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We present TopicNets, a Web-based system for visual and interactive analysis of large sets of documents
using statistical topic models. A range of visualization types and control mechanisms to support knowl-
edge discovery are presented. These include corpus- and document-specific views, iterative topic modeling,
search, and visual filtering. Drill-down functionality is provided to allow analysts to visualize individual
document sections and their relations within the global topic space. Analysts can search across a dataset
through a set of expansion techniques on selected document and topic nodes. Furthermore, analysts can
select relevant subsets of documents and perform real-time topic modeling on these subsets to interactively
visualize topics at various levels of granularity, allowing for a better understanding of the documents. A
discussion of the design and implementation choices for each visual analysis technique is presented. This
is followed by a discussion of three diverse use cases in which TopicNets enables fast discovery of infor-
mation that is otherwise hard to find. These include a corpus of 50,000 successful NSF grant proposals,
10,000 publications from a large research center, and single documents including a grant proposal and a
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Fig. 1. LEFT: A graph of topics of over 10,000 research articles crawled from faculty pages at CalIT2.
Clusters of well-known research fields occur naturally based on salient topics within the modeled documents,
revealing interdisciplinary relations such as the blue Mathematics nodes spanning into the Biology cluster.
RIGHT: A TopicNets graph of the present article, which reveals the sections related to the “text analysis”
topic.

1. INTRODUCTION

The unprecedented growth in the amount of text data accessible by the typical Web
user highlights the need for more efficient and more powerful data exploration tools.
In this article, we demonstrate that interactive visualization of salient topics in large
collections of text documents can provide useful insight in a manner that complements
traditional data exploration mechanisms such as keyword-based search. Visualization
can guide iterative topic modeling for overview and detail analysis. Since humans are
unable to process large numbers of documents all at once, we focus on efficient ways to
navigate, group, organize, search and explore these sets.

To this end, we visualize documents and topics as nodes in a node-link graph (see
Figure 1). This representation is very flexible, adapts well to these different infor-
mation understanding tasks, and our layout techniques ensure that similar topics are
positioned close to each other and documents are positioned close to related topics.

In this article, we define topics as focused probability distributions over the words
in a set of documents, as learned from data via statistical topic modeling (also known
as Latent Dirichlet Allocation) [Blei et al. 2003]. By leveraging topics as a means to
link text documents, we create the basis of an informative, coherent, flexible, and
reproducible visualization, over which a user can interact to discover information in
the data from many perspectives. Existing topic modeling algorithms tend to be run
offline and produce results for later analysis. A key contribution of this work is that
TopicNets supports fast, iterative topic modeling which can be run directly from the
interactive visualization in near real time to provide better insight into subsets of
interest within the larger corpus.

Recent advances in topic modeling [Asuncion et al. 2009, 2010] have made it possi-
ble to learn topic models on very large datasets using distributed computing [Newman
et al. 2009] and in near real time for smaller datasets using a fast collapsed varia-
tional inference algorithm known as CVB0 [Asuncion et al. 2009]. Our system uses
a multiprocessor version of CVB0 to speed up learning and facilitate interactive real-
time topic modeling and visualization. Specifically, documents are partitioned across
processors and local CVB0 inference steps are performed on each processor, with suffi-
cient statistics being globally synchronized at each iteration. CVB0 produces a matrix
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Fig. 2. Information flow in TopicNets.

of topic counts for each document, Ntd and counts of topics assigned to the different
words, Nwt. These count matrices are converted to conditional probabilities of inter-
est, the distributions of words given topics, p(w|t), and the distributions of topics given
documents, p(t|d).

We discuss the design and implementation of TopicNets, a Web-based topic visual-
ization system for large sets of documents. Figure 2 illustrates the TopicNets infor-
mation flow paradigm, wherein documents, topics, and additional selected semantic
entities are treated as connected nodes of different types in an interactive graph. For
large document sets (e.g., tens of thousands of research papers or grant proposals)
modeling is performed in advance, and iterative modeling is performed on-the-fly over
smaller subsets. During an interactive browsing session, an analyst can invoke a
computationally fast topic modeling algorithm over selected subsets of documents of
interest, unveiling detailed topical connections that may not have been discoverable
using the coarser-grain topic models derived from the entire data universe. Facilitating
dynamic generation of new topics in this manner allows users to interactively explore
topical links between documents in the corpus that are difficult to find with traditional
text analysis tools.

In summary, this article presents a novel visualization system for large text corpora.
The key contributions of this article include novel mechanisms of visualizing topically
similar documents. In our approach, documents and topics are laid out as a node-link
graph. A novel aspect of the layout includes the use of topic similarity to determine
node positions, thus creating visual clusters of topically similar documents. The tech-
niques described in this article also enable visualization of topic similarity among in-
dividual sections of a single large document. An additional contribution of this work
is the use of fast topic modeling techniques to facilitate iterative topic modeling and
visualization of subsets of a large dataset. Moreover, the described implementation is
both flexible and Web accessible, allowing it to be easily deployed on a broad scope of
document sets across multiple domains.

Section 2 discusses related work in the field of topic modeling and visualizing topic
models, as well as a discussion of relevant graph visualization techniques. Section 3
gives an illustrative example of the main benefits of the system. The core techniques
used in TopicNets are detailed in Section 4. Section 4.1 describes how TopicNets en-
ables visual analysis of a large set of documents. Two usage scenarios of this technique
are presented in Section 5.1 and Section 5.2. Section 4.2 describes our techniques for
visual analysis of individual documents. These techniques are then deployed in a sam-
ple scenario analyzing the structure of a PhD thesis (Section 5.3). Section 6 demon-
strates the computational cost involved with the various components of the system.

2. BACKGROUND AND RELATED WORK

The literature relevant to this work spans three well-defined but overlapping
research areas: automated text analysis, topic modeling, and associated information
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visualization techniques. The following sections describe the state-of-the-art in each
of these areas.

2.1. Automated Text Analysis

Visualizing large quantities of text is a challenging problem. Because text can be un-
ordered, ambiguous, abstract, and highly combinatorial, many different approaches
have been investigated to support the visualization of text in large sets of documents.
These include early approaches such as Olsen et al. [1993], Wise et al. [1995], Hearst
[1995], Hearst [1997] to more recent work in Analyzer [2010], Questel [2010], Stasko
et al. [2008], Wanner [2008], Koch et al. [2009], Spangler et al. [2002], and Newman
et al. [2010a]. Since humans cannot process a large document set quickly, all of these
systems employ some form of filtering mechanism such as a visual overview and then
detail on demand [Shneiderman 1996]. Matheo Analyser [Analyzer 2010] (visual) and
Questel’s q-pat (text-based) [Questel 2010] are commercial patent search tools that
use supporting metadata to refine a result set based on a user’s search. TopicNets
builds on this idea, but contrasts in that search results are visualized in an iterative
fashion. None of the previously mentioned systems show explicitly the connections of
documents through topics in a single network view. TopicNets does this and allows
interactions with this visualization to further aid the information discovery process.
Text remains the primary communication medium on the Web [Morville 2005] and de-
spite a small amount of semantically well-structured text information such as DBPedia
[Bizer et al. 2009], the majority of text on the Web is written in an unconstrained “free
form” manner. Because of the high dimensionality, multiple meanings, and complex
relations that are typically present in text, text visualization is inherently more chal-
lenging than visualization of categorical or numerical data [Siirtola et al. 2009]. One
approach is to use automated summarization techniques as a means to cope with in-
creasingly large document sets [Jones 2007]. Summarization techniques are generally
sentence-based or keyword-based. Applied to a global document set, summarization
does not directly provide information about relationships between the documents in
the set. Since our technique uses generated topics to represent or “summarize” a doc-
ument, we can use common topics to link similar documents together into meaningful
clusters, thereby highlighting information about the broader set that would be difficult
to unearth with existing summarization techniques.

A key challenge in the visualization of large text collections is to map highly com-
plex text down to lower-dimensional representations while retaining as much of the
original meaning as possible. Traditionally, matrix decomposition and factorization
methods such as Singular Value Decomposition (SVD), Principal Component Analysis
(PCA), and neurocomputation methods such as self-organizing maps have been popu-
lar for producing visual representations of large bodies of text. For example, Luminoso
[Speer et al. 2010] and GGobi [Swayne et al. 2003] are text visualization systems that
both employ SVD. Computations can be memory intensive for SVD and the resulting
topics are not easily interpretable. Other multivariate analysis techniques are also
popular in analysis of large text collections. For example PhraseNets [van Ham et al.
2009] supports search for user-provided bigrams (word pairs), which are then used
to drive graph visualizations of large texts. The blogosphere and news articles have
driven many such innovations in text visualization, producing spacial segmentation
visualizations such as NewsMap [Ong et al. 2005], graph and chart-based timelines
such as MoodViews [Mishne et al. 2007], and ThemeRiver [Havre et al. 2002].

Another class of dimensionality reduction techniques focuses on producing a set
of concepts that span across documents and terms within documents. Dessus pro-
vides a good overview of these systems in Dessus [2009]. Deerwater’s Latent Semantic
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Analysis (LSA) [Deerwester et al. 1990] uses a term-document frequency matrix to
represent occurrences of a term. LSA techniques have been widely used in text anal-
ysis. For example, Fortuna et al. [2005] use LSA to produce a labeled point for each
term and employ multidimensional scaling [Borg and Groenen 2005] to map the LSA
space onto a two-dimensional plot. Aside from being computationally complex, a pri-
mary shortcoming of LSA is that the results, while making mathematical sense, can
be difficult to interpret linguistically [Shen and Huang 2005].

Latent Dirichlet Allocation or LDA was forwarded as a more interpretable alterna-
tive to LSA, originally as a graphical model in Blei et al. [2003]. In the text document
case, LDA assumes that each document is composed of a number of topics, and each
word in the document is attributable to one of those topics [Blei et al. 2003]. While
there have been some prior attempts at visualizing results from LDA algorithms [Blei
et al. 2003], most are static visualizations that do not support user interaction. Recent
work by Liu et al. [2009] discusses a more dynamic visualization which shows infor-
mation from an LDA algorithm, where topics are visualized as a stacked graph and
topic strength is mapped to the y-axis of a graph visualization. Liu et al. also discuss
a node link diagram which focuses on relations between a set of analyzed emails. The
core contribution of this article, is a highly dynamic, user, configurable visualization
that supports control of a fast, near-real-time topic modeling algorithm through inter-
action with the visualization. Moreover, the system supports iterative topic modeling
on selected subsets of interest.

2.2. Topic Modeling

Statistical topic modeling is a widely used unsupervised machine learning technique
for automatically extracting semantic or thematic topics from a collection of text doc-
uments [Blei et al. 2003; Griffiths and Steyvers 2004; Hofmann 2001]. The topics
provide a high-level abstract representation of documents in a corpus, and can be used
for searching, categorizing, and navigating through collections of documents. For ex-
ample, Blei and Lafferty [2006b] show how topic models can be used to explore and
browse 100 years of the journal Science1. The models are based on the assumption
that each document d can be represented by a small number of topics t, where each
topic is dominated by a small fraction of all possible words. Each topic is modeled as
a multinomial distribution over words p(w|t), for t ∈ 1 . . . T, where T is the number of
topics. Topics are often displayed by showing the top-n terms (i.e., the n-most proba-
ble terms) in the topic [Blei et al. 2003; Griffiths and Steyvers 2004], for example the
topic: “software process tool project development design system developer community ...”
clearly relates to the subject of software engineering, and the first two or three terms
form a fitting descriptive label (see Table I for more examples). Although it is possible
to misinterpret such representations they are generally easy to interpret as confirmed
by Chang [2009] and Newman et al. [2010b, 2010c]. By default TopicNets displays
only the top two words to avoid clutter, but this is user modifiable. Furthermore, there
is recent work on automatically labeling topics [Mei et al. 2007] which can also be in-
corporated into TopicNets. There are existing toolkits that deal with topic modeling,
such as the Stanford Topic Modeling Toolbox [2009], which deal with performing infer-
ence over topics. TopicNets differs from such toolkits in that it provides an interactive
graph-based visualization in addition to enabling the user to further drill down on the
visualized graphs, for example, by learning a topic model specifically for the subset of
visualized documents.

1http://topics.cs.princeton.edu/Science/
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Table I. Examples of LDA Topics Learned on CalIT2 Research Papers

Mathematical Theory theorem lemma proof follow constant bound exist definition
Software Engineering software process tool project development design system developer

Gene Expression protein genes expression network motif interaction pathway genome
Politics and Society political social policy economic china law government national

Business and IT business firm services customer technology management market product
Fluid Dynamics flow velocity wall fluid turbulence reynold pressure channel

In the topic model, each individual document d is modeled as a distribution over
topics p(t|d) for d ∈ 1 . . . D, where D is the number of documents in the collection.
The topics are a low-dimensional representation for each document, reducing the di-
mensionality from the vocabulary size (which could be as large as 100,000) to a T-
dimensional vector of topics (where T could be on the order of 100 or less). The topic
proportions for document d, p(t|d), characterize the topical content of a document. For
instance, if there are T = 4 topics, and if p(t|d) = [0.4, 0.1, 0.45, 0.05], then one can infer
that this document is mainly comprised of topics 1 and 3. To find documents dj that
are semantically similar to a particular documents di, one can use measures such as
the symmetric Kullback-Leibler divergence, or the L1 distance, between the respective
topic distributions p(t|dj) and p(t|di).

A topic model is learned from a collection of text documents by approximately infer-
ring the posterior distributions of the parameters of the model, given the observed data
(the vectors of word counts for the documents). Recent advances have made it possible
to learn topic models on very large datasets using distributed computing [Newman
et al. 2009] and in near real time for smaller datasets using a fast collapsed varia-
tional inference algorithm known as CVB0 [Asuncion et al. 2009]. Our system uses
a multiprocessor version of CVB0 to speed up learning and facilitate interactive real-
time topic modeling and visualization. Specifically, documents are partitioned across
processors and local CVB0 inference steps are performed on each processor, with suffi-
cient statistics being globally synchronized at each iteration. CVB0 produces a matrix
of topic counts for each document, Ntd and counts of topics t assigned to the different
words w, Nwt. These count matrices are converted to conditional probabilities of inter-
est, the distributions of words given topics, p(w|t), and the distributions of topics given
documents, p(t|d).

The topic model is unsupervised; no training data or training labels are required to
learn the model. The only input to this algorithm is the set of documents to model, and
a number of topics T, changeable in TopicNets by the user at runtime.

2.3. Visualizing Topic Data

Text-based topic browsers are often used for interacting with learned topic models.
In such browsers, the topics are usually displayed using their top-n words. For each
topic, a set of relevant documents can be displayed, and for each document, the topic
proportions can also be displayed.

While there have been attempts to visualize document clusters based on a variety
of methods [Andrews et al. 2002; Cao et al. 2010; Cutting et al. 1993], network-based
visualizations of topic models have mostly been limited to static visualization. For
instance, Blei and Lafferty produced static graphs of topic relationships with their cor-
related topic model [Blei and Lafferty 2006a]. Newman et al. produced static entity
networks to connect entities (such as people and businesses) mentioned in news arti-
cles using topics [Newman et al. 2006]. Iwata et al. developed a probabilistic latent
semantic visualization model which provides an alternative approach to statically plot-
ting topics [Iwata et al. 2008]. A visualization with limited interactivity on software
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architectures was presented by Asuncion et al. [2010]; however, this visualization only
displayed the software architecture as a predefined graph, rather than a graph based
on the learned topic model. In this article we have chosen a graph-based represen-
tation to display relationships between topics and documents. Accordingly, we now
discuss relevant research in graph visualization and in topic visualization.

2.3.1. Visualizing Document Clusters. Traditionally, use of document clustering was
viewed as an inefficient way to search through large corpuses because of complexity
issues [Andrews et al. 2002; Cao et al. 2010; Cutting et al. 1993; Miller et al. 1998].
However, Cutting et al. [1993] showed that for certain classes of search tasks, clus-
tering methods proved useful. For example, Cutting et al. [1993] shows that when a
query is vague, document clustering can help focus the search better than traditional
text matching approaches can. Research has shown that network visualizations are
helpful for providing an overview of the clustered document space. Several tools build
on the initial network visualization research performed by Fairchild et al. in [1999],
and Will’s addition of interaction techniques for exploring the network [Eick and Wills
1993]. For example, InfoSky [Andrews et al. 2002] is a tool for visualizing hierarchi-
cally structured knowledge spaces in a 2D representation. The analogy of a galaxy and
constituent stars were used to represent the corpus and documents. In contrast with
our approach, InfoSky relies on predefined relations between the documents. FacetAt-
las [Cao et al. 2010] harnesses pre-existing similarities between documents to form a
network. For example, the system used common terminology across a set of rich text
medical documents to form a network that a user can visually analyze. An advantage
of the TopicNets tool is that the relation need not be predefined, and can be com-
puted on-the-fly, and in an iterative manner based on the particular requirements for
a search or discovery task. TopicIslands [Miller et al. 1998] uses a similar technique
but represents the document corpus in terms of wavlet transforms. This technique
was successful in defining thematic “channels” to visualize, but had less success with
complex writing styles. In addition, Miller et al. [1998] used novel 3D techniques to
perform stereoscopic text visualization, which helped users understand the informa-
tion space.

2.3.2. Graph Visualization. Prior approaches to topic visualization, such as Iwata et al.
[2007] and Lacoste-julien et al. [2008] cluster together topically similar documents
and don’t visualize individual topics explicitly. This is an important distinction for
TopicNets since we communicate the relations between a set of documents (or parts
of documents) and the topics they contain via an interactive graph, consisting of dif-
ferent node types with connecting edges, as illustrated by Figure 1. While there are
many other possible approaches for visualizing connectivity data (e.g., Liu et al. [2009],
Freire et al. [2010], Wong et al. [2004], and Viegas et al. [2007]) we employ an inter-
active graph because it intuitively displays node connections, cliques, clusters, and
outliers. Through simple interaction mechanisms (examples discussed in Gretarsson
et al. [2009]), the graph can be molded by analysts into representations of their de-
sign. Additionally, the document-topic graphs are conceptually easy to work with, for
example, a user can perturb or “wiggle” a topic or document of interest and easily see
the connected entities. Furthermore, graphs facilitate addition of new node types eas-
ily and have many visual dimensions that can be used to encode metadata about the
underlying texts and their associations. In addition to the primary graph, TopicNets
supports a multipanel interface with a variety of different controls and outputs, for
example, document search and text display components.

Much research has been conducted on the visualization of such node-link graphs, for
example, Herman et al. [2000], Eades and Huang [2000], Shannon et al. [2003], and
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Auber [2001]. Traditionally, graph visualization applications require a large amount of
processing power and have been desktop-based (e.g., Cytoscape [Shannon et al. 2003],
Pajek [Batagelj and Mrvar 1998], Tulip [Auber 2001]). Recently, increased Web ac-
cessibility and bandwidth improvements have triggered a general shift towards Web-
based graph visualization tools, capable of providing interactive and responsive graph
interfaces through a Web browser. Examples include IBM’s Many Eyes [Viegas et al.
2007] and Tom Sawyer Visualization [Tom Sawyer Visualization 2009]. TopicNets
is deployed as a native Web-based application built on top of the WiGis framework
[Gretarsson et al. 2009] and builds on a range of popular graph interaction and lay-
out algorithms, including a fast, scalable interaction algorithm adapted from original
work in Trethewey and Höllerer [2009]. Several constrained force-directed layout tech-
niques [Eades 1984; Fruchterman and Reingold 1991; Lauther 2006] are implemented
in TopicNets, inspired by Dywer’s work in Dwyer [2009]. A multidimensional scal-
ing method similar to that discussed in Borg and Groenen [2005] is used to visualize
relations between topic nodes, as shown by the example on the left of Figure 1.

3. ILLUSTRATIVE EXAMPLE

TopicNets2 provides ways to interactively explore topics of multiple documents while
making it easy to drill down into subsets of documents and even going all the way
into individual documents and visualizing the topic-section relationships. Figure 3
shows this flexibility of the system. In Figure 3(a) we show NSF grants related to
computer science that were awarded to any University of California campus along with
the associated topics. Additionally we have nodes representing each of these campuses
in yellow. Because topics are laid out based on their similarity and their positions in
turn govern the positions of other nodes, we can infer which topics are popular for
each campus based on their position within this graph. We have highlighted the two
campuses that the authors of this article are associated with. Then in Figure 3(b)
we focus in on these two campuses and remove grants not related to them. Using
the interpolation method discussed in Gretarsson et al. [2009] we can easily arrive at
the image presented in Figure 3(b) with a couple of mouse drags. This image clearly
illustrates the topics that these two campuses have in common along the diagonal
halfway between the two yellow university nodes. It also reveals other clusters of
nodes, for example, the diagonal just above University of California Santa Barbara
contains grants awarded to UCSB that have topics in common with grants awarded
to UCI. We have highlighted one of these nodes and in Figure 3(c) we focus on the
contents of this grant, iteratively refining the topic model to focus on topics more suited
to the individual grant. Sections of the document are arranged in a circle starting at
the top left and traversing clockwise from section to section in the order that they occur
in the document. The color in this case is blended from the color that the document had
in Figure 3(b) (i.e., green), towards blue at the last section.The user has the option of
blending the color from the sections into the topic nodes or assigning their own custom
color to topic nodes. In Figure 3(c) color is blended from connected sections into the
topic nodes, meaning that a green topic is mostly associated with sections at the start
of the document. The topic nodes are placed inside the circle and get attracted to the
associated sections. When a topic node is selected, like in Figure 3(c) the associated
sections get pulled towards the center of the circle to highlight their association with
the particular topic of interest.

2http://www.wigis.net/topicnets
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Fig. 3. University nodes are displayed in yellow. Topic nodes are labeled with “T - ...” and colored according
to the connected documents. (a) A visualization of grants relating to computer science that were awarded
to any University of California campus and the related topics. UCSB and UCI have been highlighted in
this image. (b) NSF grants that were awarded to UCSB or UCI after the user has performed a couple of
mouse drags using our interaction technique. In this image we have highlighted one particular grant which
is then visualized in the next image. (c) A visualization focused on one NSF grant “CAREER- Anywhere
Augmentation- Practical Mobile Augmented Reality in Unprepared Physical Environments”. The section
nodes go in a circle on the outside of this image, while the topic nodes are inside. We have highlighted one
topic node and the connected sections.

4. SYSTEM DESCRIPTION

Before we present our use cases, this section describes the design choices and method-
ology used to produce visualizations in TopicNets. Section 4.1 deals with visualization
of a large corpus of text, in terms of graph generation, color mappings, and choice of
layout. Following this, a discussion of various filtering mechanisms is presented. Sec-
tion 4.2 covers our design choices for focusing in on a single document. This is followed
by a brief discussion of the supporting Web-based architecture.
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4.1. Visualizing a Large Corpus of Text

Extracting and presenting relevant information from a large text corpus quickly is
a non-trivial task [Hearst 1995] which we attempt to address with TopicNets. The
system aids in the analytic process and facilitates easier discovery of information in
large text corpora, by supporting iteratively refined topic models, controlled and guided
by user interactions with the visualization.

4.1.1. Generating a Document-Topic Graph. An overview of the central idea of this work
is shown in Figure 2. The first step in the generation of a document-topic graph is topic
modeling of raw text. We start by running a fast collapsed variational inference algo-
rithm (CVB0) [Asuncion et al. 2009] to learn topics from the selected text corpus. As
described earlier, the algorithm learns a topical representation of each document in the
form of a probability distribution over topics p(t|d) for each document d, interactively
at runtime. To generate a graph visualization of this data we first apply a minimum
threshold to p(t|d) which can be altered through a slider in the interface. This thresh-
old is used to determine if an edge should be created between a document and a topic
node in the graph. For example, assuming a threshold of 30%, if p(t|d) > 0.3 then an
edge is created between document d and topic t. Selecting a default threshold value to
optimize all graphs is a challenging problem. We set a default simply as the maximum
threshold that maintains at least one edge to every topic node in the graph. We believe
that this is a reasonable default since it ensures that every topic is represented by at
least one document. At the same time, this default value minimizes the probability of
popular topics drawing a large number of edges, which can cause visual clutter. The
probability of topics occurring in a document, p(t|d), is used to determine the thickness
of edges between nodes. For instance, a document-topic edge denoting 70% association
probability is notably thicker than an edge with only 20% probability. Our preliminary
tests indicate that by mapping probability information directly to edge thickness we
help analysts to understand likely topic associations at a quick glance. In addition to
the probability of a topic occurring in a given document, the topic model also indicates
the overall prevalence of each topic p(t) across the entire corpus. The value of p(t) is
mapped directly to topic-node size in the generated graph. This technique produces
a useful variety of sizes, with common topics becoming significantly larger than un-
common topics. In turn, document node size is set as a function of document length
Nd. By default a topic node is labeled with the first n words of the topic, where n can
be specified by the user (default n = 2 for labeling clarity). Based on our experiences,
these are usually reasonable descriptive labels for a topic. However, in a small number
of cases we have asked domain experts to manually label topics.

4.1.2. Coloring Nodes and Edges. Some datasets contain metainformation about the
documents themselves. In cases where such data is available, it becomes possible to
map it to various other dimensions of the visualization. Consider the image on the
left of Figure 1 as an example. In this graph, author affiliation in the CalIT2 dataset
(over 10,000 research papers mined from the faculty pages of CalIT2 members at UCI
and UCSD) has been mapped onto color. TopicNets provides an interface for mapping
metadata information onto graph features. In this example, the departmental affilia-
tion of each author is mapped onto a smaller number of research fields.

Both colors and mappings can be modified by the user in the interactive interface,
resulting in highly customizable graph visualizations capable of providing many
perspectives on the underlying dataset. When an author-to-color mapping has been
provided, the system propagates color information to connected documents, for
example, documents written by a green author will be green and color information is
bled along the document-topic edges in the graph, as illustrated in Figure 5(a). There
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Fig. 4. Three snapshots of topic-based deformation in a section-to-topic layout. Transitions in TopicNets
are smooth animations. (a) shows linear structure of the document along the circumference, (b) shows the
distribution of a single topic across the document, and (c) size and centrality shows the relevance of each
section and topic to the central theme of the document.

Fig. 5. (a.) Example of color bleeding across document-to-topic edges. (b.) Example of color interpolation
across a time series. (c.) Custom color mappings from our NSF use case.

are potentially many incumbent edges to a given topic node. Color information from
each document-topic edge is blended to produce a final color for that topic node. The
result of this process is shown in Figure 6. Color mapping is flexible in that it allows
for placing of topics within any metadata space, in the specific case of CalIT2, shown
on the left of Figure 1, color is used to map topics onto a field of study.

Suppose that a user wants to map a continuous metadata variable, such as time of
origin, onto document color. To facilitate such mappings, TopicNets allows a user to
interpolate colors between sequential document nodes. In the example in Figure 5(b),
node colors between the first and last document nodes are automatically interpolated
relative to their position along the timeline. The colors are interpolated in RGB space
which does not produce ideal results for every color pair, however, the user can select
the two colors in such a way that the interpolation properly portrays the sequence. A
user then has the option to choose either a single color for all topic nodes, or to blend
colors from connected documents to produce an informative visualization. The first
option is demonstrated in Figure 4 while the latter option is shown in Figure 6. In
the latter example, topic color gives an indication of the position in the timeline where
that topic most frequently occurs.

4.1.3. Computing Layouts of Large Document-Topic Graphs. We now discuss two distinct
layouts used in TopicNets to illustrate relations between the documents: a layout
based on topic similarity, and a layout that preserves different forms of linear struc-
ture in a single document or document set, for example, time of creation or section
ordering.

— Topic-Similarity Layout. To maintain an aesthetically pleasing layout while pre-
serving information about topics produced by the LDA algorithm, we compute the
symmetric Kullback-Leibler divergence between every pair of word topic distribu-
tions p(w|t). The resulting dissimilarity matrix is then used as an input into a Multi-
Dimensional Scaling (MDS) algorithm [Borg and Groenen 2005], which determines
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Fig. 6. Example of a TopicNets graph showing topics for NY Times articles for the month of November 2004.
Documents are ordered by time and colored based on their position on the timeline. Topic nodes are colored
based on the connected documents. “Turkey food” proves to have a lot of interest all month, and especially
around Thanksgiving, whereas election related topics peak around election day.

a position for each topic node. Topic nodes are then fixed into position and a stan-
dard force-directed layout algorithm [Eades 1984; Fruchterman and Reingold 1991;
Lauther 2006] is applied to place the document nodes in this topic space. We use the
probabilities described in Section 4.1.1 to determine the optimum distance between
document and topic nodes, where a higher probability means the document node is
more attracted to a particular topic. It would be possible to add invisible edges be-
tween the topic nodes representing their dissimilarity and only run a force-directed
algorithm, but then we would not be guaranteed that the topic similarity has more
effect on the final layout than the other forces in the force-directed layout and the
initial positions would influence the final layout. Our interactions with the system
indicated that semantically interpretable clusters are usually shown, consisting of
topics with similar interpreted meaning and their associated documents.

— Order-Preserving Layout. Many tasks in visual analysis require ordering of docu-
ments in some particular fashion to tell a story about the contents. For example,
an analyst might want to sort newspaper articles by time of publishing as seen in
Figure 6. To facilitate such orderings, an alternate layout method was developed
in which documents are laid out along the circumference of a circle with a layout
constraint that a prespecified node ordering is preserved. The circle is slightly
spiraling, meaning that each node is slightly closer to the center than the previous
one. This technique ensures that the first and last documents don’t meet at a single
point, as seen in Figure 6. While users might be more used to seeing a timeline as
a straight line, our technique produces visuals that are less cluttered since topics
can be connected to documents far apart on the timeline. In this layout, document
nodes are first fixed in place, and a force-directed layout is applied to connected
topic nodes. This layout achieves interesting perspectives on the underlying data
because document order drives the final positions of the topic nodes. In addition to
the influence of document ordering, the layout attempts to place similar topics close
to each other. To achieve this, we introduce invisible intertopic edges which act to
keep topics at the distance specified by their dissimilarity. These edges are much
more flexible than the document-topic edges and thus don’t adversely affect the
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layout. As illustrated in Figure 6 wherein documents are ordered by time, topics
that are mostly used around a certain time period shown on the circumference
(e.g., “race won”) gravitate towards that area of the visualization, while topics that
are used all across the corpus (e.g., “turkey food”) move towards the center of the
visualization. A potential drawback of this approach occurs when a topic is only
connected to two documents which happen to be on opposite sides of the circle. In
such cases, the topic will be drawn close to the center of the circle, even though
it is not necessarily central to the theme of the document. To counterbalance this
issue, topic popularity is mapped onto node size, meaning that smaller topic nodes
are not so relevant across the entire document. This approach produces a final
visualization in which topic node position represents centrality of a topic and topic
node size represents frequency of that topic, so a large topic node in the center of
the graph should be the topic most relevant to the entire corpus. In case there are
multiple nodes close to the center and their labels are overlapping, then the largest
(and most popular) topic is always displayed. Interaction makes it easy for the user
to zoom into a cluttered area of the graph to reveal more labels or simply to select
the smaller topics to reveal their labels. This layout is also shown in Figure 3(c).

4.1.4. Filtering the Graph. In many cases an analyst is interested in a target subsection
of the graph. TopicNets provides multiple methods for filtering the graph in order to
get to a visualization of the target information. The user can type in any text and
perform a search over the node labels, the top 10 words of all the topics, and/or entire
documents. Once the search has completed the user can select a few of the returned
nodes from a list, or simply select them all. Once the user has selected a set of nodes
of interest he/she can click on a button to visualize only the selected nodes and their
immediate neighbors in the graph. Once that button is pressed, all the other nodes are
removed from the graph and a new layout is computed. The system provides a smooth
transition from the old layout (with unrelated nodes removed) to the new one. Figure 7
shows the results of a search for “genetics” over the entire dataset shown on the left of
Figure 1. In case the user made a mistake or wants to explore another subset of the
graph he/she can easily go back to the previous visualization with the click of a button.
This filtering can also be repeated multiple times to find a subset within the subset.
Topic modeling can be used alternatively to iteratively cluster the selected set based
on topic associations. This is discussed in more detail in Section 4.6.

An alternative filtering method we provide is to manually select one or more nodes
in the graph and then make the system remove all nodes not in or connected to the
selected nodes. Figure 8(d) shows the results of selecting two nodes (“Tatiana D. Ko-
relsky” and “Douglas H. Fisher”) in the graph shown in Figure 8(c) and asking the
system to show only nodes within graph distance of two from the selected set. Top-
icNets also provides an easy method of expanding the selected set by one edge from
every node in the selected set. This can be a very powerful feature and, for example,
it gives the user an easy way of getting to a graph of a selected topic, all the docu-
ments connected to that topic, and all the topics that those documents are connected
to. The selection expanding can be repeated multiple times, until all the nodes in that
connected component have been selected.

A third method for filtering the data is to use author information (in a different way
than just searching for the author names). If author information for the documents in
the corpus is available then our system gives the user the option of collapsing docu-
ment nodes into author nodes resulting in an author-topic graph. This graph is then
laid out using the topic-similarity layout showing where authors “live” in topic space.
Figure 7 shows the results of the search query “genetics” over the CalIT2 dataset after
collapsing the document nodes into author nodes.
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Fig. 7. Example graph of the CalIT2 data after searching for the term “genetics” and collapsing documents
into author nodes. The visualization showed us two interesting researchers with relation to genetics, namely
a CS professor at UCI and an ECE faculty member at UCSD.

4.1.5. Adding Metadata Nodes to the Graph. So far we have only discussed visualizing
graphs with two types of nodes, document nodes and topic nodes. In many cases there
is additional information available about the documents, for example, author name,
author institution, etc. TopicNets keeps all that information and makes it accessible
through a detail panel when a document node is selected as described in the follow-
ing section. The previous section explains how we can collapse all documents by the
same author into individual author nodes as a way of filtering the graph. Additionally,
TopicNets allows the user to select any available metadata field and generate addi-
tional nodes for them. These nodes are then positioned in the graph using a simple
force-directed layout. The user can then end up with a graph containing multiple node
types, for example, topics, documents, authors, and organizations, showing how doc-
uments and topics are connected through these other entities. In our example of the
NSF grants dataset, we have a lot of metadata for each grant and adding those enti-
ties onto the graph as nodes can lead to interesting insights about the data as detailed
in Section 5.2. These additional nodes can be generated at any stage of the analysis
process, that is, on the entire dataset or after performing any of the filtering methods
described in the previous section. The user can also choose a color from the interface to
map onto these new nodes, for example, make authors green and organizations blue.

4.1.6. Details On Demand. When a user selects a node in the graph all the details
of that node can be seen in a panel on the right-hand side. If the selected node is a
document node, a link to view that document is provided. If the selected node is a
topic node then links to view all the connected documents are provided. Additional
options such as select all neighbor nodes and delete node are also provided on this
panel. If section information about the selected document node is available then the
user is given the option to expand that node into its sections. Once that button is
pressed, additional nodes representing each of that document’s sections are added to
the graph and those section nodes are connected to the related topic nodes. This can
show the document sections in the context of other documents or we can just look at
that document on its own, which leads nicely into the next section.
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Fig. 8. Visualization of NSF grants and their topics using the topic-similarity layout. Distance between any
two topics indicates their similarity, and the topic color is blended from the connected documents. (a) shows
all the grants related to the three programs “Robust Intelligence”, “Human-Centered Computing”, and “Info.
Integration & Informatics”. Grant document nodes are colored depending on which program they belong to,
for example, “Robust Intelligence” documents are red. In (b) we added nodes representing the program
officers in charge of these grants and focused on four particular program officers, Korelsky, Fisher, Glinert,
and Olken. (c) shows the same grants, programs, and officers, but after running topic modeling on only
the visible set of grant documents. This rerunning of the topic model removes distant topics like “processor
memory” while adding topics more specific to these documents, such as “language natural”. In (d) we have
focused further on Fisher and Korelsky who are the two program officers closest to the program “Robust
Intelligence”. This final panel shows mostly red documents and topics since both officers are primarily
in charge of grants under “Robust Intelligence”. This view also shows that Fisher has some overlap with
“Human-Centered Computing” since many of Fisher’s grants are connected to green topic nodes.

4.2. Visualizing a Single Large Document

Visualizing a large text corpus is an important task, however, we believe that tak-
ing it a step further and visualizing the contents of individual documents can help
information discovery even more. After all, a user can find the document that he/she
is interested in, but if that document is dozens or even hundreds of pages long then
it would certainly be helpful to visualize the contents of that document to find the
most interesting sections. In addition to all the features available for a large corpus
there are some other features that can help the user better understand an individual
document. In this section we will describe these additional features for visualizing
individual documents.
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4.2.1. Generating a Section-Topic Graph. When visualizing a single document and its
topics we need to first divide that document into its sections. In many cases we had the
LaTeX source of the documents, which made this a simple process. However, in some
cases we had to analyze the structure of the documents further to figure out where
to split it into sections. Once we have split the document into its sections we need to
run a topic detection on the sections. The resulting topic model can then be used to
connect sections of the document to topics, just like we did for whole documents before.
One important difference here is that the sections have an inherent ordering among
them, namely the order in which they appear in the document. In our visualization we
represent this linear structure of the document by connecting each section node with
a directed edge to the following section node. These edges are also made rather thick,
compared to the topic edges so that they will be easily visible regardless of the layout
method used. Here we also use the same coloring scheme as described in the second
paragraph of Section 4.1.2, that is, the user can specify a color for the first and the last
section and then the color fades from the starting color to the finishing color along the
sections. Figure 4 shows an example of a single document visualization. In this image
the topic nodes are green while the section nodes fade from yellow to purple.

4.2.2. Computing Layouts of Section-Topic Graphs. We use the inherent ordering on the
sections in a document to lay out the section nodes in a circle similar to the “Order-
preserving layout” described in Section 4.1.3. Again, the circle is slightly spiraling to
avoid the two ends meeting in one point. Like before, the topic nodes are positioned
by a force-directed layout algorithm with the addition of (weaker) topic-topic forces
attempting to keep the related topics close to each other. Figure 4(a) demonstrates this
layout technique. There are a couple of things that are different in this case though.
First, the user can select one or more topic nodes and then the circle will deform so
that all the sections connected to the selected topic node get pulled toward that node,
as shown in Figure 4(b). If the user selects multiple topic nodes then this will happen
to all the sections connected to either one of them. The amount that they can move
is defined by a user-specifiable parameter. There is one important restriction on the
section node movements: they are only allowed to move along an axis defined by the
center of the circle and the center of the section node. This means that the section
nodes always maintain their order along the circle and only move either towards or
away from the center. Additionally this ensures that section-section edges will never
cross and the linear structure of the text is maintained. Second, as shown in Figure 4(c)
the user can give all the document nodes the freedom to move along their axes which
can totally deform the shape of the circle, while still maintaining the linear structure of
the document since there will be no crossing of section-section edges. In the resulting
graph, the section nodes connected to the most central topics of the document will get
pulled towards the center while the sections connected to less common topics will float
to the periphery along with those topic nodes.

4.2.3. Filtering and Details on Demand. All the methods used to filter a large corpus can
also be used to filter a single document. Similar to the description in Section 4.1.6, if a
section node is selected then the node details panel will provide a link to the contents
of that section. If a topic node is selected then the details panel will provide links to
view the contents of all the connected sections.

4.3. Labeling and Node Highlighting

TopicNets supports various types of labels for the document and topic nodes. To dis-
tinguish between different node types, TopicNets uses icons; for example, document
nodes are represented with an image of a document and topics are represented with
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an image of a speach bubble. While we turned this feature off in some of our figures
to reduce clutter at the small printed scale, Figure 8 gives an example. Icons become
visible during interactive exploration when node sizes increase. Different shapes could
also be used to represent different node types, which might be advantageous at small
node sizes. However, we found that icons are more easily semantically associated with
certain entities than shapes and work well at medium to large node sizes. In most
of our images we show the textual labels in black with a colored background corre-
sponding to the color of the node that the label applies to. When visualizing graphs of
multiple nodes it is difficult to show all the labels at the same time. In TopicNets we
address this issue by hiding some labels based on a priority function. If a node label
collides with a node of higher priority then its label is faded out. If it collides with more
than one node of higher priority then the label is faded even more until it finally disap-
pears if it collides with multiple nodes. When a user zooms into specific regions of the
graph the labels reappear as more space becomes available. Selected nodes have the
highest priority and will always have their labels drawn on top of other nodes. Next
the nodes are connected to the selected nodes in order to highlight the connectivity of
the selected node. Both of these sets of nodes are also highlighted with red text and a
drop shadow on the labels. Third on the priority list are the topic nodes, since they are
there to summarize the contents of the documents it’s more important to show those
labels. The fourth thing we consider is node size, since the larger topic nodes are the
more frequent topics we want them to be visible whenever possible. Also, the larger
document nodes represent bigger documents and thus they could be more important so
we think it’s more important to show those labels. Finally, if all else is equal we prefer
to show shorter labels. This is because they take up less screen space thus there is less
chance of them overlapping, resulting in potentially more visible labels. Future work
includes a dynamic label deconflicting solution along the lines of Bell et al. [2001] or
Dogrusoz et al. [2007].

4.4. Graph Interactions

Analysts frequently require many perspectives on a dataset to perform complex in-
formation discovery tasks. TopicNets provides a graph interaction mechanism based
on Trethewey and Höllerer [2009] which allows an analyst to directly manipulate the
visualization by clicking on nodes and moving them around the screen. Single or mul-
tiple nodes can be selected through search or a ctrl-click and subsequently moved on
the screen by click-and-drag mouse movement. Optionally, when node(s) are dragged,
an interpolation algorithm is applied to the graph and other nodes transition smoothly
in the same direction as the moved node(s), but by a relative amount, which is propor-
tional to the graph distance from the moved node(s). Moreover, an effect parameter can
be applied through a slider in the interface to specify a maximum graph distance for
the interpolation. Using this technique, analysts can mold the graph to highlight inter-
esting features. For example, selecting all documents by a given author and dragging
them to one side will deform most graphs into a tree-like layout in which collaborators
with the target author are easily identifiable.

4.5. Web-Based Architecture

Most visualization software capable of generating highly scalable and interactive
graph visualizations are implemented either as desktop applications, or as browser
plug-ins which can be resource intensive for a client machine, for example Shan-
non et al. [2003], Touchgraph Navigator [2012], Tom Sawyer Visualization [2009],
Batagelj and Mrvar [1998], Kitware Public wiki [2010], and Callahan et al. [2008].
TopicNets is built on the WiGis graph visualization architecture, previously developed
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by the authors in Gretarsson et al. [2009], and applied in O’Donovan et al. [2009], and
Gretarsson et al. [2010]. The key advantage of this architecture is that it leverages an
AJAX-based approach to graph visualization. This allows TopicNets to run natively in
any major Web browser, and scale interactively to graphs of hundreds of thousands of
connected documents and topics. The system supports interaction by capturing mouse
movements in a standard browser and sending them to a remote server which com-
putes and renders a new view of the graph as a bitmap image based on the graph
model and the incoming user interaction data. Images are streamed back to the client
to provide an interactive experience. For graphs such as those presented here, the sys-
tem achieves a rate of about 0.1 seconds per frame on a standard network connection.
A potential drawback of this architechture is that it can be heavy on the server-side re-
sources and thus could be problematic to scale to multiple users. However, we believe
that with the power of cloud computing and automatic load balancing this potential
drawback can be circumvented.

4.6. Iterative Topic Modeling

An additional benefit of the Web-based architecture is that all the “hard work” is being
done by a central server. To make full use of this centralized approach we developed
a parallel version of the topic modeling algorithm which spreads the work across mul-
tiple processors. This results in much faster topic modeling than previously possible
without requiring the end user to have a powerful computer, allowing us to support
fast iterative topic modeling of subsets of documents. Due to the fact that a topic mod-
eling algorithm takes as input a set of documents and a number specifying how many
topics should be produced, users might find themselves with a small set of documents
and a much smaller number of topics after performing many filtering tasks on a large
dataset. Allowing users to rerun the topic modeling at any point during the analysis
session gives them complete control over the input into the topic modeling algorithm,
and thus generating topics representative of the set of interest. As demonstrated in
Figure 8(c) and discussed in Section 5.2 this iterative technique can help the user learn
about subtopics of a particular topic of interest.

5. USAGE EXAMPLES

We now present three usage scenarios which highlight the information discovery ca-
pabilities of the TopicNets system across a diverse set of data types. The first two ex-
amples show how TopicNets can be applied to a collection of documents, while the last
demonstrates how the system enables analysing individual large documents. Our ex-
amples focus on expertise categorization in large organizations (NSF and CalIT2) and
a PhD thesis in computer science. For each use case, graphs were generated by the
authors, but interaction and exploration was performed by an individual with expert
knowledge of the dataset.

5.1. Exploring the CalIT2 Dataset

The California Institute for Telecommunications and Information Technology3

(CalIT2) is a research institute within the University of California that is jointly
administered by UCSD and UC Irvine. The institute encompasses a broad range of
research projects and related activities in telecommunications and information tech-
nology. A key aspect of the institute is its interdisciplinary nature, bringing together
over 400 researchers in computer science, engineering, biology, physics, social science,

3www.calit2.net
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the arts, and more. A significant challenge facing the institute leadership is gain-
ing a global understanding of “who does what,” that is, understanding the breadth
and depth of research expertise spanned by institute members. While the process of
manually visiting researchers’ Web pages and reading their papers could provide a
detailed understanding of what each individual researcher does, this would be a very
slow manual process for an institute with several hundred researchers. Furthermore
it would not provide a coherent global overview of how these researchers and their
research projects are related. This is a common problem in many organizations, not
just CalIT2. In particular, as research disciplines change and evolve it becomes in-
creasingly difficult for organizational leaders (such as department chairs, deans, and
program managers) to have a global view of researchers and research topics within
their organization.

We crawled the Web pages of 464 CalIT2-affiliated researchers and downloaded
the text of 10,403 papers that they had authored. These papers contained 24,407,545
word tokens and a unique vocabulary of 43,295 words after removal of standard list
of stopwords. We fit a topic model with 150 topics to this data set. In earlier work
we demonstrated a text-based Web interface for exploring this topic model4 [Newman
et al. 2006]. The text-based interface links topics and researchers in a sequential fash-
ion, but it does not allow a user to gain an overall network view of how researchers
and research topics are related.

Figure 1 left shows a global view of the CalIT2 topic model as visualized by Topic-
Nets. The larger named nodes are learned topics and the smaller nodes are individual
documents, where documents are color-coded by the research affiliation of the author.
The layout allows a user to quickly gain a global sense of the research activities in
CalIT2. Papers from computer scientists, engineers, and mathematicians make up a
large fraction of the graph, but there are also considerable contributions from social
science, biology, and chemistry and physics. Topics such as “data analysis”, “evolu-
tion”, “numerical methods” are seen to be highly interdisciplinary, while topics such as
“immune signaling”, “networked computer systems”, and “mathematical theory” are
less so.

Using the global view of the CalIT2 data as a springboard, users can focus on spe-
cific academic areas of interest. For instance, one can use the search utility to find
all documents and topics related to “genetics” and one can restrict the visualization
to these nodes. Our tool also allows for authors to be visualized in place of their doc-
uments. In Figure 7, we show the author-topic network for the “genetics” query, and
this visualization allows users to quickly find faculty members at UCI/UCSD who have
published on various topics relating to genetics. Figure 7 highlights two such faculty
members: Pierre F. Baldi at UCI, and Sadik C. Esener at UCSD. The visualization
reveals that Baldi is related to the following topics: “gene expression”, “mutation of
genes”, “structural biology of proteins”, “data analysis”, and “neural network models
and algorithms”. This depiction is accurate since Baldi is a computer science professor
working on machine learning algorithms such as neural networks, and Baldi is also
the director of the Institute for Genomics and Bioinformatics at UCI. Meanwhile, Es-
ener is linked to the following topics: “cellular experiments”, “gene sequences”, and
“nanoscale physics”. Esener is an engineering professor working on nanotechnology
for various biological applications. This example reveals that our interactive network
visualizations can be used to gain valuable information about authors and documents.
Since the topics are positioned according to their semantic nature, users can easily
find interdisciplinary authors and documents by looking for nodes in-between topics
or topical clusters.

4http://datalab-1.ics.uci.edu/calit2
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5.2. Analyzing NSF Grant Documents

It is important for both researchers and funding agencies to understand the complex
and rapidly changing funding landscape. Although research grants often span several
research areas, individual grants are usually managed by a single program officer,
within a specific program. Topic modeling can provide useful information to go beyond
this hard categorization of grants, and can be used to topically characterize or define
program officers and programs. To demonstrate this ability, we used a collection of
over 50,000 NSF awards from 2006 to 20095.

Figure 8 demonstrates how the TopicNets system is used to learn meaningful in-
formation about different programs and program officers within NSF using the topics
learned from the grant documents. The layouts are very informative because similar
topics are positioned close to each other. In turn, that explains why the cyan and pink
topics in Figure 8(a) and (b) are far away from most other nodes in the graph, since
these topics have little overlap with the three programs selected in this example. After
rerunning the topic modeling algorithm on only the visible set (see Figure 8(c)) we see
how some less-related topics are removed and new topics more related to the visible set
of documents are generated instead. Finally in Figure 8(d) we have removed all nodes
not related to the two program officers Korelsky and Fisher. This image shows that
although both these program officers are mostly connected to the same program, the
topics of the grants they are in charge of are different. Fisher is in charge of just one
grant in “Human-Centered Computing” (green) but many of his “Robust Intelligence”
(red) grants are connected to green topics, meaning that these topics are typically
found in “Human-Centered Computing” grants.

5.3. Analyzing a PhD Thesis

To provide an example of use with a single document from an authors perspective,
a recent PhD thesis by one of the authors of this article entitled “Trust on the so-
cial web, applications in recommender systems and online auctions” was uploaded to
TopicNets. The entire document contained approximately 20K words over 167 sections.
Figure 4(a) shows an initial layout of the sections within the document, each positioned
along the circumference of a circle. The linear structure of the original document is pre-
served in the visualization, with the introductory sections shown with lighter yellow
shading and fading to a darker mauve color towards the end of the document. Length
of a section correlates to node size on the graph. Topic nodes are positioned within
this outer circle of document content. These nodes are associated with various section
nodes based on a thresholded probability value that was produced in the topic mod-
eling step. Topic nodes are shown in green and have automatically generated labels,
except for a small number of manually added labels, which were simply a reorder-
ing of the two highest probability terms in that topic’s word list. Centrality of topic
nodes gives a feel for the importance of a topic in the overall document. For example,
“trust model” and “reputation network” are clearly important topics, while “graph vi-
sualization” and “ebay feedback comments” are of lesser importance because of their
peripheral positioning on the graph and smaller sizes. Figure 4 shows snapshots of
the author’s interactions. Figure 4(b) shows a deformation of the sections based on
association with a single topic: in this case “trust models”. A cursory glance at the
outer layer shows gaps where sections have been drawn inwards by the layout. These
gaps represent the distribution of a selected topic across the document. Figure 4(c)
shows a deformation that is based on associations with all topics in the graph. Sec-
tion nodes are drawn inwards towards associated topic nodes, again based on a weight

5http://www.nsf.gov/awardsearch/
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Fig. 9. (a) Time in seconds to run topic modeling for 45 topics for varying numbers of processors and corpus
sizes; (b) speed-up of topic modeling for the CVB0 multiprocessor approach against a traditional single
processor implementation.

controlled by the user via a slide bar. This graph highlights the relevance of individual
sections to the central theme of the document. For example, the sections highlighted
in red (“Trust in Online Auctions”’ and “Attack Models”) are not central to the thesis,
whereas “trust and reputation in the social web” is a very important section, dealing
with the main theme of the work, as verified by the author. In TopicNets, transitions
between any two views are animated smoothly to provide the user with a good frame
of reference from the previous layout.

6. COMPUTATION COSTS

This section evaluates the processing time for each component of TopicNets. The sys-
tem uses the WiGis framework, a scalable Web-based graph visualization framework
presented in Gretarsson et al. [2009]. That paper describes the scalability of the sys-
tem in terms of interaction. For example, interacting with a graph of 10,000 nodes
takes about 108 ms per frame end to end (9–10 frames per second), which includes
running an iteration of the interaction algorithm, rendering the new image, transmit-
ting it across a network, and displaying it in the client’s browser. This scalability is
important for TopicNets to be able to provide an interactive experience for the end
user. However, TopicNets also has some other components which can be computa-
tionally expensive. These include running the topic modeling algorithm, generating
a graph from the resulting topic model, and finally computing a layout for the result-
ing graph. We discuss the computational costs for each of these components in this
section. It is worth noting that although each of these components are computation-
ally expensive, the results are automatically saved to disk for faster access the next
time any user wants to view the same data.

6.1. Topic Modeling

The first part of TopicNets is to generate a topic model from the set of documents. Since
TopicNets does all the expensive computation on a powerful server we were able to use
that to our advantage by distributing the topic modeling over multiple processors. We
performed a number of experiments to evaluate the speed-up of our multiprocessor
CVB0 algorithm over a single-core topic modeling algorithm. Figure 9 (a) shows the
amount of time it takes to compute a topic model for 4000, 2000, 1000, 500, 200, 100,
and 50 documents, while Figure 9(b) shows the relative speed-up over the single pro-
cessor version for each of the document sets. In all cases we computed 45 topics and
used 50 iterations before stopping the topic modeling algorithm. For 4000 documents
on one processor it took about 78.3 seconds to complete, while with 8 processors it
took about 17.6 seconds. This is a relative speed-up of about 4.4, that is, it takes 4.4
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Fig. 10. Time in seconds taken to generate and lay out graphs of varying sizes for three different types
of graphs and layouts. These were generated by varying the topic-document association threshold. (a)
Generating document-topic graphs and laying them out using the topic-similarity layout. (b) Generating
document-topic graphs and laying them out using the order-preserving layout. (c) Generating section-topic
graphs and laying them out using the section-topic layout.

times longer to compute the model using one processor than with 8 processors. As the
document sets get smaller, the relative speed-up is smaller, but the overall time gets
smaller. For example, for 100 documents or less it takes less than 1 second to compute
the model on 2 processors or more. We can compute a topic model for 4000 documents
on 8 processors in about the same time it would take to compute a topic model for 1000
documents on one processor, and 2000 documents can be computed in about the same
time as 500 documents on one processor. This speed-up is important for our interactive
system, since it enables us to give the user the option to iteratively run topic modeling
on a subset of the entire dataset.

6.2. Generating the Graphs

Once the topic model has been computed and stored we need to create a node-link
graph of the results as described in Sections 4.1.1 and 4.2.1. Every dataset has a fixed
number of documents and topics and to generate the graph the system goes through
every document and every topic and determines if it should create an edge between the
two, taking into account a user-defined threshold. Documents are then added to the
graph if they are connected to at least one topic node. This indicates a time complexity
of O(|D||T|) where D is the set of documents and T is the set of topics, meaning that
for the same dataset (where D and T remain unchanged) this should result in very
similar timings even though the threshold value may be changed. This is confirmed
by the red squares in Figure 10.

6.3. Computing the Layouts

After creating a node-link graph we compute a layout to position the nodes as described
in Sections 4.1.3 and 4.2.2. Here we present timing data to compute these layouts.
Since all our layout techniques use a force-directed method, the expected cost of com-
puting a layout is O(|N|2 + |E|) per iteration, where N is the set of nodes and E is the
set of edges. Figure 10(a) shows the time taken to compute the topic-similarity layout
described in Section 4.1.3 for graphs of varying sizes, while Figure 10(b) shows the time
taken to compute the order-preserving layout described in Section 4.1.3. Even though
the number of edges is not constant across the different graphs, the cost is mostly
driven by the number of nodes in the graph and thus we used number of nodes as our
x-axis in these figures. The blue diamonds in Figure 10(a) and (b) show a quadratic
growth in layout time relative to number of nodes. When visualizing a single docu-
ment’s sections and their topics, we always keep all the section nodes on the graph
so the number of nodes doesn’t change much when we change the association thresh-
old. For this reason we plot the number of edges against the time taken to compute
a layout. The plot in Figure 10(c) shows a more or less linear growth in time relative
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to number of edges, as expected. In summary, the scalability of the system will be
constrained by the quadratic time complexity of force-directed layout as the number of
nodes increases, although we note that the results are saved to disk for faster access
by the next user.

7. CONCLUSION

We have presented TopicNets, a system for interactive visual analysis of large docu-
ment corpora, based on the associations formed by topic modeling. Several techniques
for incorporating topic models into the mechanics of graph visualization have been
presented, including topic-based deformation of ordered sets of nodes in a graph, col-
lapsing of nodes based on semantic association, single or multiple topic influences,
varying of topic association thresholds, interaction with topic and document nodes
through interpolation over mouse movements, iterative text-search-and-visualization
steps, semantic clustering based on topic similarity, and a range of more generic graph
interaction methods. Conversely, interactive graph visualization also informs topic
modeling, by enabling users to refine and rebuild ever more detailed topic models while
going from an overview of an information landscape into increasingly detailed views
of the content and topics of their interest. To highlight the flexibility of the TopicNets
system and its ability to quickly provide new perspectives on, and insights into large
document sets, we presented three diverse use cases. In the CalIT2 example (Fig-
ure 1), prominent research areas were highlighted by the TopicNets graphs, including
interdisciplinary fields such as numerical methods, for example. Additionally, faculty
members were positioned in topic-space based on their publications, again highlight-
ing areas of expertise and potential collaborators. In the PhD thesis example, it was
shown how the system can be used as an editor’s or examiner’s tool to highlight the
relevance of sections to the central theme of the document, and its ability to quickly
illustrate esoteric sections of text which differ from the main theme. The NSF example
showed how iterative search-and-visualize steps can quickly yield answers to complex,
multipart queries that are inherently difficult to answer in a text based search inter-
face. In summary, the combination of fast topic modeling and graph-based interactive
visualization enables powerful novel analysis tools for large text repositories.
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