthogonal to viewing direction. The annotation is
created on a plane orthogonal to the viewing direction. Its
depth can be set to any statistic of {di}, for example, the min-
imum (to ensure that no part of the annotation lands behind
surfaces) (Figure 4(c)) or the median (Figure 4(d)).

• Dominant surface plane. Using a robust estimation algo-
rithm such as RANSAC or Least Median of Squares, one can
estimate the dominant plane of the 3D points formed by {pi}
and the associated {di} and project the drawn shape onto this
plane (Figure 4(e)).

All of these approaches appear to have merits; which one is most
suitable depends on the context and purpose of the drawing. Spray
paint appears to be the logical choice if the user intends to “draw”
or “write onto” the scene, trace specific features, etc.1

For other types of annotations, planarity may be preferable. To refer
to an object in its entirety, the user might draw an outline around
the object. Drawings used as proxies for gestures — for example,
drawing an arrow to indicate a direction, orientation, or rotation
(cf. Figure 4 top two rows) — are likely more easily understood if
projected onto a plane.

Another aspect for consideration, especially in the case of models
reconstructed via computer vision, is the sensitivity to noise and
artifacts in the model. A spray-painted annotation may get unintel-
ligibly deformed and the minimum depth plane may be shifted. The
median depth and dominant plane are more robust as single depth
measurements carry less importance.

6.2 Evaluation & discussion

In order to test our hypotheses above, we asked the users from group
3 to communicate a piece of information to a hypothetical partner
via a drawing. For example (for Figure 4(a) top to bottom): “In
which direction do you have to turn the knob?”; “Where should
the microwave be placed?”; “Where is the motor block?”. We then
showed the scene with the drawn annotation from a different view-
point and asked the users which of the four depth interpretations
(Figure 4(b-e)) was the most suitable interpretation for their partic-
ular drawing.

1Note that projective displays — used for remote collaboration for exam-

ple by Gurevich et al. [2012] and appealing due to their direct, un-mediated

overlay of annotations — can intrinsically only produce spray paint-like ef-

fects, unless not only the projector, but also the user’s eyes are tracked and

active stereo glasses (synced with the projector) are used in order to create

the illusion of a different depth.

arrow head none attached detached

example

initially: 24.6% 23.1% 52.3%

with animation: 72.3% 15.4% 12.3%

Table 1: Usage of different styles of arrow heads initially and after
an animation visualizing the drawings’ direction was introduced.

We covered a range of different questions to prompt a variety of
drawings. We also used scenes in which the original viewpoint was
roughly perpendicular to the object’s main surface (Figure 4 top) as
well as slanted surfaces (Figure 4 middle and bottom row). Further,
to be able to distinguish conceptual issues from sensitivity to noise,
we used both virtual models (Figure 4 top and middle row) and
models created by our system via SLAM and approximate surface
modeling (Figure 4 bottom). We avoided situations in which all
variants result in the same or nearly the same shape, that is, single
planar surfaces. In total, we asked each user for 27 drawings, in
four different environments.

We emphasize that we did not tell the users how they should com-
municate the information, and thus the drawn shapes varied appre-
ciably in nature. For example, to refer to a particular object, some
users traced the object’s outline (similar to Figure 4 bottom), some
circled it loosely, and others drew an arrow pointing towards it.

Arrow heads and indicating direction. Users used arrow-like
drawings in several contexts, for example, to indicate a direction
of rotation (e.g., Figure 4 top). However, the type of arrow head
varied, as detailed in Table 1. Initially, roughly one quarter of all
arrows were drawn without head; that is, the shape itself does not
actually convey the direction. Users evidently assumed that the di-
rection of the drawing would implicitly be communicated. As the
drawings assume the role of gestures (and one would rarely add an
arrow head with a hand gesture motioned in mid-air), this assump-
tion is reasonable.

We had anticipated this variant due to prior observations (e.g., with
users from group 2) and thus implemented an animated visualiza-
tion to do so: here, the line contains lighter dashes which flow in
the direction in which the line was drawn.2 Thus far, we use a fixed
speed of flow, but one could extend this visualization by addition-
ally visualizing the speed of drawing via the speed of flow.

We introduced this animation after the first six drawings for each
user; after that, almost three quarter of all arrows were drawn with-
out head (cf. Table 1). The animation was rated as “very helpful”
or “helpful” by 10 of 11 users; nobody perceived it as distracting
(even though it was not necessary for some of the drawings) (cf.
Figure 6).

User preference among depth interpretations. Figure 5 de-
tails the users’ preference among the depth interpretations, broken
down by various subsets. Overall, in every category, users tended
to prefer the planar projections in general, and the dominant plane
version in particular, which was the most frequently chosen variant
in every category but one.

Limitations. One limitation of our current implementation is that
drawings are treated as separate annotations as soon as the finger is

2The design was inspired by the visual appearance of animated Line In-

tegral Convolution [Cabral and Leedom 1993] and can loosely be thought of

as a coarse approximation for it for a single dimension and constant speed.
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(a) original view (b) spray paint (c) minimum depth (d) median depth (e) dominant surface plane

Figure 4: Depth interpretations of 2D drawings. In each row, (a) shows the viewpoint from which the drawing was created, and (b-e)
show different depth interpretations from a second viewpoint (all interpretations have the same shape if seen from the original viewpoint).
Annotation segments that fall behind object surfaces are displayed semi-transparently, which was deemed “very helpful” by 7 of 11 users (cf.
Figure 6).

Figure 5: Users’ preference among the four different depth inter-
pretations, broken down by various subsets. Per each row, the areas
of the squares and the numbers indicate the preference for a partic-
ular variant in percent.

Figure 6: Ratings of two visualization options (# of users).

lifted, which means that they get moved onto separate planes by the
three planar projection methods (cf. Figure 4(c-e) middle row). In-
dividual segments that are created in very close succession — such
as a detached head for an arrow, which was by far the most com-
monly used style of arrow before we introduced the animation in-
dicating direction (cf. Table 1) — should ideally be treated as one
entity.

Further, the “dominant plane” method is susceptible to extreme ar-
tifacts if the points lie on or close to a single line, such as seen in
Figure 4(e) middle row. When removing the cases in which this
occurred from consideration, the general preference for the domi-
nant plane version increases further (last row in Figure 5). In future
work, these degenerate configurations should be detected and one
of the other variants (e.g., median depth) used instead.

Naturally, there are several cases in which none of these options
will work satisfactorily, such as when trying to create an annota-
tion in mid-air or behind physical surfaces. Of course, an interface
may also offer to change the type of depth inference used, e.g., for
advanced users. Even for 2D only, some interfaces offer a whole
array of drawing tools [Gurevich et al. 2012]; however, it has been
reported that users use freehand drawing most often [Gurevich et al.
2012]. With this consideration, the quest here is to find out what
the default setting should be, such that gestures used in face-to-face
communication can be emulated as efficiently as possible.

7 Gesture-based Virtual Navigation

As discussed in Section 5, the user can freeze the viewpoint (Fig-
ure 7(a)), save the current viewpoint, and go to the live view or
any previously saved view (Figure 7(b)), all with a single tap onto
the respective region in the interface. In addition, we implemented
gesture-based navigation controls (Figure 7(c)–(e)) which we will
discuss in this section. As a distinguishing element from drawing
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Figure 8: Software stack for processing events from pointing de-
vices (mouse & touchscreen).

annotations (Section 6), all navigation-based controls on the main
view are triggered by two fingers.

While we want to empower the remote user to explore the scene
as freely as possible, only parts of the scene that have previously
been observed by the local user’s camera are known and can be
rendered. From the incoming live video, we store keyframes based
on a set of heuristics [Gauglitz et al. 2014] which are used as a kind
of “skeleton” for the navigation.

Thus, our navigation shares an important characteristic with the
work by Snavely et al. [2008]: from a more or less sparse set of
camera poses we want to find paths/transitions that can be mapped
to specific input controls. However, in contrast to their work, we do
not attempt to mine longer paths and suggest them to the user, but
rather to find suitable transitions given a user’s specific input.

For all gestures, we designed the controls such that the 3D scene
points underneath the touching fingers follow (i.e., stay under-
neath) those fingers throughout the gesture (i.e., “contact trajecto-
ries match the scene transformations caused by viewpoint modifi-
cations” [Marchal et al. 2013]) as far as possible.

The software stack that we implemented to process the touchscreen
and mouse input is depicted in Figure 8. A pointing device han-
dler receives low-level mouse and touchscreen events (from GLUT
and the Ubuntu utouch-frame library3, respectively) and generates
events that are unified across the devices and of slightly higher level
(e.g., recognize “click”/“tap” from down+(no move)+up events,
distinguish from drag-begin, etc.). These events are received by
the main application. Multi-stage events (i.e., gestures) are sent on
to a gesture classifier which classifies them or, after successful clas-
sification, validates the compatibility of the continuing gesture. The
gesture classifier operates on relatively simple geometric rules (e.g.,
for swipe, the touch trails have to be of roughly the same length
and roughly parallel), which worked sufficiently for our purposes,
as our qualitative evaluation (cf. Section 7.4) confirmed.

7.1 Panning

By moving two fingers in parallel, the user can pan, i.e., rotate the
virtual camera around its optical center (Figure 7(c)).4 We main-
tain the original up vector (typically: gravity, as reported by the lo-
cal user’s device) by keeping track of the original camera position,

3Open Input Framework Frame Library, https://launchpad.net/frame
4Pan is the only control among the three reported here which, apart from

using a touchscreen swipe instead of a mouse drag, was present in the same

form in our earlier system [Gauglitz et al. 2014].

Figure 9: “Zooming in” via decreasing the field of view (left) and
dollying forward (right).

accumulating increments for yaw and pitch separately and apply-
ing one final rotation for each yaw and pitch (rather than a growing
sequence of rotations, which would skew the up vector).

As we will typically have imagery of part of the remote scene only,
we constrain the panning to the angular extent of the known part
of the scene. To ensure that the system does not appear unrespon-
sive to the user’s input while enforcing this constraint, we allow a
certain amount of “overshoot” beyond the allowed extent. In this
range, further swiping causes an exponentially declining increase
in rotation and visual feedback in the form of an increasingly in-
tense blue gradient along the respective screen border (see Figure 3
in [Gauglitz et al. 2014] and supplemental video). If the fingers are
lifted off the screen at this moment, the panning snaps back to the
allowed range.

7.2 Transitional zoom

There are two different ways of implementing the notion of “zoom”
in 3D: either via modifying the field of view (FOV) (Figure 9 left)
or via dollying (i.e., moving the camera forward/backward; Fig-
ure 9 right). For objects at a given depth, both changes are equiva-
lent; differences arise due to varying depths (i.e., parallax). Which
motion is desired by the user may depend on the particular scene.
Given the large overlap in effect (cf. the optical flow diagrams by
Marchal et al. [2013]), we wanted to avoid providing two separate
controls.

In our context, with an incomplete and/or imperfect model of the
environment, changing the FOV has the advantage that it is trivial
to render, while rendering a view correctly after dollying the cam-
era might be impossible due to occlusions. However, changing the
FOV disallows exploration of the scene beyond a fixed viewpoint,
and its usefulness is limited to a certain range by the resolution of
the image.

Here, we thus propose a novel hybrid approach: changing the FOV
to allow for smooth, artifact-free, fine-grained control combined
with transitioning to a suitable keyframe, if available, in front or
behind the current location for continued navigation. We note that
the availability of a keyframe automatically implies that it may be
reasonable to move there (e.g., walk in this direction), while free
dollying has to be constrained intelligently to not let the user fly
through the physical surface when his/her intent may have been to
get a close-up view. We implemented this hybrid solution as fol-
lows.

Given a two-finger “pinch” gesture (Figure 7(d)) with start points
s1,2 and end points e1,2, we first calculate the change in FOV that
corresponds to the change in distance |s1−s2| to |e1−e2|. We then
adapt yaw and pitch such that the scene point under (s1+s2)/2 gets
mapped to (e1 + e2)/2. (We disallow roll on purpose as it is rarely
used or needed, cf. Marchal et al. [2013].)

To determine if transitioning to a different keyframe is in order, we
determine the 3D world points {c3D

i }i=1..4 which, with the mod-
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(a) two-finger tap on main view

⇒ freeze/go to point of interest

(b) tap on thumbnail view

⇒ go to respective viewpoint

(c) two-finger swipe

⇒ pan camera

(d) two-finger pinch

⇒ zoom

(e) orbit

⇒ orbit around point

Figure 7: Navigation features.

ified projection matrix, get mapped into the corners of the view
{ci}. The ideal camera pose R is the one that projects {c3D

i } to
{ci} with its native projection matrix P (i.e., unmodified FOV).
Therefore, we project {ci} using the camera pose of each of the
stored keyframes, and select the camera k∗ for which the points
land closest to the image corners {ci}; i.e.,

k∗ = argmin
k

4
∑

i=1

∣

∣

∣
P ·Rk · c3D

i − ci

∣

∣

∣

2

(1)

To ensure that the transition is consistent with the notion of dolly-
ing, we only consider cameras whose optical axis is roughly parallel
to the current camera’s optical axis.

If k∗ is not identical to the current camera, we thus transition to
Rk∗ and adapt FOV, yaw and pitch again as described above. A
hysteresis threshold can be used to avoid flip-flopping between two
cameras with nearly identical score according to Equation (1).

In effect, the user can “zoom” through the scene as far as covered
by available imagery via a single, fluid control, and the system auto-
matically choses camera positions and view parameters (FOV, yaw,
pitch) based on the available data and the user’s input.

7.3 Orbiting with snap-to-keyframe

As a third gesture, we added orbiting around a given world point
p3D. The corresponding gesture is to keep one finger (relatively)
static at a point p and move the second finger in an arc around it
(Figure 7(e)). The orbit center p3D is determined by un-projecting
p onto the scene and remains fixed during the movement; addition-
ally, we maintain the gravity vector (as reported by the local user’s
device). The rotation around the gravity vector at p3D is then speci-
fied by the movement of the second finger.

Again, we want to guide the user to keyframe positions if possible
as the rendering from those positions naturally has the highest fi-
delity. Thus, once the user finishes the orbit, the camera “snaps”
to the closest keyframe camera pose. (The idea of orbiting con-
strained to keyframes again resembles the approach by Snavely et
al. [2008], where possible orbit paths are mined from the set of pic-
tures and then suggested to the user for exploration of the scene, but
differs in that we do not find paths beforehand, but find a suitable
transition given the user’s input.)

Selection of the “snap” target pose. Given the list of available
camera positions, we first filter out all cameras for which p3D is not
within the field of view. Among the remaining poses {Rk}, we
select the one closest to the camera pose Rinput at which the user
ended the orbit:

k∗ = argmin
k

d(Rk, Rinput) (2)

Figure 10: Screenshot during an orbit operation, with the two visu-
alizations of the “snap” position: 1. the inset image in the bottom
left corner of the main view previews the target image; 2. the red
line connects the orbit point and the target camera origin.

where the distance d(·, ·) between two camera poses is defined as
follows:

d(R1, R2) =

{

dt(R1,R2)
d∡(R1,R2)

if d∡(R1, R2) > 0

∞ otherwise
(3)

where dt(·, ·) is the translational distance between the camera ori-
gins, and d∡(·, ·) is the dot product of the optical axes.

Preview visualization “snap” target. During an on-going orbit
process, we provide two visualizations that indicate where the cam-
era would snap to if the orbit ended at the current location (see Fig-
ure 10): First, we display the would-be target keyframe as a preview
in a small inset in the bottom left corner of the main view. Second,
we display a semi-transparent red line from the orbit point p3D to
the would-be target camera origin. While less expressive than the
preview image, this visualization has the advantage of being in-situ:
the user does not have to take their eyes off the model that he/she
is rotating. We opted for a minimal visualization (instead of, for
example, visualizing a three-dimensional camera frustum) in order
to convey the essential information but keep visual clutter to a min-
imum.

7.4 Qualitative evaluation & discussion

We asked the users from group 3 to try out the individual navigation
controls and rate them. The results are aggregated in Figure 11.

After having been told only that two-finger gestures would con-
trol the camera (since one-finger gestures draw annotations), and
asked to pan, all users intuitively guessed the gesture (i.e., swipe)
correctly — unsurprisingly, perhaps, given their exposure to touch-
screen interfaces — and were able to control the camera as sug-
gested; the control received high ratings in terms of both intuitive-
ness and ease of use. Additionally, all users correctly identified
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Figure 11: Ratings of various navigation elements (areas of
squares are proportional to # of users).

what the intensifying blue gradient communicated; this visualiza-
tion was rated as “very helpful” by 7 of 11 users, and as “helpful”
by the others.

For zooming, again all users intuitively guessed the gesture (i.e.,
pinch) correctly and were able to control the camera as suggested.
We let them try out zoom first with the transitional component dis-
abled, i.e., only the FOV was changed. This control was given the
highest rating on a 5-point scale for intuitiveness and ease of use
by 9 and 10 out of 11 users, respectively. With transitional com-
ponent enabled (labeled “zoom*” in Figure 11), the control still
received high ratings, though clearly lower than without. Several
users appreciated the fact that it transitioned to other frames and
thus allowed to zoom further, however, the decreased smoothness
and possibility of getting “stuck” were noted as downsides. The
idea of using a hysteresis threshold to decrease artifacts was a re-
sult of this feedback (i.e., it was not implemented at the time of this
evaluation).

For orbiting, we first introduced the control on a virtual model with-
out any constraints/snap-to-keyframe. While the ratings for intu-
itiveness are lower than for the other methods, the ratings for ease of
use are similar. With snap-to-keyframe, on a model reconstructed
from images (labeled “orbit*” in Figure 11), the ratings are very
similar, suggesting that the constraint was not irritating. The two
visualizations received very different ratings, however: while the
preview image was rated as “very helpful” by 8 of 11 users, the red
line was perceived as “(somewhat or slightly) helpful” by only half
the users, and as “(somewhat or slightly) distracting” by the other
half. Conversations made clear that despite explanations, not all
users understood and/or saw value in this visualization.

8 Conclusions

We presented a touchscreen interface via which a remote user can
navigate a physical scene (which is modeled live using computer
vision) and create world-stabilized annotations via freehand draw-

ings, thus enabling more expressive, direct, and arguably more
intuitive interaction with the scene than previous systems using
mouse-based interfaces. Our contributions include the design and
qualitative evaluation of gesture-based virtual navigation controls
designed specifically for constrained navigation of partially mod-
eled remote scenes, and the integration of freehand drawings in-
cluding the analysis and evaluation of different alternatives to un-
project them into the three-dimensional scene. While 2D drawings
for communication have previously been explored, new challenges
arise when integrating them into an immersive AR framework.

With respect to our gesture-based virtual navigation, we suggest
that the consistently high ratings indicate that the controls are de-
signed appropriately. By design, our controls are dependent on the
viewpoint coverage provided by the local user; an area that de-
serves further investigation is how to ensure that the user cannot
get “stuck” in the case of unfavorable viewpoint distributions.

With respect to the interpretation of 2D drawings in 3D, given our
results, we suggest that a planar interpretation of the drawings is
most likely the most useful default in the context of remote col-
laboration, in particular if their implementation takes into account
two aspects that have been identified above (namely, segments cre-
ated in close succession should be grouped, and degenerate cases
for the case of dominant plane estimation should be identified and
avoided).

Additionally, it has been demonstrated that it is important to visu-
alize the direction in which the annotations are drawn.

In future work, one could combine the methods and choose, for ex-
ample, the dominant plane if the fraction of supporting inliers is
large and median depth plane otherwise; or attempt to recognize
particular shapes [Ou et al. 2003] and use this information in inter-
preting their shape in 3D. We note that none of our interpretations
assume semantic knowledge of any kind about the scene; if such
knowledge and/or 3D segmentations are available, this may enable
higher-level interpretations.
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M., SUNDIN, A., AND FJELD, M. 2013. SEMarbeta: Mobile
sketch-gesture-video remote support for car drivers. In Proceed-
ings of the 4th Augmented Human International Conference, 69–
76.

204



CHRISTIE, M., AND OLIVIER, P. 2009. Camera control in com-
puter graphics: Models, techniques and applications. In ACM
SIGGRAPH ASIA 2009 Courses, 3:1–3:197.

FUSSELL, S. R., SETLOCK, L. D., YANG, J., OU, J., MAUER, E.,
AND KRAMER, A. D. I. 2004. Gestures over video streams to
support remote collaboration on physical tasks. Hum.-Comput.
Interact. 19 (September), 273–309.

GAUGLITZ, S., LEE, C., TURK, M., AND HÖLLERER, T. 2012.
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