
Infra: Structure All the Way Down
Structured Data as a Visual Programming Language

Christopher Hall
Computer Science

UCSB
USA

chall01@cs.ucsb.edu

Trevor Standley
Computer Science

Stanford
USA

tstand@cs.stanford.edu

Tobias Hollerer
Computer Science

UCSB
USA

holl@cs.ucsb.edu

Abstract
We present Infra, a new baseline medium for representing
data. With Infra, arbitrarily-complex structured data can be
encoded, viewed, edited, and processed, all while remaining
in an efficient non-textual form. It is suitable for the full
range of information modalities, from free-form input, to
compact schema-conforming structures. With its own equiv-
alent of a text editor and text-field widget, Infra is designed
to target the domain currently dominated by flat charac-
ter strings while simultaneously enabling the expression of
sub-structure, inter-reference, dynamic dependencies, ab-
straction, computation, and context (metadata).

Existing metaformats fit neatly into two categories. They
are either textual for human readability (such as XML and
JSON) or binary for compact serialization (such as Thrift
and Protocol Buffers). In contrast, Infra unifies those two
paradigms. In order to have the desirable properties of binary
formats, Infra has no textual representation. And yet, it is
designed to be easily read and authored by end-users.

We show how the organization Infra brings to data makes
a new non-textual programming paradigm viable. Programs
that modify data can now be embedded into the data it-
self. Furthermore, these programs can often be authored by
demonstration. We argue that Infra can be used to improve
existing software projects and that bringing direct authoring
and human readability to a binary data paradigm could have
rippling ramifications on the computing landscape.

CCS Concepts • Software and its engineering→ Data
types and structures; Visual languages; Programming by
example;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133852

Keywords human-readability, metaformat, structure edit-
ing, end-user development
ACM Reference Format:
Christopher Hall, Trevor Standley, and Tobias Hollerer. 2017. Infra:
Structure All the Way Down: Structured Data as a Visual Program-
ming Language. In Proceedings of 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!’17). ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3133850.3133852

1 Introduction
Infra aims to make data more powerful and easier to deal
with for both humans and computers. All types of data can be
viewed, edited, processed, transferred, and stored entirely in
Infra. Therefore, developers, runtimes, and end-users could
theoretically share a common foundational medium across
the computing landscape.
Infra is composed of a novel encoding and a novel type

of editor/browser. These two components are intended to
supplant the use cases of text encodings and text editors
respectively, and since the encoding is compact binary, it
also addresses the needs of transfer formats. Infra editors
make reading and writing Infra’s binary metaformat simple
for end-users, and can even style the presentation and taylor
editing in response to metadata, resembling a Web Browser
or IDE. Beyond the common metaformat features, Infra’s
encoding includes three critical primitives: Metadata, Free,
and Patch.

Metadata allows any data element, including other meta-
data, to be decorated with arbitrary Infra information to add
context. For example, metadata is useful for providing IDs to
support referencing values by name, style markup to assist
presentation in an editor, or schema/type info to constrain
or validate data.

Free allows encoded information to contain unallocated
memory regions. This can be useful for aligning data to
fixed-widths or improving the efficiency of localized edits to
large structures on disk.

Patch elements are programs that can inline another In-
fra object and optionally modify the shallow copy, forming
a generalization of graphs. This primitive turns out to be
a powerful building block toward general computation in

180

https://doi.org/10.1145/3133850.3133852
https://doi.org/10.1145/3133850.3133852

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Figure 1. A toy data structure represented as a tree (Left).
The data encoded in three textual formats, and Infra (Right).

the domain of data metaprogramming. In many situations,
Patches and the Infra-encoded statements within them, can
be conveniently authored indirectly via programming by
demonstration.

This paper serves as an introduction of the ideas behind
Infra. For a more comprehensive white-paper specification,
source repositories, executables, video demonstrations, and
tutorials, we invite you to visit Infra-Structure.org.

1.1 Motivation
Printable character codes are the sole building blocks of
source code files, command line languages, form fields, Web
formats (HTTP, URL, HTML, JSON, CSS) and all other “human-
readable” formats. This is due more to the fact that early
computers used electromechanical typewriters to interface
with humans than because it is the only workable paradigm.
Though all CPUs and runtime data-structures rely on binary-
encoded quantities to structure information for random ac-
cess, formats that need to be able to have a direct relationship
with users are stuck with essentially one option - encoding
their structure indirectly via contrived patterns of character
codes. This is unfortunate because, text, as a UI paradigm,
comes not only with compromises to efficiency, but function-
ality in general.
An entire class of problems with text arise from syntax.

Editing structured data within text requires a fixed and often
limited syntax riddled with reserved control characters. Not
only does this limit the allowed schema of the data, but it re-
quires that users be familiar with the syntactic elements used
to control the structure of the data. Furthermore, syntactic
elements, such as escaping, and the need for an unambiguous
grammar, limit the readability of the data. With Infra, syntax
is abstract, and structure is communicated graphically as
each editor sees fit for the particular context.

2 Infra: Human and Machine Friendly
Figure 1 is a side-by-side comparison of some structured
data expressed equivalently in four different languages. This
is a toy example engineered to show off a range of Infra’s
element types.

Figure 2. The byte structure of an encoded Infra segment.

Infra provides structured scaffolding for holding data, but
it does not attempt to invent a new character encoding, so
‘fish’ and ‘red’ are encoded as UTF8 strings. On the other
hand, ‘True’ is directly encoded as a boolean value, and
is shown in blue. Typical formats communicate structure
using characters such as ‘[’ and ‘(’. Infra communicates the
abstract syntax present in the data using graphical elements.
For example, the span of lists is indicated by a blue line above
the items it contains.
We will continue working with this example throughout

this section.

2.1 The Encoding
Infra’s metaformat encoding consists of a sequence of ‘seg-
ments’, each made of a header byte and a body of variable
length. The header byte indicates the type of the segment and
the length of its body. This pattern is sometimes called type-
length-value, tag-length-value, or key-length-value. Due in
part to its simplicity and processing efficiency, type-length-
value is a common paradigm, used by many binary file for-
mats such as Portable Network Graphics (PNG) [4], Audio
Video Interleave (AVI), Matlab’s MAT, Protocol Buffers [8],
MessagePack [12], and most modes of the complex ASN.1
[16] format. The finer details vary among these formats, but
the most significant decision that differentiates the utility
of these formats is the set of first-order primitives, or base
types, that they define.

We define 13 base types that support direct authoring and
are sufficient to enable a general set of applications. Only
half a byte is needed to account for 13 base types (plus 3
unallocated). Segment headers can be a single byte when
body lengths are no longer than 14 bytes. When the body
length is greater than 14 bytes, additional bytes must be
used to indicate the length. The value of 15 is used to signal
this, and the header byte is followed by a variable length
unsigned integer encoding. We find Dluglosz’ encoding [17]
to be efficient and well-designed for this purpose. This is the
encoding used for VLIs in the ZIP2 format.

2.2 Direct Authoring by End Users
With Infra, our first priority is supporting interactive au-
thoring by end users. An Infra editor aims to fill the same
role in computing that text editors and text-field widgets

181

http://infra-structure.org

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

Figure 3. Infra’s 13 segment types.

Figure 4. Infra’s byte encoding of the data structure shown
in hexadecimal.

currently play. Like a text editor, which tries to be as adept
and general-purpose as possible when it comes to enabling
users to view and manipulate a buffer of character codes,
an Infra editor tries to make authoring structured data easy.
This includes having mechanisms to facilitate the authoring
of spans, quantities, references, metadata, and padding.

Using an Infra editor feels like using a text editor. Unlike
text editors, however, Infra editors have the opportunity
to add useful structure as users type. Users can type their
intended structure along with their content. For example,
pressing ‘spacebar’ between words defaults to tokenizing
the text into lists of strings. Furthermore, recognizable fields
such as numbers can be parsed on-the-spot and converted
into the appropriate Infra element type (such as Floating-
point, which is binary-encoded)1.

1 To get a feel for what editing Infra is like, please take a moment to watch
two short videos at the following links. Transcripts of the video demos are
provided in appendices A and B.
Video 1 https://youtu.be/L8VpCCIxuME (∼3 min)
Video 2 https://youtu.be/8k6n1m4leQo (∼2 min)

3 Lists and Keyed Lists
A list is a container to group zero or more data structures
together. In our prototype editor, lists are represented simply
as a line spanning over the items it contains. Lists can contain
elements of any type, including other lists. In fact, trees can
be built using lists of lists. Unlike text editors, which edit
flat character arrays, Infra editors are designed to work well
with hierarchical data.

In the above example, ‘quick’, ‘brown’, and ‘fox’ are grouped
together in a List. ‘lazy’ and ‘dog’ are within another List.
‘The’, ‘jumped’, ‘over’, and ‘the’ are at the root level.

The selection cursor can also be hierarchical in order to
edit at any level of granularity present in the data’s structure.
In addition to moving the cursor between siblings, a central
user-interface action is to move the selection down to a child
or up to a parent container.

In the above figure, the top row depicts selection of the
second element as a whole. Moving the cursor down or in
results in the second row, where ‘quick’ is selected, and
moving the cursor to the right would now select siblings of
‘quick’ as opposed to siblings of the List (i.e. ‘jumped’). As
seen in the third row, the cursor can be moved in again to
operate at the character level in the familiar way.

Any tree can be displayed as a column-aligned table.

182

https://youtu.be/L8VpCCIxuME
https://youtu.be/L8VpCCIxuME
https://youtu.be/8k6n1m4leQo
https://youtu.be/8k6n1m4leQo

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Keyed List is a variant of List that associates the first
child with the container itself. This is similar to the concept
of a key-value pair where the first child is taken as the key,
except Keyed Lists can have any number of values. Keyed
nodes are also similar to Lisp’s S-Expressions and are used
to encode Patch instructions, which we describe further in
the chapter on Patch.
Our prototype editor displays Keyed Lists in either of

two visual styles: a parentheses-like style or a colon-like
style. Since it is only a presentation layer decision, the user
has both on hand. The following figure compares the visual
differences between Lists and Keyed Lists of zero through
three items respectively.

We find that the colon-like style is more appealing for
when there are exactly two items in the Keyed List (including
the key), i.e. A:B. But we find that the parentheses-like style
is generally less visually ambiguous for cases of fewer or
greater than two items total. (To be clear, such ambiguities
would be strictly user-interface-level issues, not encoding-
level ambiguity.) In our figures, you will find that we mix the
use of the two styles for best readability on a case-by-case
basis.

4 Metadata
In Infra, metadata can be associated with any element, in-
cluding other metadata. Metadata can be laid out in various
ways or selectively hidden. In our prototype editor, metadata
is shown in a smaller font over the element it is associated
with. The first tier of elements within a metadata container
are Keyed Lists so that all metadata ‘statements’ are associ-
ated with some language identifier. This not only provides
a means to anchor interpretation of the metadata to some
recognizable semantics, but also to allow any number of
metadata layers to coexist on the same data node. If no meta-
data exists on a node, then the entire container is simply
absent from the encoding. The capacity to have metadata
costs nothing if it is not used.

There are two exceptions to the rule of metadata items
being Keyed Lists:

• a UTF8 element found as a direct child of a Metadata
node is taken to be ‘ID’ metadata, i.e. shorthand for
the Keyed List ID:string.

• an Integer element found as a direct child of aMetadata
node is taken to be ‘UID’ metadata, i.e. shorthand for
the Keyed List UID:number.

In the following example, metadata has been authored
onto the strings ‘fox’ and ‘dog’. The metadata values are
keyed as ‘adj’ markup using Keyed Lists.

This is equivalent to viewing the following HTML in a text
editor (with HTML-specific syntax highlighting):

However, this HTML is malformed because repeated at-
tribute tags are not supported. In practice, “quick” and “brown”
would have to be combined into one value using a one-off
syntax scheme to indirectly retain their boundaries. At that
point, the HTML parser, syntax highlighting, and editor as-
sistance stop helping, and custom parsing must be added
wherever the values are used. Note that HTML attributes
cannot themselves also have attributes (no recursive meta-
data).

4.1 Data-Driven Presentation
One of the many uses for metadata is to hint to Infra edi-
tors/browsers what abstractions are appropriate when dis-
playing a particular piece of data.

On the left side of the figure above is a byte array of size
three displayed in hexadecimal by the editor. On the right
side is the same element after the user added ‘format’ meta-
data. As it happens, this editor recognizes ‘format’ markup,
and the value ‘RGB’ gives the editor confidence to instead
display the byte array as a color swatch, which can even be
interacted with as a color picker, making editing the value
much more intuitive.
Our prototype editor also supports a subset of the CSS

standard, which makes use of color values, so let us combine
this example with the previous one. In this scenario, the same

183

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

Figure 5. Top: editable Infra. Bottom: Editable HTML.

metadata exists on the color value in the “background color”
property, which happens to itself be metadata. (The ‘format’
metadata is not shown here because it is at least two levels
removed from the current position of the selection cursor.
Moving the cursor to the first metadata level will expand it.)

There are several noteworthy aspects to this structure. Sev-
eral grammatical constraints are relaxed relative to typical
CSS due to Infra circumventing the bottlenecks of a tokenizer.
The style property names can have spaces in them, rather
than being forced to use hyphens to separate words. The
byte encoding of the color value is in binary, which is more
compact than “#ff9212” by a factor of three and moves the
parsing to author time rather than render time. As we will
explore later, Infra encodings can also use its Patch base type
and metadata layers to bring string de-duplication and value
computations to CSS or any other application.
If an editor displays metadata layers in a separate panel

on the side, or the user toggles off the display of metadata
entirely, the rendering of Infra with style markup will re-
semble rendered HTML yet remain editable. For a visual
comparison, see Figure 5.

4.2 Metadata Association Rules in the Encoding
Metadata segments associate with the segment immediately
following it in the stream, skipping segments of type Free.
Metadata can be associated with other metadata with no
issue (meta-metadata).

If the last segment in a span is metadata, it associates with
its container. If it is in the ’top level’, it is treated as metadata
for the tree itself.

4.3 Schemas
We find it useful to define an optional system for ensuring
that data conforms to a specified type definition. The meta-
data channels ‘schema’ and ‘child-schema’ and are defined
for this purpose. Metadata in the ‘schema’ channel is treated
as an exemplar constraining the allowed shape of the data.
Likewise, when ‘child-schema’ metadata occurs on a list, the
list’s children are constrained to take the shape of the ex-
emplar. These constraints, as well as the defaults defined by
the exemplar, help editors to provide context-aware editing
functionality, such as auto-complete.

5 Case Study 1: URL Syntax
Let us explore a hypothetical alternative reality where com-
puting’s text infrastructure never consisted of only charac-
ters codes, and was built up around a parametrized syntax
such as Infra. The UI widgets used for everyday tokens of
input/output (such as Text Fields) would be Infra editor wid-
gets and literacy around using keyboards would think in
terms of authoring structure along with values. In this sec-
tion, we explore the effect this would have on the nature of
computing by focusing on an everyday unit of structured
information - a URL.
The following URL is a link provided by a Google search

result. It is the link to the Wikipedia article on Uniform
Resource Locator, but the actual URL is a redirect through
Google’s servers for accounting purposes. This kind of URL
is chosen because it is representative of complex stateful
URLs as well as the fact that it contains a URL inside itself.

Note that this URL is not very readable, and that the em-
bedded URL is escaped and does not work if copied to a
browser address bar as is. The bulk of the characters in URLs
like this are Base64-encoded bit strings. Base64 encoding
is born out of the fact that human-readable formats are un-
friendly to binary data, and in the web world, there is even
further need for compromises to encoding in URLs, to avoid
having to escape plus and forward slash characters.

184

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Now let us jump to looking at how URLs could have
formed differently if Infra boxes existed before text boxes
did. Eight notable improvements are listed after the image.

• The elements of a domain name do not have to be
separated by punctuation. It can simply be a list.

• This applies the same way to the path component of a
URL.

• The query fields are key-value pairs and can be grouped
together.

• Numbers stay binary encoded. (As they were in the
memory of the computer that constructed the URL.)

• Bit strings can stay bit strings without the need to
use indirect representations such as Base64. These bit
strings are displayed as a Data Matrix (one of many
possible visualizations at the disposal of the editor UI
such as Chroma Hash). The use of a data matrix allows
for a compact display of a binary value that does not
necessarily need to be readily deciphered by a human,
while giving some ability to judge equality. In this case
of reverse engineering Google’s URL, It is not obvious
if the values ‘t’, ‘j’, ‘s’, and ‘rja’ are also meant to be
treated as Base64.With Infra, such an ambiguity would
not have to exist.

• The nested URL does not have to be escaped, in fact,
it is also parsed, and even labeled as being a URL with
‘format’ metadata.

• Underscores do not have to be used as a substitute for
spaces.

• The ‘bvm’ value can have the substructure it seems
to want. In this case it was parsed into two values
separated by comma, and then sub-split into key-vals
by period. The ‘90491159’ portion is numeric and is
encoded more usefully as a binary integer - able to
be displayed according to the user’s preference for
localized digit-grouping.

Since the query fields are grouped together, they can con-
veniently be displayed in a tabular arrangement at the re-
quest of the user. From this layout, the information structure
is quite clear, and it is easy to notice that ‘bvm’ is the only
field to have more than one associated value.
Not only is unescaping an escaped URL by hand tedious

and cryptic, but it also requires using an ASCII table for
reference. However, in the hypothetical case of Infra-based
URL syntax, extracting the forwarding address is trivial, as

is any other kind of quick editing. In daily routine, we find
ourselves often needing to manually tweak video links (such
as YouTube) to either remove the playlist portion (so it only
links to the specific video) or to nudge the timecode (because
we hit pause a little late before copying the generated link).
In the pure-text world, doing these simple kinds of things re-
quires familiarity with URL’s specific meta-characters, rather
than just being the same kind of structured editing across
all user interfaces.

6 Patch
A Patch is a program that returns a data structure. The sim-
plest type of Patch simply references another node in the
tree, returning a shallow copy; this expands the domain of
infra from trees to fully-general graph structures by provid-
ing crosslinks. Patch programs can also make modifications
to what they return (without modifying the original); this
enables pure-functional programming at the encoding layer.
In the encoding, Patch nodes are containers like List nodes,
except their children are interpreted as instructions for as-
sembling a return value.

The Patch executionmodel is centered around themetaphor
of a virtual cursor, equivalent in nature to the cursor in an In-
fra editor. There are instructions to move the cursor around
and instructions to modify the return value at the cursor’s
location. Each Patch instruction is a Keyed List made up of
an opcode (key) and a set of arguments (values). The set of
available opcodes is the same as the set of edit operations
available in the Infra editor. Not only is this set of opcodes
general enough to make any modification to a return value,
but it allows for a user-friendly way to author simple Patch
programs. A modified reference can be authored by demon-
stration without ever needing to see or write Patch code. A
user’s modifications to the Patch output are appended to the
Patch’s instructions like a macro recording2.
A Patch’s virtual cursor begins execution at the Patch’s

own location in the data tree. Starting at that point, Patch
instructions navigate to the desired node, and then describe
themodifications that should bemade to the returned version
of the referenced node. A Patch’s edits operate on a private
overlay of the structure so that edits are reflected only in its
return value and not in the original source material, such
as in immutable or persistent data structures. Later, we will
see that Patches can return Side-Effect objects which can, in
turn, perform controlled side effects.

2 Please take a moment to watch a video demonstration of the Patch mech-
anism in action at the following link. A transcript is provided in appendix
C. Basic Patch demo https://youtu.be/hs42TeFytEk (∼2 min)

185

https://youtu.be/hs42TeFytEk
https://youtu.be/hs42TeFytEk

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

6.1 Opcodes for Navigation

parent(n) shifts the focus cursor up the tree by n tiers. If
the argument is omitted, the behavior is equivalent to par-
ent(1). If there is no nth parent, the Patch instead evaluates
to the Problem symbol with metadata describing the issue
and execution is halted.

child(i) shifts the focus cursor to its ith child. Or if the
argument i is a Keyed List, the focus will shift to the first
child Keyed-List with a matching key (the same key as in
the argument). If the argument is omitted, the behavior is
equivalent to child(0). If multiple arguments are provided,
each will be considered an index for successive applications
of child(i). In other words, child(2 0 1) would be equivalent
to the sequence: child(2) child(0) child(1). A negative index
value can be used to index backwards from the end of the
list. Thus, the last item of a list can be focused with child(-1),
and the second to last with child(-2), etc.

previous(n) shift focus to the sibling with the index n less
than the focus’ own index in its parent.

next(n) shift focus to the sibling with the index n more
than the focus’ own index in its parent.

metadata(channel) shifts the focus to its associated meta-
data container, and then to a Keyed List within it whose key
matches channel. If the argument is omitted, focus just moves
to the metadata container in general.

ID(id) jumps the focus cursor to the ‘nearest node’ with an
ID-metadata value matching id. The search order resembles
classical scoping rules for identifiers in most programming
languages. To start, the first level of children of the focus are
searched. If none have ID metadata that matches, siblings
are searched. And then, the search resorts to siblings of the
parent, grandparent, etc.

UID(uid) jumps the focus cursor to the unique node with
a UID-metadata value matching uid. UID-labeled data have
their own namespace and do not have to avoid name colli-
sions with ID-labeled data.

info() shift focus to a synthetic tree populated with infor-
mation about the element that was currently in focus, such
as its number of children, its index position in its parent
container, and its encoding type.

6.2 Opcodes for Modification
The secondary role of Patch instructions is to perform edits,
modifying the value being referenced, but only from that
Patch’s perspective. This is akin to concepts such as: copy-on-
write, persistent data structures, and ‘modifiable references’
in [1]. Since the original reference material is guaranteed not
to be modified, and that material is the Patch’s only input
source, Patches behave like ‘pure functions’.

insert(v) modifies the focus’ parent to contain v at the
same index as the focus cursor. If multiple arguments are
provided, all will be inserted at successive index positions.

remove(n) removes the next n items starting at the position
of the focus cursor. In the argument is omitted, the behavior
is equivalent to remove(1).

write(v) overwrites the value at the current focus with the
value v. This acts like a remove() followed by an insert(v).

sync(label) halts execution and causes the Patch to evalu-
ate to a Side-Effect object. (See the following section: Effect
System) In our prototype editor, we represent a Side-Effect
object as a clickable button labeled with the value of the
label argument. When the user clicks the button, the Patch
is resumed in a context where it is safe to mutate the subtree
it references.

6.3 Patch as Function Application
Infra has no need for a native concept of a function or a
function call. Since Patches can be defined inline, Patch se-
mantics act simultaneously in the role of a function and a
call site. Conceptually, function application is the process of
taking an instance of a function and substituting argument
values in for parameter placeholders. That very process can
be performed by a Patch using the building blocks we have
already introduced.

The convention for mimicking a traditional function is to
have a list of default parameter values followed by a result
value that is composed of one or more Patches that reference
those parameter values. Instead of providing a default value
for any particular parameter, Infra’s Parameter symbol can
be used as a valueless placeholder. ID or schema metadata
can optionally provide names and type constraints and on
any or all parameters.

Let us look at a concrete example function. To do this, we
are going to have to get slightly ahead of ourselves and use an
arithmetic object for multiplication, which is not introduced
until the section on Native-Service Objects. The following
example is a function that converts an angle and radius to
an x-y pair.

186

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

The top row shows the Patch tree without any evaluation,
and the bottom row is the reduced (semi-evaluated) form
that would appear in the editor (see the discussion on Native-
Service Objects for clarification). The pale blue boxes labeled
‘theta’ and ‘radius’ are Parameter symbol elements, which
are meant to be used as placeholders for a future value -
perfect to play to role of an input parameter.
Next let us look at two different elements that each call

this ‘polar to cartesian’ function with their own arguments.

And here is what these Patches evaluate to:

There is an air of machine-code level programming to this
use of Patch, but note that users will be viewing the evaluated
output of Patchesmost of the time and author them indirectly
through direct manipulation of their result value. Taking
advantage of live interaction and iterative authoring of input
values can enable a Patch to dispense its own documentation
dynamically in response to the partial values as they are
being assembled.
A general benefit of leaving function application as an

emergent ability of Patch semantics, is that it itself is pro-
grammable. A variety of function-application semantics can
be supported while keeping the number of first-class con-
cepts in the Infra specification minimal.

• default arguments are achieved simply by not over-
writing some of the hard-coded values in a function
interface.

• call by value is achieved when writing literal values
as input arguments.

• call byname / need is achievedwhenwriting Patched
values as input arguments. (lazily evaluated arguments)

• currying is achieved when writing values to only a
subset of locations and leaving the rest to be referred
to and written by other Patches.

• named arguments are achieved when using ID meta-
data on arguments to locate them.

6.4 Effect System
As described above, a Patch’s edits normally only effect the
result value of the Patch, leaving the referenced source ma-
terial unchanged. On the occasions that it is useful for a
Patch execution to have a stateful effect on the world, an
effect system helps this to happen while keeping side effects
explicit and controllable. Infra has an effect system made up
of three components: the Side-Effect object-type that can
be returned as the result of a Patch, the sync() opcode that
exports a Patch’s attempted mutations as a Side-Effect object,
and a permissions system to regulate automatic execution
of the side-effects described by a Side-Effect object.
A Side-Effect object is analogous to a Pull Request in the

popular Git version control system. They are inert return
values until they are applied/triggered. They encapsulate the
edits that a Patch has made to the data it was referencing,
such that those edits can be applied to the original (a destruc-
tive change) at the discretion of the runtime system. Because
Side-Effect objects are represented as an interactive button
in our prototype, they also resemble and behave like toolbar
or drop-down-menu buttons in a graphical user interface,
which trigger specific useful state changes on demand. An
Infra editor UI allows users to trigger Side-Effect objects di-
rectly. Any Patches that have a dependency on a value being
mutated are invalidated, and will be re-evaulated as needed.
This same mechanism already has to be in place for normal
edits made directly by the user.
When a Patch contains within it a Patch that returns a

Side-Effect object, the top-level Patch will also evaluate to
a Side-Effect as well. Logically, this is because it is not only
roadblocked waiting for its side effects to occur before pro-
ceeding, but it also needs to have a context for synchronizing
mutations for the nested one to inherit. If schema metadata
appears on a Patch that evaluates to a Side-Effect, the schema
value itself needs to be a Side-Effect object in order to be
consistent.

6.5 Native Service Objects
As we have seen thus far, Patch opcodes just perform tree
navigation, insertions, and deletions. On their own, those
operations can not perform computation that is sensitive
to the values they operate on, which is to say, they are not
Turing complete. However, those operations are sufficient
for performing ‘function application’. The right primitive
functions just need to be available in order to bootstrap a
capacity for computation. This is where the native service
objects in the standard library come in.
Since their logic cannot be expressed in terms of virtual

cursor manipulations, these built in functions must be built
in to the standard just like the primitive operations in other
programming languages are. They are loaded by name, just
like any other named entity, but they each override Patch
evaluation or mutation semantics with their own native logic

187

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

rather than execute their contents as standard Patch cursor
instructions. This allows them to use their contents merely
as a presentation layer for their parameters - free to act like
a domain-specific language.
We have explored Native Service Objects for perform-

ing logic and arithmetic, for performing operating system
input/output (with the help of Infra’s effect system), and
for inspecting and manipulating Java runtime objects and
methods.

Logic and Arithmetic The logic and arithmetic entries
in the standard library include boolean operators such as
conjunction and disjunction, mathematical operators such
as addition and subtraction, and control flow structures such
as if-then-else.

In the table above, the first column contains four example
Patches. The second column displays their corresponding
evaluations, all of which are native-service objects. In our
prototype editor, subclassed types are given a yellow back-
ground tint to remind the user that they evaluate according
to overridden semantics. These native-service values cannot
be serialized directly in the Infra encoding. This means that
they are always a result value of a Patch that references their
a-priori existence in a way that can be serialized.
Note that the text elements in these objects are purely

decorative for the sake of their user interface. They are not
necessary for the object to perform its function, but would
be nondescript without them. In the case of the math opera-
tors, the interface is able to resemble a familiar infix notation
without the need for any explicit support or syntax for dis-
tinctions between prefix, infix, and postfix operators. Also
note that, in the case of the multiplication example, the deco-
rative elements can help expressions to use more appropriate
Unicode characters without requiring the user to deal with
the round-about ways to type them manually.
As usual, the parameter values can be written in with

Path’s modification opcodes, or the shorthand notation can
be used if it is sufficient to fill parameters in depth-first order.
The following table depicts the shorthand notation of listing
argument values in the body of the instruction.

The first column is the directly encodable form of a call
to a native object with argument values. The second column
shows the values after one evaluation. The third column
shows the values after a second evaluation.

In the prototype editor, Patches are displayed only as eval-
uated as they can be without error. In other words, the editor
automatically evaluates Patches up to a point. This refers
to Patches that evaluate to a Patch, that in turn evaluate
potentially to a Patch. Once an evaluation chain results in
a Problem symbol, the previous stage is the one displayed.
Therefore, the example in the fifth row would be displayed
in the form of the second column, while the others would be
displayed in the form of the third column. This assists the
user in filling in missing values or addressing errors. The
lazy evaluation of Patches means that even deeply-nested
issues could be easily addressed on the surface, one at a time,
without clutter.

Operating System Integration Native-service objects can
provide external forms of input and output. Operating Sys-
tem integration is addressed by four categories of native-
service object: standard input/output console streams, a file
system tree, executable process interface, and socket binding
interface. All instances of these services all grouped under a
single object registered as “OS”.

On the left is a Patch that jumps to the OS tree and stops.
On the right is its evaluated value. These five items look the
way they do because they have ID metadata values and our
prototype defaults to displaying named elements as their ID
value. To help avoid confusing the ID as the actual value at
that location, it is rendered to look like a luggage tag. This
is an example of an editor providing alternative view modes
for subtrees. With the default Face we can see the actual
values, and the tree would look like:

188

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Each of these items are Lists that keep their contents in
sync with the external reality of their corresponding data
model in the operating system. Each are a special Native-
Service Objects instantiated as singletons inside the OS Ser-
vice Object. If an element is inserted into ‘output’, the ele-
ment is also written to the process’ standard output stream.
Bytes written to the process’ standard input stream get in-
terpreted as Infra elements and appear in the ‘input’ list. If
input bytes do not successfully parse as Infra, they appear as
plaintext or byte arrays, depending on a human-readability
heuristic used.

Now we have the building blocks we need to write a true
“Hello, World!” program in Infra. The following Patch results
in a button that, when clicked, prints the string to the stan-
dard output stream. (Reminder: printing to standard out is a
state mutation and therefore requires the use of the ‘sync’
opcode.)

In the figure before last, ‘C’ and ‘D’ represent drive letters
(the root file system objects on our machine). These are actu-
ally List elements with ID metadata and, just as before, they
are being displayed in a mode where their ID represents their
whole. In the UI, the actual children of a directory will be
rendered when selecting or drilling down into that element.
To avoid implicitly rendering the whole file system tree at
once, it is important that Infra editors delay the loading of
sub-trees until they are expanded.
We leave discussion of the sockets sub-tree for future

work.

Runtime Language Reflection Since Infra is an infras-
tructure based around directly authoring and editing struc-
tured data, there is a natural mapping between the internal
data structures of a programming language runtime and

human-readable Infra data structures. For programming lan-
guages that feature runtime reflection, these mappings can
be automatically supported without having to prepare an
adapter for each data type in advance. Reflection makes it
possible for the library to dynamically assemble representa-
tions for any object without the need to run pre-processors
on source code or be involved at compile-time. Runtime ob-
jects can be visualized on demand, by the Infra medium. The
Infra medium also naturally brings with it the interactions
necessary to manually assemble argument values into and in-
vocation of native functions/methods. This essentially allows
Infra to act as a visual debugger for the runtime environment
that the editor implementation is running in.
We leave the details of these Native-Service Objects for

future work.

7 Case Study 2: Plain Text at Scale
This section briefly explores the cost of storing abstract struc-
ture within content in the way that Infra proposes all data be
authored and stored. There are varying degrees of structural
breakdown, hierarchy, and interconnection possible with
any kind of data. For starters, we will look at just a basic first
pass of sub-structure that can be given to most plain-text
content - tokenization.
We have tokenized a sample of English texts and source

code files within Infra to measure an average byte overhead
introduced by Infra’s element headers, which segment each
word. Infra editors display whitespace padding between el-
ements, so actual space characters are not needed between
words. Elements of fewer than 15 bytes only require a 1-byte
header, and so most of the time, the presence of the header
byte is made up for with the lack of need for a space charac-
ter. However, newline characters are a common occurrence
in textual data and are not often preceded by whitespace,
but on some operating systems, they are accompanied by a
carriage-return character. In all cases tried, the byte overhead
was less than 4%.

For the full text of Lewis Carroll’s “Alice’s Adventures in
Wonderland”, the byte size increased from 163,815 bytes to
169,096 bytes when tokenized simply by splitting on space
characters. This is an Infra overhead of 3.2% to have struc-
ture at the word level. But, now that there is word-level
structure, Patch can be used to de-duplicate strings by en-
coding a common word once and referring to them from the
locations where they are used. As long as the byte size of the
Patches themselves is smaller than the word they reference
(minus the one-time cost of metadata to number the word),
memorywill be saved. In the case of Alice inWonderland, the
storage size can be reduced by 44,206 bytes (26.1%) through
basic string de-duplication.

For an example of what this kind of Patch usage looks like,
let us take the famous quote from JFK:

189

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

The second row shows ‘UID’ metadata and Patches uneval-
uated. (Reminder: Metadata and Patch both have shorthand
for ID and UID when using strings and numbers respectively,
which is why the metadata does not appear as “UID:4” and
why the Patch commands do not appear as “UID(4)”.)

String de-duplication is a simple form of data compression,
but importantly, this is not a compression scheme that obfus-
cates the data format. Patches are referentially transparent,
and so substituting an element for a reference to the same
value is a non-disruptive transformation.

Hierarchies can be added to make explicit the sentence
structure or ‘parse tree’ of the text. For example, here are
two possible parse trees for the same ambiguous sentence:

We added Standford’s open-source NLP parser to the editor
prototype for automatically adding best-guess grammatical
structure. Ignoring metadata to additionally label parts-of-
speech, embedding sentence structure into the text of Alice
in Wonderland required an overhead of just over 10%. Note
that the deduplication savedmore than enough bytes tomake
up for the tokenization and parse trees, totalling a savings
of 15.8%.
Being able to include extra structure such as a natural-

language parse has a multitude of uses for downstream pro-
cessing. In this case advanced users have the opportunity to
correct bad parses.

8 Case Study 3: Protocol Buffers
Replacement

As far as compact high-efficiency serialization formats go,
Google’s Protocol Buffers [8] are, by our estimation, the most
widely known, used, and supported in a modern setting. In
this section, we will refer to it simply as ‘Proto’. Overall, Infra
has roughly the same byte efficiency as Proto. Both Infra
and Proto precede elements with a one-byte header split into
a type enumeration portion, and a scalar quantity portion.
Also in both cases, the header is conditionally followed by

a variable-length unsigned-integer encoding to allow the
scalar quantity to overflow into more bits.

The performance of Infra and Proto are tricky to com-
pare directly because they are designed for nearly opposite
circumstances. Proto was designed to be manipulated pro-
cedurally by pre-compiled code, and to eliminate as much
unnecessary exposition of the data on the wire as possible.
Infra was designed to be viewed and authored directly in
its encoded form, and to allow for as much exposition of
the data on the wire as the user wishes to include. That be-
ing said, Infra can still be used in a constrained way as not
to embed any more than the bare minimum necessary for
Proto-like use cases.

8.1 Integer Encoding
In this comparison, we focus on the efficiency of encoding
integer values, since that is where bit widths are the most
dynamic, andwhere the bulk of the design complexity resides
in Proto. Infra has two integer base types (Integer andNibble),
while Proto has ten (int32, int64, uint32, uint64, sint32, sint64,
fixed64, sfixed64, fixed32, sfixed32). Infra can get away with
effectively one integral base type because Infra’s headers are
parametrized by byte length, whereas Proto’s headers are
parametrized by field number.
For the following measurements, various trials of encod-

ing a list of ten thousand integers in each encoding were
performed. The integers were randomly chosen from a flat
distribution. Trials vary in the range of random integer val-
ues chosen (small, large, negative) in order to exercise var-
ious phase changes in the encodings. The list is serialized
using each encoding, and the total byte length of the serial-
ization is divided by the number of elements (ten thousand)
to arrive at an average number of bytes per integer. This av-
eraging amortises away the one-time-cost portions of their
byte overhead.

190

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

Value Ranges: Proto has unsigned integer types, signed
integer type, and sign-unspecified integer types. Proto’s variable-
length integer encoding ends up being highly inefficient for
negative values (two’s complement) if a signed type is not
specified explicitly. It falls on the user defining the .proto file
to make a judgement call regarding the frequency of nega-
tive values that will appear in future data. This is the issue
responsible for the measured spikes of inefficiency for Proto
in the second and sixth value ranges. Those two ranges are
run again with ‘sint32’ and ‘sint64’ specified in the .proto
file respectively.

‘Packed’ Mode (Second Chart): Proto has a ‘packed’
option for repeated fields, in which it forgoes repeating the
same tag header for every element in a list. ‘Packed’ can be
specified in the definition of each repeated field of a scalar

type or by declaring “proto3” syntax mode. Infra can do
something analogous using the Bytes base type. Infra is able
to have packing metadata associated with the byte array
to inform how to decode it, but since Proto is built to only
assume that any reader of the data also has the corresponding
proto definition on hand, we make the same assumption
during this phase of our comparison.

8.2 Proto-Definition Encoding
Infra defines one encoding while Proto defines three: its C-
like .proto definition language, its wire encoding, and its
JSON-like ‘debug’ strings. The .proto definitions and debug
strings are human readable, the former is meant to be au-
thored directly, and the latter is meant only for reading. The
following diagram outlines how various formats layer their
encoding semantics. The three Protocol Buffer encodings are
grouped on the right. Other familiar formats are included
for context and comparison.

The second row describes a kind of alternate reality, where
Infra is the encoding foundation of these formats instead
of UTF-8 or a one-off binary scheme. In this arrangement,
formats such as HTML and CSS are simply metadata chan-
nels on Infra-encoded data structures. Metaformats such as
JSON, XML, and Protocol Buffers would have much less rea-
son to exist if Infra were an existing baseline offering both
the high performance of binary encodings and even greater
human-readability than textual encodings. Thus, vanilla In-
fra is shown as equivalent rather than imagining JSON, XML,
and Protocol Buffers semantics on top of Infra. Infra can
mimic any one of the three encodings defined by Proto sim-
ply by virtue of what layer(s) of information is included in a
structure.

• Infra instead of PB’s .proto: a data structure acting
as a prototypical data instance (data that can later be
used as schema metadata)

• Infra instead of PB’s wire: a stream of data instances
containing no copy or reference to a prototypical in-
stance (data without schema metadata)

191

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

• Infra instead of PB’s debug: a stream of data instances
with a copy or reference to a prototypical instance as
schema metadata

9 Related Work
The problems that Infra aims to solve require expanding the
notion of human-readability beyond only character codes
by generalizing it on two levels: encoding and editing. As
a result, our contributions touch several domains. Existing
metaformats are related work because we provide a general-
purpose data encoding upon which higher-level formats can
be built. Structured Editors are related work because we pro-
vide structure-informed display and editing tools. Software
systems that merge programmable presentation with com-
putational elements are related work because our goal is to
scale seamlessly from raw data to high-level user interfaces
within the same medium. We have organized related work
by domain.

TextualMetaformats Human-readable metaformats such
as XML [6], JSON [5], Comma-Separated Values (CSV) [25],
and Lisp’s S-Expressions [22], are the most popular and sup-
ported formats for structured information. Yet, it would be a
far cry to imagine any one of them ever becoming the uni-
versal default for all text written by all end-users. In other
words, it would be overly dysfunctional if every form field,
search query, and command-line expected all users to type
only valid XML structures. Even in the case of wide standard-
ization, providing structured editors to abstract away the
syntax would not really be worth doing since the encoding
is not machine-friendly to begin with.

BinaryMetaformats Binarymetaformats such as Abstract
Syntax Notation One (ASN.1) [16], Thrift [27], Google’s Pro-
tocol Buffers [8], Cap’n Proto, MessagePack [12], Binary
JSON [7], and Extensible Binary Markup Language (EBML)
[23], swing so far in the other direction that they forgo the
ability to be easily edited at all. The vast majority are ex-
plicitly designed as RPC frameworks, prioritize only byte-
efficiency, and require predefined schemata or at least formal
field names before any data can be encoded. Even if one
of these formats had editors that would help them mimic
freeform editing, few of them are designed to encode graphs
and none of them support recursive metadata or fragment-
ing a block of memory with unallocated byte-gaps between
elements. The former is critical for data-driven processing
and the latter is a critical part of all programming language
runtime heaps for tracking dynamically allocated memory.

Structured Editors Structured editors have a long history
of repeated attempts to assist users in the syntactic tasks of
editing formal languages. Systems from the 70s and 80s, such
as Emily [14], Gandalf [13], Centaur [3], as well as contem-
porary systems such as Subtext [10], TouchDevelop [28], and

Prune [19], are billed solely as source code editors specializ-
ing in a particular language. JetBrains’ Meta Programming
System (MPS) [18], has generalized this by using meta gram-
mars to allow the same system to be used to program in
additional languages. However, structured editors end up
limiting themselves by being so high-level. They constrain
edits to prevent data from ever entering grammatically in-
valid states. In these systems, source code must be modified
such that it is compilable before and after each atomic edit.
This is cited as the main cause of the usability problems
that have historically plagued structured editors [20]. Pro-
grammers’ editing habits routinely find that the path of least
resistance for compound edits passes through grammatically
invalid intermediate states. This issue is amplified further
in Source Code in Database (SCID) systems that customize
even their storage representation to a particular language.
Syntactically invalid programs do not have a way of being
represented. Intentional Programming [26] utilizes such a
system. In contrast, our goal with Infra is to apply the con-
cept of structured editing to a general-purpose metaformat
that languages can be built upon.

Programmable User-Environments Programmable user-
Environments such as The On-Line System (NLS) [11], the
Smalltalk and Squeak User Environments [15], Berkeley’s
Boxer Project [9], and Wolfram’s Computable Document
Format (CDF), all empower end-users with authorship of
and access to the descriptions responsible for the entities
and abstractions present in front of them. However, each still
use text characters as their only fundamental building blocks
within those descriptions. This means that their ‘liveness’
and helpful abstractions bottom out at the source code level.
This is unfortunate for users and developers alike because
both programming learning curves and API documentation
could benefit from those properties - recursively. A partial
exception to this is Boxer, the spiritual successor to Logo
[24], which includes ‘boxes’ of three varieties3 as distinct
primitives in addition to text to give structure to raw data and
source code statements. This still leaves out basic types like
binary-encoded quantities, which are critical to the internal
representations in all software systems.

10 Backwards Compatibility and Adoption
Though the ultimate goal of Infra is to be a better alter-
native to the classical plaintext infrastructure rather than
a supplement to it, Infra can still provide value along side
exiting technology. The following paragraphs each outline
progressively deeper adoption scenarios.

Infra-Agnostic Use An Infra library can offer a suite of
parsers (and renderers) to convert existing flat text data to
structured dialects for easier manipulation and to render

3‘Data’, ‘Doit’ (code), ‘Port’ (transparent reference)

192

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

them back out in the original encoding. This category in-
cludes using Infra merely as an alternative to JSON, XML,
YAML, and Protocol Buffers, for encoding and transferring
data.

Stand-Alone Use A fully isolated use case is to use Infra as
a generalization of spreadsheets. Beyond the usual grid of flat
(unstructured) values, its semantics offer trees of any depth.
Infra’s Patch references function much like cell formulae do.

Semi-Integrated Use Using Infra as an alternative to XML
or YAML, Infra can serve as a beneficial format for directly-
editable configuration files. Also, since metadata can be used
to include CSS markup, Infra can bring richer web-like pre-
sentation and interaction to textual system reports, such as
in console logs.

Transparent Adoption If Infra widgets replaced text field
UI widgets, but continued to be used only for plaintext uses,
Infra could be made to be ‘invisible’ while its extra capacities
were available on an optional basis. The widget API only
needs to offer automatic ‘flattening’ to plaintext strings (per-
haps dropping metadata and concatenating list items using
spaces) for applications that must use the entered data in
a strictly character-array form. This would allow Infra to
be leveraged more and more over time with a pre-existing
install base.

Social-MediaAdoption If a user-centric team-communication
app (e.g. Google Hangouts, Slack, FlowDock, Twitter) were
to adopt Infra as its medium, the situation would be similar
to the ‘transparent adoption’ above, but would take place
within the context of a community that is accustomed to au-
thoring and exchanging constructive elements beyond text
on a regular basis.

Neo HTML Infra itself is a more presentable markup lan-
guage than HTML, and could be used as an always-binary-
encoded alternative. Either, Infra editors can be used in the
role of a web browser, or Infra extensions could be written
for existing web browsers. This would unify the concepts of
viewing the source and viewing the rendered page. Parsed
dialects of CSS and Javascript content can exist in metadata.
HTTP headers can also be switched to be Infra-based. Since
the majority of an HTTP header consists of numerical values,
this would save an especially appealing amount of parsing
and byte overhead.

Post-WebWeb Stack Since Infra editors are already similar
to web browsers, and Infra’s encoding comprises a markup
language, binary transfer format, and dynamically allocated
heapmemory (using the ‘Free’ element type), it is a small leap
to use Infra for every layer of a typical web stack, including
database storage.
Patch semantics lend themselves well to mimicking an

HTTP request. With the addition of a new opcode for ‘nav-
igating’ the virtual cursor to a remote host, a Patch can

continue executing on the remote host, acting exactly like
a URL as it specifies the rest of the path with the rest of
its instructions to name a resource. The Patch result is the
reply from the host, performing the equivalent of a GET
request. And a Patch that performs modifications would be
the equivalent of a PUT, POST, or DELETE request.
To complete Infra’s ability to act as a back-end database,

an additional native service object can be added to act as a
database driver.

Full Adoption With full adoption we envision a compiled
programming language designed with infra at its core. Infra
would make up the code, the data structures, and possibly
the heap. New programming language semantics would be
invented that leverage Infra and Patch.

11 Conclusion
Infra is designed to make working with data more direct,
consistent, and efficient for both humans and computers. Be-
fore Infra, developers had to either choose a human-readable
format for their data and forgo processing simplicity and
efficiency, or choose a binary format and forgo human read-
ability. With Infra, developers can have both. Furthermore
the organization Infra brings to data makes Patch viable as a
new type of programming language targeting the domain of
in-stream data metaprogramming.
In summary, Infra defines a dozen base types, a handful

of Patch opcodes, a range of native-service interfaces, and
an effect system to mediate side effects so that untrusted
data can at least perform computation while trusted data
can be useful for general-purpose programming. It provides
the components needed to provide modest free-form data
input widgets that can scale into a user environment and
programming environment on a whim (since Patches can
exist anywhere and metadata can embellish any data with
appropriate editor abstractions). A capacity for structure,
metadata, and computation can become an ambient part of
everyday computer usage.

Infra, as a single lightweight tech stack, can be leveraged
to various degrees to perform in a wide variety of critical
roles across the computing landscape. To highlight a few,
Infra can provide:

• text-editor-like availability for users to quickly read,
write, and manipulate Infra-encoded information

• a spreadsheet-like experience: by displaying hierar-
chical data in a tabular layout, Patch’s data-flow-like
programming model functions like cell formulae

• a rich-text document-like experience: data-driven styling
and presentation (via ‘CSS’ metadata)

• an IDE-like experience: data-driven structure and type
checking (via ‘schema’ metadata)

• a GUI application-like experience: high-level interfaces
and abstractions of specific data models (via ‘format’
metadata)

193

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

• aWeb-browser-like experience (via ‘HTML’ metadata):
Infra naturally provides the opportunity for a binary-
HTML based Web (and binary-HTTP headers), but in
the meantime, a traditional parsing step can be used
to interface with the existing Web.

• a command-shell-like experience: the Native-Service
Objects for operating system integration allow inline
browsing of the file system, invocation of executable
files with input arguments, and standard I/O streams
(mediated by the effect system).

We find that Infra, as a medium, enables opportunities to
bring richer direct-manipulation and user-interface support
to much lower-level layers of computing than are normally
available.

11.1 Closing Statements
Because a structured encoding opens the door to explicitly-
demarcated metadata, and structured metadata opens the
door to new heights of extensibility, we believe Infra is the
best kind of root-striking evolution computing can make
right now. In an ever more connected world with accelerat-
ing trends towards ubiquitous computing, Internet of things,
semantic web[2], and an active push for broader cultural
reach in Computer Science education, Infra is well poised
to make the needed kind of impact. Infra raises comput-
ing’s currently-low bar for what is expected from the rawest-
of-the-raw tokens of encoding, in terms of their ability to
standardize the building blocks of structured (and interde-
pendent) information, as well as the richness of the means
for interacting with them.

A Transcript for Video 1 - Building Blocks
Let me demonstrate the nature of authoring data in our
prototype editor for Infra.

Infra is a novel binary-encoding that can be edited as freely
at text, while providing the capacity to express arbitrarily
complex structure, computation, and include metadata.

Our prototype editor is meant to look and feel like a text
editor so that it can be used everywhere that users would
normally interact with text, but is actually working with
machine-friendly data structures.

In this case, we have created a list of nine UTF8 encoded
strings. The spacebar naturally tokenized our sentence as
we typed it, rather than writing a space character like it
normally would in a text editor.

Let me paste in some text from the human-readable-format
comparison example in the paper. This is the equivalent data
structure, represented in JSON... Lisp... and Python.

It is some simple structured-data that covers a range of
syntactic elements: Strings, numbers, lists, key-values, and
a boolean value. For all of the similarity in their structure,
they are far from being interchangeable between parsers.

Now let’s type the same structure using Infra.

In this case, the values, 1 and 2, are not being encoded as
text characters. They are binary encoded integers. And this
True has been authored explicitly as Infra’s boolean symbol
for true.

With Infra, data can stay parsed in this way right from
the time of authoring. This means that editor UIs can have
richer, more precise, interactive dialog with the author about
the content, its parts, metadata associated with its parts,
inter-relationships, and its presentation.

Let’s add metadata to this string element to give the editor
more confidence that this is in-fact JSON.

194

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

This editor happens to have a JSON parser and supports
metadata labeled as “format“ metadata, so here we can see
the editor now offering to parse it as JSON.

Next, to demonstrate more editing, let’s manually parse
a second one of these representations. But first, let me rig
up a side-by-side view of the byte encoding for this object
so we can see how the representation changes with each
keystroke.
We can drop the cursor down to character-editing level

and start cleaning things up.

From Infra’s perspective, a traditional text editor is just
an editor whose cursor is locked down at the character-level,
only edits String objects, and has tunnel vision on one string
at a time.

Just like raw UTF8, Infra’s encoding is easy to make hu-
man friendly in editors, and usable by user-interface widgets

and libraries everywhere. All while rivaling the machine-
readability of binary metaformats such as ASN.1 or Protocol
Buffers.

We explore Infra further in other videos. Thank you.

B Transcript for Video 2 - Quantities
Unlike text, Infra is sophisticated in how it deals with num-
bers. As before, we’ve rigged up an encoding view on the
right side. Let’s slowly type negative-one-thousand-point-
five.

At this point, this is a one character string.

Now, infra recognizes "dash one" as a number and encodes
it efficiently.
Its header byte signifies that the following byte be inter-

preted as an integer.

By simply pressing zero, I’ve turned negative one into
negative ten, while remaining binary encoded.

Now it’s negative 100. Now typing a third zero...

Negative one thousand. Because this is explicitly a number
in the encoding, the editor can show digit grouping based
on the user’s localization settings. Text formats often can-
not tolerate commas in numbers because they use them as
delimiters to separate list items.

Because the string representation of -1000 does not contain
a decimal point, infra must revert to encoding this as a string.
In general, numbers are tested for round-trip stability before
being converted to a binary encoded number.

Now that the character 5 has been added, converting the
string to a float and back to a string again results in the
original string. Thus Infra can safely encode -1,000.5 as a
floating point number.

Thewidely-usedGrisu3 andDragon4 [21] shortest-decimal-
representation algorithms are used to reverse decimal-to-
binary rounding loss when performing the round-trip test.

We explore Infra further in other videos. Thank you.

C Transcript for Video 3 - Patch Intro
This is a demonstration of the powerful Patch mechanism in
Infra. Hello world!

195

Infra: Structure All the Way Down Onward!’17, October 25–27, 2017, Vancouver, Canada

We have entered a list of two strings. I’m going to do a
Copy, [pause] paste.

We now have a patched shallow copy of the first list to
the left. We see two views of the same Hello-world instance.
Shift-ctrl-v would have resulted in a deep copy.

Here is what actually got pasted. It is a Patch program that
reference the element to its left, like a spreadsheet formula.
This creates a live copy. A change to the original is re-

flected in both.
Here I’ll add an exclamation point.

On the other hand, when a Patch’s result is edited, patch
code is automatically generated to produce the equivalent
change procedurally. The red recording light indicates this
to the user.

I’ll add the word "structured".

Note that the original is unchanged. Let’s take a look at
the Patch’s code now.

This code references the left list and inserts the word
’structured’ as the second item in the list.

Now let’s change the original list again.

Not only was the Patch output updated, but it retained
its procedural edits as well. The patch mechanism provides
not only spreadsheet-like recombination and modification of
source data, but allows those modifications to be synthesized
through direct manipulation. The combination of these two
features can give end-users a simple way to take advantage
of programming for productivity purposes.
This kind of language-independent data refactoring is

virtually impossible in textual formats. In more elaborate
cases, an Infra editor has everything it needs to provide ever
more elaborate degrees of programming by demonstration,
and programming by example.

This scratches the surface of what the Patch mechanism
brings to Infra as an end-user medium and integrated pro-
gramming environment.

We explore Infra further in other videos. Thank you.

Acknowledgments
This work was partially supported by U.S. ARO MURI grant
No. W911NF-09-1-0553, as well as ONR grant N00014-14-1-
0133.

References
[1] Umut A Acar, Guy E Blelloch, and Robert Harper. 2002. Adaptive

functional programming. Vol. 37. ACM.
[2] Tim Berners-Lee, James Hendler, Ora Lassila, and others. 2001. The

semantic web. Scientific american 284, 5 (2001), 28–37.
[3] Patrick Borras, Dominique Clément, Th Despeyroux, Janet Incerpi,

Gilles Kahn, Bernard Lang, and Valérie Pascual. 1989. Centaur: the
system. Vol. 13. ACM.

[4] Thomas Boutell. 1997. PNG (Portable Network Graphics) Specification
Version 1.0. (1997).

[5] Tim Bray. 2014. The javascript object notation (json) data interchange
format. (2014).

[6] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. 1998. Extensible markup language (XML). World
Wide Web Consortium Recommendation REC-xml-19980210. http://www.
w3. org/TR/1998/REC-xml-19980210 16 (1998).

[7] cc. 2008. Binary JSON. (2008).
[8] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: a flexible data

processing tool. Commun. ACM 53, 1 (2010), 72–77.
[9] Andrea A. diSessa and Harold Abelson. 1986. Boxer: a reconstructible

computational medium. Commun. ACM 29, 9 (1986), 859–868.
[10] Jonathan Edwards. 2005. Subtext: uncovering the simplicity of pro-

gramming. In ACM SIGPLAN Notices, Vol. 40. ACM, 505–518.
[11] Douglas C. Engelbart and William K. English. 1968. A Research Center

for Augmenting Human Intellect. In Proceedings of the December 9-11,
1968, Fall Joint Computer Conference, Part I (AFIPS ’68 (Fall, part I)).
ACM, New York, NY, USA, 395–410. DOI:http://dx.doi.org/10.1145/
1476589.1476645

[12] Sadayuki Furuhashi. 2014. MessagePack: ItâĂŹs like JSON. but fast
and small, 2014. (2014).

[13] A. Nico Habermann and David Notkin. 1986. Gandalf: Software devel-
opment environments. Software Engineering, IEEE Transactions on 12
(1986), 1117–1127.

[14] Wilfred James Hansen. 1971. Creation of hierarchic text with a com-
puter display. (1971).

[15] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the future: the story of Squeak, a practical Smalltalk
written in itself. In ACM SIGPLAN Notices, Vol. 32. ACM, 318–326.

[16] ISO ITU-T. 2002. IEC: Abstract Syntax Notation One (ASN. 1) Specifi-
cation of Basic Notation. Report no. ITU-T Rec. X 680 (2002), 8824–1.

[17] J. M. Dlugosz 2003. Dlugosz’ Variable-Length Integer Encoding -
Revision 2. (2003). http://www.dlugosz.com/ZIP2/VLI.html.

[18] MPS JetBrains. 2014. Meta Programming System. (2014).
[19] K. Beck 2015. Prune: A Code Editor that is Not a Text Ed-

itor. (2015). https://www.facebook.com/notes/kent-beck/
prune-a-code-editor-that-is-not-a-text-editor/1012061842160013.

[20] Andrew J Ko, Htet Htet Aung, and Brad A Myers. 2005. Design re-
quirements for more flexible structured editors from a study of pro-
grammers’ text editing. In CHI’05 extended abstracts on human factors
in computing systems. ACM, 1557–1560.

[21] Florian Loitsch. 2010. Printing floating-point numbers quickly and
accurately with integers. ACM Sigplan Notices 45, 6 (2010), 233–243.

196

http://dx.doi.org/10.1145/1476589.1476645
http://dx.doi.org/10.1145/1476589.1476645
http://www.dlugosz.com/ZIP2/VLI.html
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013
https://www.facebook.com/notes/kent-beck/prune-a-code-editor-that-is-not-a-text-editor/1012061842160013

Onward!’17, October 25–27, 2017, Vancouver, Canada Christopher Hall, Trevor Standley, and Tobias Hollerer

[22] John McCarthy. 1960. Recursive functions of symbolic expressions
and their computation by machine, Part I. Commun. ACM 3, 4 (1960),
184–195.

[23] Martin Nilsson. 2004. Extensible Binary Markup Language. Draft
specification, Matroska (2004).

[24] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful
ideas. Basic Books, Inc.

[25] Yakov Shafranovich. 2005. Common format and MIME type for
Comma-Separated Values (CSV) files. (2005).

[26] Charles Simonyi. 1995. The death of computer languages, the birth
of intentional programming. In NATO Science Committee Conference.

17–18.
[27] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift:

Scalable cross-language services implementation. Facebook White
Paper 5, 8 (2007).

[28] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel
Fahndrich. 2011. TouchDevelop: programming cloud-connected mo-
bile devices via touchscreen. In Proceedings of the 10th SIGPLAN sym-
posium on New ideas, new paradigms, and reflections on programming
and software. ACM, 49–60.

197

	Abstract
	1 Introduction
	1.1 Motivation

	2 Infra: Human and Machine Friendly
	2.1 The Encoding
	2.2 Direct Authoring by End Users

	3 Lists and Keyed Lists
	4 Metadata
	4.1 Data-Driven Presentation
	4.2 Metadata Association Rules in the Encoding
	4.3 Schemas

	5 Case Study 1: URL Syntax
	6 Patch
	6.1 Opcodes for Navigation
	6.2 Opcodes for Modification
	6.3 Patch as Function Application
	6.4 Effect System
	6.5 Native Service Objects

	7 Case Study 2: Plain Text at Scale
	8 Case Study 3: Protocol Buffers Replacement
	8.1 Integer Encoding
	8.2 Proto-Definition Encoding

	9 Related Work
	10 Backwards Compatibility and Adoption
	11 Conclusion
	11.1 Closing Statements

	A Transcript for Video 1 - Building Blocks
	B Transcript for Video 2 - Quantities
	C Transcript for Video 3 - Patch Intro
	Acknowledgments
	References

