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Abstract—Augmented Reality interfaces increasingly utilize ar-
tificial intelligence systems to tailor content and experiences to the
user. We explore the effects of one such system - a recommender
system for online shopping - which allows customers to view
personalized product recommendations in the physical spaces
where they might be used. We describe results of a 2x3 condition
exploratory study in which recommendation quality was varied
across 3 user interface types. Our results highlight potential dif-
ferences in user perception of the recommended objects in an AR
environment. Specifically, users rate product recommendations
significantly higher in AR and in a 3D browser interface, and
show a significant increase in trust in the recommender system,
compared to a web interface with 2D product images. Through
semi-structured interviews, we gather participant feedback which
suggests AR interfaces perform better due to their ability to view
products within the physical context where they will be used.

Index Terms—Augmented Reality; Recommender Systems;
User Interfaces; Recommendation Quality; Trust

I. INTRODUCTION

Recommender systems first emerged over two decades

ago and have since become standard tools for dealing with

information overload [1]–[3]. Major retail stores such as

Amazon.com have a heavy focus on data-driven marketing, of

which collaborative and content-based recommender systems

are a core part. About 35% of sales on Amazon, and 75% of

movies watched on Netflix are derived from recommendations

[4]. The vast majority of recommendations for online retailers

are delivered through email or in the traditional web browser

interface. Interface technology, however, is developing rapidly:

global revenues of Augmented Reality (AR) and Virtual Reality

(VR) markets are expected to grow to over $162 billion in

2020 [5]. Heavy investment in AR and VR by major companies

such as Apple, Alphabet, Facebook, and Microsoft will mean

that smaller, higher quality devices will become available at

lower cost to consumers. Large retailers such as Amazon and

IKEA are exploring and introducing new AR driven shopping

experiences.

While there has been progress on in-store AR technology

to improve shopping experiences, e.g. [6], less work has been

done on the concept of in-home shoppers taking advantage of

what we call ‘situated recommendations’, whereby personalized
recommendations of products are placed virtually where the

real product will be used. In particular, we are interested in

how people perceive recommendations that are situated in

AR, and how this perception differs from that of traditional

recommender system interfaces. We attempt to address the

following specific research questions:

1) RQ1: Do users perceive product recommendations in AR

differently than in a browser-based UI?

2) RQ2: Are there differences in recommender system trust

when presented in AR versus a browser-based UI?

3) RQ3: What is the general sentiment towards an AR

recommender system for in-home shopping?

To answer these questions, we conducted a 3 by 2 within-

subjects lab study (N=31). The study examined the effects

of 3 different interaction modalities: an Augmented Reality

interface, a web browser interface with 3D view controls,

and a web browser interface with 2D view controls. We also

looked at how users respond to differences in recommendation

algorithm quality (either high or low quality recommendations).

We measured 2 key metrics, user ratings of each recommended

object (also called perceived accuracy), and user trust in the

recommender system. We collected subjective feedback on user

perception of the modalities through a post study questionnaire

and verbal interviews.

For the purposes of this study, we implemented a common

online shopping user interface across all 3 modalities to

allow for meaningful comparison. To avoid potential novelty

effects, study participants undergo significant pre-study training

sessions for each modality. Figure 1 shows an overview of our

shopping interface. The right image shows a user wearing the

HoloLens interacting with a virtual model of a recommended

item and providing rating feedback to the system. The left

images show the two web browser based interfaces that were

tested in the study. In the web browser UIs, participants interact

either by rotating the object with the mouse (3D), or clicking

through static images (2D).

II. BACKGROUND

Our study combines facets from multiple research fields,

including human computer interaction (HCI), recommender

systems, and cognitive science. A discussion of the relevant lit-

erature in each area is presented here, to frame our contribution

in the context of existing research.
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Fig. 1. Left: Screen captures of the browser interfaces. For 2D browser, users can look through photos of the mug taken from different predefined angles. For
3D browser, users can freely rotate the mug and view it in any direction. Right: Mixed reality screen capture of a user providing feedback to a recommended
item.

A. Augmented Reality in Retail Applications

Currently, there are many consumer applications for visual-

izing products in augmented reality. For example, IKEA uses a

mobile AR app to place virtual models of their furniture in the

physical world and Lego uses AR kiosks to visualize assembled

Lego sets on the corresponding box [7]. Nike created a custom

sneaker designer that uses projective AR to overlay designs onto

a customer’s physical sneakers [8]. Recent work by Stoyonova

et al. [9] reports on a cognitive study of purchase intent using

AR in a shopping scenario, but in contrast to this work, does not

have a focus on personalized recommendations, and is situated

in a store as opposed to a home shopping scenario. Lu et al.

[10] perform a study of AR for home shoppers, where selected

products can be tried in AR before purchase. Olsson and

colleagues [11] present a study of user experiences with AR in

a shopping center context and report mainly positive feedback

for mobile AR supported shopping. While there are many other

examples of AR for improving shopping experiences [11], [12],

to our knowledge there is no existing research that explores how

users perceive personalized recommendations in this modality.

We believe that our results can provide useful insight about this

rapidly developing technology and its suitability as a channel

for delivering personalized recommendations.

B. Augmented Reality and Recommendation

Many applications that integrate AR and recommendation

use mobile platforms to perform location-based content recom-

mendations. The Yelp monocle1 for service recommendations is

probably the most well-known example of this integration with

AR. Balduini et al.’s Bottari system [13] provides personalized,

location-based AR recommendations of social media content

based on the Twitter network and evaluated the system in

an urban area. While these approaches integrate AR and

1https://www.yelp-support.com/article/What-is-Yelp-s-Monocle-
feature?l=en_US

recommendation, they contrast with our approach in that they

do not focus on evaluating perception of recommendations in

AR compared to traditional UIs.

C. Interfaces and Decision Making

Prior research in recommender systems has a strong focus

on algorithm performance. Recently however, more research

attention is being paid to so called user-aware recommendation

systems that attempt to improve the user’s experience with the

recommender system by mechanisms that go beyond predictive

accuracy, such as conversation [14], explanations [2], [15],

[16], and various different flavors of user interfaces [17]–[19],

interaction designs [20] and evaluations [21]–[23]. In this study,

we are interested in a novel user interfaces aspect –that of

the impact of placement of recommended content in physical

contexts with augmented reality, on the metrics of accuracy

and trust. We are also interested in how the interplay of AI

performance (quality of the recommendation) with the choice

of user interface influences these metrics. It is likely that

user specific factors such as experience with visualizations,

recommender systems, or multimodal display technology will

impact the observed results. Nilashi et al. [24] performed a

mixed-model evaluation of recommender system users on two

real world e-commerce sites and analyzed the impact of many

observed and latent factors on trust and purchase intention.

Similar mixed model evaluations for recommenders were

performed on a hybrid music prediction system by Knijnenburg

et al. in [23] and in a system for analysis of commuter traffic

data from microblogs by Schaffer et al. [22]. In this paper we

also apply a mixed-model evaluation, designed to capture user-

specific characteristics that impact our performance metrics.

III. SYSTEM ARCHITECTURE

To test our hypothesis, we implemented online shopping

interfaces for each modality as well as a content recommen-

dation system which generates a set of distinct high and low
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quality recommendations based on user profile data. These

recommendations are distributed evenly across the 3 modalities,

where they are rendered using the Unity game engine. During

the study, users interact with each modality and give ratings

which are sent back to the server to be recorded.

A. Browser Interface

We implemented a simple e-commerce graphical interface

in a web browser (see Figure 1). The interface shows the

recommended object, the store logo, and generic text descrip-

tions of the object. The browser interface is broken up into 2

presentation modalities: 2D browser and 3D browser. In the

2D browser modality, item recommendations are presented as

a set of 2D pictures of the product taken from different angles.

Users cycle through these pictures by clicking on the arrow

buttons below the image. A pencil is shown in the images to

provide a point of reference for scale. Users can rate the items

by clicking on the radio buttons provided on the right side

of the image. The 3D browser modality displays a 3D model

of item recommendations that users can interact with. In this

modality, users click and drag within the display window to

rotate the object about its central X and Y axes. Users can

provide ratings in the same way as the 2D browser. Note that

both kinds of browser interactions take place on a traditional

computer and monitor.

B. Augmented Reality Interface

For the AR interface, we use a Microsoft HoloLens device.

Our application uses the devices’ Spatial Mapping API to map

the environment and situate virtual products and UI elements

within the environment. We use HoloLens’ World Anchor

system to fix the recommended item and UI elements in the

same position throughout the study. Users are able to walk

around and look at the virtual items from different directions

and provide feedback via the rating interface, presented through

2 panels as shown in Figure 1. The graphical interface

is bare-bones, only displaying the store logo and generic

text descriptions similar to the browser implementations. For

interacting with the interface, we implemented a 3D cursor

using a raycast formed by the user’s head gaze direction.

We define head gaze direction as the forward direction of

the headset. Using the 3D cursor, users can aim and click

on the rating panel. Although the HoloLens device supports

hand gestures for clicking, we opted to use the HoloLens

bluetooth clicker. This provides a fairer comparison to the

browser interface, as there may be additional effects introduced

by gesture-based interaction.

C. Content Based Recommendation

In order to generate personalized recommendations, we use

an algorithm based on attribute Preference Elicitation (PE) and

Multi-Attribute Utility Theory (MAUT). The item attributes

considered by the recommender are color, shape, and size.
We provide a validation for this choice of attributes in the

Experimental Design section. For each attribute, we compute

TABLE I
ATTRIBUTES FOR ITEM CLASSIFICATION.

Attribute High-level choice Value

Shape
Non-cylindrical -1
Cylindrical 1

Size
Small -1
Large 1

Color
Disliked -1
Neutral 0
Liked 1

the error between the recommender choice for that attribute,

denoted as recAttChoice, and the user’s preference, userAttPref.
If the attribute considered is a binary attribute (here, shape

or size), let recBinAtt ∈ {−1,1} denote the recommender’s

choice for that attribute, where each possible value corresponds

to a specific high level choice, as indicated in Table I. The

reported user preference for that attribute, userAttPref, has

values in �1,5�. In the pre-study questionnaire, values of 1

and 5 corresponded to a strong preference toward one of the

possible values of the binary attribute, values of 2 and 4 to

a slight preference, and 3 to no preference. The error can be

computed from those two variables as:

ErrrecBinAtt = L(recBinAtt,sgn(userAttPref−3))

·WrecBinAtt (1)

where L(ŷ,y) is the 0-1 binary loss function which equals 1

if ŷ � y and 0 otherwise, and the weight is defined based on

the importance given by the user to that particular attribute as

WrecBinAtt = (userAttPref−3)2. Note that 3 is subtracted from

the user’s rating in order to turn the values ranging from 1 to

5 from the pre-study questionnaire into values in �−2,2�. The
sign function is then applied to map the user’s rating to its

corresponding value in Table I. This essentially decouples the

user’s preference into a binary choice and a weight.

Color was treated slightly differently: users were asked how

much color weighed in their decision, and then asked to choose

colors they liked and colors they disliked among 13 colors;

colors not selected are considered neutral. The estimation of the

error on a given color choice by the recommender recColChoice
therefore is:

ErrrecColChoice = (1DislikedCol (recColChoice)

+0.5 ·1NeutralCol (recColChoice)) ·Wcol (2)

where 1A(x) is the indicator function on set A defined as 1 if

x ∈ A and 0 if x � A. The weight Wcol has the same range of

values as the weights used for the binary attributes, and the

0.5 factor for a neutral color ensures that picking a neutral

color will yield an error superior to that of a liked color and

inferior to that of a disliked color. The overall error is then

obtain by summing the individual attribute errors:

Error= ErrrecColChoice +ErrrecShapeChoice +ErrrecSizeChoice (3)
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(a) Good recommendations (b) Bad recommendations

Fig. 2. Example of recommendations for a user indicating preference for
large, non-cylindrical mugs with navy, lime, cyan as liked colors and indigo,
magenta, fuchsia as disliked colors.

It is worth noting that the errors can easily be turned into

utility measurements by replacing L by (1−L) in Equation 1

and 1DislikedCol by 1LikedCol in Equation 2.

The personalized recommender system computes all the

possible values of the total error based on the user weights,

and stores for each value of the total error the incorrect

attributes contributing to that value of the total error. There

are 2card({WBinAtt :WBinAtt�0}) possible ways to get an error from

potentially incorrect binary attributes that the user indicated

having a preference for, and 3L(Wcol ,0) different possible values

for the error from the color. Note that the error is degenerate;

that is, different choices of incorrect attributes may yield the

same value of the total error, which can be used to diversify

the recommendations. The recommender system can then use

a look-up table to show products in order of increasing error.

We define high quality recommendations as ones for which

every attribute satisfies the user’s preferences, and low quality
recommendations as ones maximising the error, i.e. none of

the attributes satisfy the user’s preferences. Extreme values of

the error were picked to avoid issues with parameter tuning in

the recommender algorithm (e.g. power used in the calculation

of the weights), which may depend on the granularity of the

preference scales or the different possible interpretations of the

scale labels by the users. In a longer sequence of interactions,

or real-world deployment of the system, less strict parameters

could be adopted to improve diversity and novelty of predicted

items. An example of the two classes of recommendations are

shown in Figure 2.

IV. EXPERIMENT DESIGN

Our main study had a 3 by 2 within subjects design

with counterbalancing. The two independent variables were

UI modality and algorithm quality, and the main dependant

variables were item ratings (accuracy) and user trust in the

recommender system. A preference profile was gathered from

each participant in the experiment several days before the in-

person study, via a Qualtrics2 online survey. In this preference

elicitation questionnaire, participants were asked for basic

demographic information and experience with recommenders

and AR/VR technology. They were also asked to select

preferences for each of the classification dimensions for our

domain items. These consisted of size (large or small), mug

shape (cylindrical or non-cylindrical) and color preference. For

color, participants were shown images of 13 coffee mugs of

different colors and were asked to select their favorite 3 and

2https://www.qualtrics.com/

TABLE II
VALIDATION OF ITEM CLASSIFICATION FEATURES FROM 110

PARTICIPANTS IN AN ONLINE SURVEY.

Mean Std Dev
Color 57.84 25.49
Pattern 58.45 27.5
Size 71.27 23.15
Shape 60.75 26.17

least favorite 3. This information was stored on a server which

computed sets of high and low quality recommendations for

each user, based on the algorithm previously described.

To compare the effect of recommendation quality among the

3 different modalities, two different virtual retail stores were

created: 4Buy and iMart. 4Buy always attempts to provide

high quality recommendations and iMart always attempts to

recommend items from the database that the user will dislike.

Distinct logos for 4Buy and iMart were visible in each modality

(see Figure 1) to allow users to recognize which store they are

in and form different perceptions of trust for each store.

A. Item-space Classification

As it is difficult to find free high-quality 3D models, we

chose to modify the models on the fly to provide variance

in recommendations. We began with a total of 18 different

models, and applied transforms over size and color parameters

to provide different virtual mugs for participants. The patterns

on the mugs varied. To ensure that the pattern variable would

not impact user preference more than the controlled features

(size, shape and color), an MTurk study of 110 users was

performed where each participant provided ratings between 1

to 100 for each of the four features. The mean and standard

deviation for these ratings are found in Table II. We found no

significant difference between pattern and the other features

and so assume that manipulation of the other three features will

be sufficient to provide good or bad recommendations based on

the user profile. This is further confirmed in our results which

show user ratings for good recommendations are significantly

higher than those for bad ones. Different patterns in the mugs

can contribute to novelty and diversity in recommendations,

but overall quality can still be controlled in a meaningful way

through manipulations on the other features.

B. Experimental Procedure

The experiment was conducted at an American university

campus. Participants were assigned to particular orderings for

each condition. Participants were given a brief introduction

to the study by the experimenter. They were provided with a

simple background story as follows: "You have just broken

your coffee mug and are looking online to shop for a new

one. You will shop at 2 different stores using a variety of their

interfaces". For the AR condition, participants were given a

training task where they had to observe several virtual items

and use interaction in AR to provide feedback ratings. Once

comfortable with the AR environment and rating procedure,

they began the main rating phase. Here, they were shown a
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sequence of 3 recommendations, either from iMart (low quality)

or 4Buy (high quality). They were asked to walk around and

inspect the items, and then provide a rating for how much they

liked the recommended item on a scale of 1 to 5, and how

much they trusted the system’s current ability to provide good

recommendations on a scale of 1 to 10. There was no time limit

imposed during the rating phase. Participants typically took less

than 30 seconds to provide a rating, irregardless of the modality.

Similar training steps were performed for the browser-based

conditions. Participants complete all 3 conditions for a given

store (and recommendation quality) first, before repeating the

conditions in the same order for the other store. We alternated

which store the participants start with. Once all conditions were

complete, participants completed a post study questionnaire

and were given a brief post study interview by the experimenter.

In the post study questionnaire, participants were asked to rate

their overall trust for each recommender, the helpfulness of

the recommender, how much they liked interacting with each

modality, and how much they liked each store overall. In the

interview, participants were asked about their thoughts on the

AR device, and whether they would choose to use it over the

other modalities in a real world shopping scenario.

C. Novelty Effect

Since Augmented Reality is a new and emerging technology,

and there is a “wow factor” with cutting edge devices such as

the Hololens, novelty effects will always be challenging to deal

with. To mitigate novelty effects in the experiment, participants

were allowed up to 10 minutes to familiarize themselves with

each modality. In the AR condition, participants played with

the built-in holograms application on the Hololens device.

Note that this familiarization period takes place before the

training task begins. After the experiments, we compared

performance between the participants who started with the

AR condition versus those who started with the browser-based

conditions. We ran paired t-tests on our key metrics but found

no significant differences between the two groups, giving us

confidence that our balancing and familiarization procedures

were helpful in controlling novelty effects of the Hololens

device in the AR condition. This was further supported through

post study interviews, during which participants reported that

the familiarization period helped them to “get comfortable”

using the AR headset.

V. RESULTS

To answer our research questions, we looked at user ratings

for individual product recommendations and overall trust in

the recommender system. We examined differences in ratings

across each modality in order to assess relevant effects on user’s

perception of recommendations. Additionally, we examine self-

reported UX metrics from a post study questionnaire and verbal

interview.

A. Participants

In total, 31 participants completed the in-person study. Data

from 3 participants were removed due to being provided

Fig. 3. Mean accuracy rating with standard error.

TABLE III
ACCURACY: PAIRWISE COMPARISON BETWEEN MODALITIES.

contrast estimate SE df t.ratio p.value

Browser2D - Browser3D -0.2641 0.1095 440.51 -2.413 0.0428
Browser2D - AR -0.2791 0.1091 438.92 -2.557 0.0293
Browser3D - AR -0.0150 0.1091 438.42 -0.138 0.9896

Results are averaged over the levels of: Recommendation Quality

P value adjustment: Tukey method for comparing a family of 3 estimates

incorrect instructions on the rating system. These participants

misunderstood the task and rated other aspects such as the

design of the logo. We also removed 2 additional participants

due to system failure of the HoloLens during the experiment,

leaving a total of 26 for analysis. Participants had a median age

of 23, mean age of 27 with std. deviation of 9.58. 77% were

male and 23% female. All had at least some college education.

Participants were recruited through a user study pool at the

university and were paid $10 for the study, which lasted about

40 minutes.

B. Do users perceive product recommendations in AR differ-
ently than in a browser-based UI?

To begin our analysis, we looked at the average accuracy

ratings within each condition. The resulting data is graphed in

Figure 3. We tested for significance using paired t-tests.

For these ratings, our initial hypothesis was that increased

reality and immersion provided by the AR modality would

amplify users’ perception of recommendation accuracy. More

realistic inspection methods might cause users to have a

greater awareness of how well a product fits their preferences.

Thus, we expected bad recommendations to be rated lower in

AR compared to browser based methods, and likewise good

recommendations would be rated higher in AR.
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When looking at ratings in the bad recommender, we found a

significant difference between the 2D modality (μ = 1.97) and

the 3D modality (μ = 2.32) conditions; p = 0.024. There was

almost significance between 2D modality and the AR modality

(μ = 2.24); p = 0.064. In the good recommender, we found

significance between the 2D modality (μ = 3.12) and the AR

modality (μ = 3.4); p = 0.035, but not between 2D and 3D

modalities.

Additionally, we see a significant difference in ratings

between the good and bad recommenders for all 3 modalities

(all p < 0.0005). This gives us confidence that our recommen-

dation algorithm is correctly providing high and low quality

recommendations based on the user’s preferences.

These results appear to reject our hypothesis. Irregardless of

recommender quality, AR and 3D modalities seem to improve

perception of recommendations. However, the signal does not

appear consistently between bad and good recommenders. Thus,

to look at the effects of each modality across both good and bad

recommender conditions, we opted to perform further analysis

using linear mixed effects models. Specifically, the modality

type and recommendation quality are modeled as fixed effects,

while participants and item design are modeled as random

effects.

To validate this approach, we assessed the fit of our

models using pseudo-R2 values [25]. Marginal pseudo-R2

was computed for fixed effects, and conditional pseudo-R2

for random effects. For the accuracy model, the marginal

pseudo-R2 was 0.216 and the conditional pseudo-R2 was 0.369.

Additionally, mixed effects models assume that the residuals of

the model are normally distributed. We plotted the residuals of

each model as Q-Q plots to check this assumption and found

that the residuals fall about a fairly straight line, suggesting

normality. Finally, we created separate models where Modality

and Recommendation Quality were modeled as having an

interaction effect. We performed a likelihood ratio test against

these to determine any significant interaction effects, but did

not find any significant inter-dependence between them thus

we did not include interaction effects in our models.

The full pairwise comparisons between each modality are

shown in Table III. These tables describe the difference in

ratings after averaging over the levels of recommendation

quality and performing p-value adjustment using the Tukey

method. Here, we can see a significant difference between

Browser2D and the AR modalities (p = 0.0293), as well

as between Browser2D and Browser3D (p = 0.0428). This

provides further evidence that AR may improve user perception

of product recommendations.

When comparing AR against the 3D interface, pairwise

comparisons within our model did not show a significant

difference in product rating. We believe that this result was

due to a hidden variable created through differing levels of

control in the interaction. In the 3D browser, users could rotate

the items and view them from all angles. However, in the AR

condition, the item was in a fixed position, and therefore could

not be viewed from the bottom angle, since it was positioned on

a table. During the verbal interview, 3 participants mentioned

Fig. 4. Mean trust ratings with standard error.

TABLE IV
TRUST: PAIRWISE COMPARISON BETWEEN MODALITIES.

contrast estimate SE df t.ratio p.value

Browser2D - Browser3D -0.6474 0.1697 442 -3.815 0.0005
Browser2D - AR -0.4679 0.1697 442 -2.757 0.0167
Browser3D - AR 0.1795 0.1697 442 1.058 0.5410

Results are averaged over the levels of: Recommendation Quality

P value adjustment: Tukey method for comparing a family of 3 estimates

they prefer the 3D view because it "allows you to see the mug

in every possible orientation".

C. Are there differences in recommender system trust when
presented in AR versus a browser-based UI?

This question focuses on the perception of algorithm quality

within the different modalities. Similar to the product ratings,

we hypothesized that the AR condition could help improve

user awareness of a recommendation algorithm’s performance,

leading to lower ratings for the low quality recommender and

higher ratings for the high quality recommender compared to

the other modalities.

Our analysis on trust ratings mirrored the methods used for

product ratings in the previous section. In Figure 4 you can

see the graphed trust ratings. In the bad recommender, we

found significant differences between 2D (μ = 3.51) and 3D

(μ = 4.27); p < 0.001, as well as 2D and AR (μ = 3.95); p =

0.034. In the good recommender, we also found significance

between 2D (μ = 5.41) and 3D (μ = 5.95); p = 0.005, and also

between 2D and AR (μ = 5.91); p = 0.008. Again, we see a

significant difference between the good and bad recommenders

for all 3 modalities (all p < 0.0005). Figure 4 clearly show that

users perceived a difference between good and bad algorithms

in all conditions. For example, participants in the 2D browser

condition rated trust in the iMart (low quality recommender
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algorithm) at 3.51 and 4Buy at 5.41, which is a relative

improvement of 54% over the iMart algorithm.

We again used linear mixed models to analyze trust ratings

across recommendation quality. We performed the same steps

to validate the model as in the previous section. For the trust

model, marginal pseudo-R2 was 0.184 and conditional pseudo-

R2 was 0.555. Table IV is the resulting pairwise comparisons.

In particular, we highlight the differences between Browser2D

and the AR modalities which are significant for trust ratings (p

= 0.0167). Ultimately, the results we found did not support our

hypothesis. Instead, our results suggest that Trust is improved

for the AR and 3D modalities, despite the differences in

recommender quality.

Additionally, we looked at trends over time within each

modality to determine if users’ trust ratings improved with

increased interaction. We found that in the AR modality, trust

exhibited a small positive slope upward from the first to third

interaction with a recommendation, whereas the Browser2D

and Browser3D both exhibited downward slopes. However,

these slopes did not prove to be significant.

D. What is the general sentiment towards an AR recommender
system for in-home shopping?

Our primary source of analysis for this research question are

through a post-study questionnaire and semi-structured verbal

interview conducted immediately after the experiment.

The results of the post questionnaire are shown in Figure

5. The leftmost plot shows the perceived trust in the system’s

recommendations broken down for each of the 6 conditions.

Here the browser-based conditions are abbreviated to B2D and

B3D, and algorithm quality is represented as HQ or LQ for

high and low respectively. The first point to note is that the

questionnaire responses for trust in the recommendations align

well with the observed ratings during the experiment, with both

AR-HQ and B3D-HQ showing a significant rating improvement

of about 20% over the traditional UI B2D-HQ. There was no

significant difference between the B3D and AR conditions.

However, our post study interviews revealed that people either

had a strong preference for the 3D-browser condition or the

AR condition. Those who strongly preferred AR, tended to

mention the value of being able to see the item in real-world

context (situated recommendations), while those who preferred

the 3D browser version tended to like the familiarity of the

interface for shopping. Perceived helpfulness of the stores was

also evaluated and showed a similar trend to trust, with AR

and B3D having significant rating improvement over B2D for

both recommender algorithms (LQ and HQ). However, the

differences between recommender quality (LQ and HQ), was

not as pronounced as it was on the trust metric. We believe

this is an indication that users were considering other aspects

than recommendation quality for their decisions on helpfulness,

such as the quality of the UI design. Figure 5 also shows

results for perceived quality of interaction with the system. As

expected, both AR and B3D received very positive ratings. This

is consistent with our interview feedback where participants

preferred B3D almost as much as the AR condition due to better

inspection capabilities. Participants were also asked to rate

each store overall. Here we see that participants did perceive

the difference in algorithm quality across the two stores. The

store with high quality recommendations (HQ) showed a 50%

improvement over the LQ store. This was consistent with our

observed ratings-based results.

In the verbal interviews, participants were highly positive,

with all but 5 of the participants reporting that they would

chooses to use the AR system if it were available to them.

Out of many different reasons cited, the most common was

the ‘try before you buy’ reason –to visualize and interact with

the item in the context where it is to be used. The participants

who did not want to use it argued that the interaction was

not sufficient and that the 3D browser version allowed for a

better inspection of the item. Additionally, participants reported

feelings of frustration and discomfort due to the limited field

of view, weight of the device, and issues with color quality of

the AR display.

VI. DISCUSSION

The results from our study contribute to an emerging body

of work focused on understanding user perception of AR

with predictive AI systems such as recommender systems.

Throughout the study, AR and Browser3D modalities performed

on par with each other, whereas both tended to improve

ratings and other metrics compared to Browser2D. Participants

generally fell into 2 camps, those preferring Browser3D and

those preferring AR.

Many of the verbal interview responses seem to indicate

that participants appreciate qualities from both mediums. In

the case of AR, participants enjoy being able to visualize a

product in a real world context and grasp the actual scale of

the object. However, AR is marred by issues with a low quality

display and headset discomfort. 3D on the other hand is quick

and easy to use, and still allows users to view recommended

products from a variety of viewing angles.

While some of these problems will be solved in future

iterations of AR devices, it’s important to understand what the

role of interaction should be moving forward. It’s clear that

users are accustomed to browser based interaction methods.

For many shopping experiences, they may prefer it over an

AR experience. However, AR has potential to excel when

delivering recommendations that have great impact on daily

life, or where scale and contextual information is important,

such as home appliances and interior design. These qualities

should be emphasized and communicated when designing for

the future of AR driven recommender systems.

VII. CONCLUSION

This paper presented a study that to our knowledge is the

first empirical analysis of the effects of Augmented Reality

interfaces on the perception of recommender systems. A 3

by 2 within subjects experiment assessed user perception of

high and low quality personalized recommendations in three

modalities: Augmented Reality with recommended items placed

in a real world scene, web browser with 2D images, and
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Fig. 5. Mean subjective ratings from the post study questionnaire with standard error. Participants were asked to rate how much they trust the recommendations,
how helpful each store’s interface was, the interaction quality of each modality, and overall preference for each store. Brackets show the level of significance
between particular values (* p<0.05, ** p<0.01, *** p<0.001). Additionally, there was significance (p<0.01) in recommendation trust between each HQ
modality and their LQ counterparts.

web browser with 3D interaction. Quantitative metrics for

product ratings and recommender trust were assessed, along

with perception of the system through a post study questionnaire

and verbal interview. Results of our main research questions

show that overall product ratings for recommended objects,

and trust in the recommender, are significantly higher in AR

and interactive 3D than in a traditional browser UI. However,

there is no significant difference in either metric between

interactive 3D and AR modalities. Furthermore, people perceive

differences between high and low quality algorithms in all 3

modalities, but there is no significant trend that suggests better

awareness of quality differences in AR. Finally, a majority of

participants preferred to use AR over browser based interfaces

for product recommendations, finding it helpful for visualizing

in the context where it will be used.
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