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ABSTRACT

We propose an Augmented Reality vocabulary learning interface in
which objects in a user’s environment are automatically recognized
and labeled in a foreign language. Using AR for language learning
in this manner is still impractical for a number of reasons. Scalable
object recognition and consistent labeling of objects is still a signifi-
cant challenge, and interaction with arbitrary physical objects in AR
scenes has consequently not been well explored. To help address
these challenges, we present a system that utilizes real-time object
recognition to perform semantic labeling and object registration in
Augmented Reality. We discuss its implementation, our motivations
in designing it, and how it can be applied to AR language learning
applications.

Index Terms: Human-centered computing — Mixed and aug-
mented reality; Theory and algorithms for application domains —
Semi-supervised learning;

1 INTRODUCTION AND BACKGROUND

Learning new vocabulary in a foreign language is often accom-
plished by memorization techniques such as flash cards and phone
or tablet based applications. These often use temporal spacing
algorithms to modulate word presentation frequency. One other
interesting, albeit time consuming, method is to attach notes with
words and illustrated concepts to real world objects in a familiar
physical space, taking advantage of the learner’s capacity for spatial
memory. This is also known as the method of loci [5].

Augmented Reality (AR) is a promising tool for this as it enables
the integration and presentation of information over the real world.
Recently, Ibrahim et al. examined how well in-situ AR can function
as a language learning tool [2]. They studied in-situ object labelling
in comparison to a traditional flash card learning approach, and
found that those who used AR remembered more words after a 4
day delayed post-test. However, the objects needed to be labelled
manually for use with the display in real time. In order to use
the display for learning in practice, these labels need to be placed
automatically, without manual interaction.

Our goal is to replicate this in-situ learning process, but to do so
automatically and with the support of AR, as shown on the right in
Fig. 1. In other words, when a user views an object, we want to
automatically display the concept(s) associated with that object in
the target language and provide a method for both the viewing and
selection of a particular term or concept. Deploying such an interface
in a real-world, generalized context is still a very challenging task.

As a step towards this goal, we introduce a more practical frame-
work that can function as a cornerstone for improving AR learning
paradigms. The practical use of this system can enable in-situ learn-
ing for languages, physical phenomena, and other new concepts.
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Figure 1: Left: Raw points returned from object recognition as pro-
jected into 3D space, accumulated over several frames. This shows
the variance in predicted positions and false positive label predictions.
Right: Scene correctly labeled after object registration.

2 SYSTEM DESIGN

In this section, we introduce a client-server architecture composed
of several interconnected components, including the hardware used
for AR and eye tracking, the object recognition system, the gaze
tracking system, and the language learning and reinforcement model.
The overall design and information flow between these pieces and
parts is shown in Figure 2. The system was implemented using a
Microsoft HoloLens, with Pupil Labs eye tracker attachment.

2.1 Semantic Labeling
The success of Convolutional Neural Networks (CNNs) has lead to
technological breakthroughs in object recognition. However, it is
not yet obvious how to integrate these technologies into AR. For
our system, we want to be able to register objects such that they
are resilient to failed recognition frames, jitter, radical changes to
display orientation, and objects entering/leaving the display’s field
of view. Additionally, current AR devices are not powerful enough
to run state-of-the-art CNNs. We need to handle the synchronization
and reprojection between streamed frames from the AR device and
recognition results from a server with a powerful GPU.

We stream video frames from the built-in HoloLens front facing
camera to a server running on an MSI VR backpack. To keep
packet sizes small, we used the lowest available camera resolution
of 896x504. Each frame is encoded into JPEG at 50% quality,
so that their final size fits into a single UDP packet. Frames are
processed asynchronously using the Single Shot MultiBox Detector
network [4]. The resulting 2D bounding boxes and labels are sent
back to the HoloLens, along with the original camera pose, where
we project the center point of each 2D bounding box onto the 3D
mesh via raycast from the original camera pose. Our method runs in
real-time (30 fps) on a per-frame basis.

2.2 Object Registration
The other major problem is establishing consistency of labeling,
or object registration. CNN based object recognition approaches
have no notion of object permanence as they are trained on data sets
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Figure 2: Architecture diagram, including hardware in grey, algorithms
and systems in blue, and data flow in green. The left block includes all
processing done on device, and the right block includes all processing
done on the server.

with disparate images. They exhibit a large amount of variance in
bounding box size and label predictions between sequential frames
of the same object, as shown in the left side of Figure 1.

To solve this problem, we make use of multiple streamed frames
to establish an initial estimate of the object’s location, confirm this
location using a sliding window approach based on past labels and
proximity, and finally assign a position for the label. This results
in a stable, properly registered augmentation that is persistent de-
spite various camera rotations or traveling in and out of areas of a
workspace. The algorithm we developed is described as follows:

First, we get an initial prediction from the network as described
in the previous section. For every subsequent prediction, we check
every instance of the same label in 3D space for the past W frames.
A grouping of some of these labels can be seen on the left of Fig. 1.
If the Euclidean distance between these subsequent 3D positions are
within a threshold D (e.g. 50 centimeters away for a keyboard ob-
ject), we average these positions and affix the object. After thorough
testing and refinement, we found that object predictions converge
well if there are R = 20 positively identified instances over a win-
dow of W = 60 frames under the defined threshold. An example of
successful assignment of objects can be seen on the right of Fig. 1.

We performed a preliminary evaluation of our object registration
algorithm to determine the quality of the label positioning. To do
so, we laid out 5 objects on a table: a computer monitor, keyboard,
scissors, plastic bottle, and a paper cup. We marked a target point
on the desk and measured the ground truth distance with millimeter
accuracy between the target and the center of each object using a
tape measure. We then asked 5 participants to map and generate
labels for each object using the system. On average, our algorithm
converges on an object position up to 4.6cm away from ground truth.

2.3 Eye Tracking and Calibration
Simply labelling all objects in the environment is not ideal as the
objects would clutter the users view, so a method for selection or
specification is necessary. We believe the natural solution is an
attention based interface such as eye tracking. Such an interface
allows us to deliver learning content only when the user is attending
to the object. It provides an intuitive interface for managing AR
content without the need for additional input devices or complex
gestures. We implemented a calibration framework for our system
to allow users to activate items via eye gaze.

Our calibration framework is based on the open source eye tracker
built by Itoh et al. [3] for VR headsets, but with modifications

made for the HoloLens. Much like a typical eye-to-video tracker
calibration, we utilize a 5-point calibration interface in the Hololens.
However, most eye tracking calibration procedures are executed with
a sufficiently large field of view (FoV); i.e. the user gazes at several
points on a 2D screen within the world-camera’s wide FoV. In VR
implementations, calibration points are often affixed to the display
rather than registered in the world to counteract head movement.
Since the Hololens FoV is only 35 degrees, we modified the same
procedure used for VR and located vertical calibration points on the
viewable portion of the screen. Though this can result in a minor
reduction in vertical calibration accuracy, it sufficed for the purposes
of activating labels on objects of interest.

3 DISCUSSION AND FUTURE WORK

When designing our system, we were motivated by the concept of
Pervasive Augmented Reality [1], which predicts AR to be a con-
tinuous and multi-purpose experience that adapts to changes in the
user’s context. This is especially interesting for language learning,
as it presents the opportunity for language immersion by sensing
and translating the user’s environment. This shifts the method of
instruction to a passive learning model, which suggests the need
for subtler selection methods that consider the user’s attentiveness.
Furthermore, we believe ubiquitous sensing of the user’s cognitive
state may be achievable through eye tracking or other sensors. This
allows us to build a consistent and accurate model of a user’s current
understanding of a language. With such a model, we could dynami-
cally adapt to learner growth. In vocabulary learning for example,
we could replace learned words with new ones.

Our goal was to implement a practical system that could be used
to study language learning applications in this emerging paradigm.
Currently, we have implemented and described 2 of the components
for this system: 1) Environment sensing (through object detection),
and 2) Attention-based interaction (through eye tracking). As future
work, we plan to implement the last component, a personalized
learning model that tracks the user’s current understanding of a
language. We then plan to conduct a full evaluation of the system.

4 CONCLUSION

We introduced a framework for realizing in-situ augmented reality
language learning and describe our current progress in implementing
it. Our system performs object recognition and environment map-
ping in real-time using a CNN. We explored the problem of object
registration when using such a network, and provide a solution that
accounts for the mismatched recognition errors that may occur. Our
method is implemented directly on an AR headset. We described
how to integrate eye tracking into our framework to allow for user
selection or activation of annotations. We discuss how the combi-
nation of these technologies opens up new and interesting research
directions for the growing field of AR language learning.
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