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Abstract

Motivation: In addition to being involved in retinal vascular growth, astrocytes play an important

role in diseases and injuries, such as glaucomatous neuro-degeneration and retinal detachment.

Studying astrocytes, their morphological cell characteristics and their spatial relationships to the

surrounding vasculature in the retina may elucidate their role in these conditions.

Results: Our results show that in normal healthy retinas, the distribution of observed astrocyte cells

does not follow a uniform distribution. The cells are significantly more densely packed around the

blood vessels than a uniform distribution would predict. We also show that compared with the

distribution of all cells, large cells are more dense in the vicinity of veins and toward the optic nerve

head whereas smaller cells are often more dense in the vicinity of arteries. We hypothesize that

since veinal astrocytes are known to transport toxic metabolic waste away from neurons they may

be more critical than arterial astrocytes and therefore require larger cell bodies to process waste

more efficiently.

Availability and implementation: A 1/8th size down-sampled version of the seven

retinal image mosaics described in this article can be found on BISQUE (Kvilekval et al., 2010) at

http://bisque.ece.ucsb.edu/client_service/view?resource¼http://bisque.ece.ucsb.edu/data_service/

dataset/6566968.

Contact: arunaj@ece.ucsb.edu or manj@ece.ucsb.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The large amounts of image data that can be obtained with recent

advances in microscopy require mining in an objective and unbiased

fashion, using automated and reproducible methods. In this way, it

is possible to discover trends and hypotheses for systems that

domain-experts may have very little prior knowledge about. These

improvements have especially had a profound impact on examin-

ation of the spatial distribution and correlation of biological entities,

as the locations of large amounts of cells and other structures can be

imaged in situ. Studying the spatial arrangement and relationships in

full tissue samples can improve our understanding of the various

development or pathological processes that underlie proper organ or

organism function (Whitney et al., 2008). In particular, it has been

found that neuronal or vascular structures are pervasive in many

tissues, and oftentimes are spatially correlated with other cells

(Armstrong, 2003; Suematsu et al., 1994).

In this study, we are particularly interested in astrocytes, one of

two types of glial cells found in the nerve fiber layer (NFL) of the

mammalian retina. Astrocytes can be found between vasculature

and retinal neurons and although many functions of astrocytes in

the retina are poorly understood, it is widely accepted that they play

an essential role in the development and function of the retinal
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vasculature, blood flow and blood–retinal barrier (BRB) (Kur et al.,

2012). Studying astrocytes and their spatial distributions within the

healthy retina may give us some insight into their function in disease

cases such as glaucomatous neuro-degeneration and retinal

detachment.

With regard to cell characteristics, one work determines that

there are two types of astrocyte cells in developing rat white matter,

and that they can be differentiated by their morphology, but only

analyzes a total of <1000 cells and measurements to quantify the

cells are made manually (Raff et al., 1983). Another, more recent

work reports that astrocyte cells which lie on or near blood vessels

exhibit different morphological characteristics (specifically angles

and lengths of primary processes) than those which do not (Zahs

and Wu, 2001). This study involves a small dataset on the order of

tens of astrocyte cells, hand-picked to have distinguishable processes

that can be manually counted. Our current dataset of seven full

retinal mosaics, each containing 3614–5499 cells, provides a much

richer platform for testing hypotheses such as whether there exist

distinct morphological classes of astrocytes and if so, how many.

Our semi-automated processing pipeline attempts to minimize bias

from manual measurements, while also testing the uncertainty of

cell characteristic clustering results, which rely on cell segmentation.

Astrocyte processes physically contact the vascular structure

(Paula et al., 2010), and they also play a key functional role in the

development of the retinal vasculature (Metea and Newman, 2006).

An apparent spatial correlation between astrocytes and the blood

vessels has been noted (Stone and Dreher, 1987), but only observa-

tional evidence of such a relationship has been provided. The vascu-

lature is a large heterogeneous structure with specific arterial and

venous delineations (Dorrell and Friedlander, 2006; Gariano and

Gardner, 2004). In order to quantify spatial distributions of astro-

cyte cells with respect to it, we need to image the entire retina.

Strong evidence of astrocyte spatial correlation with various vascu-

lar properties would lend further support to additional hypotheses

of astrocyte function, such as the suspected role of astrocytes in

vasodilation and constriction (Kimelberg, 2010). However, quan-

tifying spatial properties of astrocytes in retinal tissue can be a

challenging task. One must be careful in selecting spatial mining

methods which are invariant to scale, rotation, and which use

distance metrics that operate in geodesic spaces, such as along the

linear network of the blood vessels. This rules out traditional spatial

quantification methods such as colocation (Shekhar and Huang,

2001), or nearest neighbor methods (Cressie, 1992) which operate

in Euclidean space.

To our knowledge, there has been only one previous work

focused specifically on the analysis of spatial distributions of astro-

cytes in the retina (Ruttenberg et al., 2013). Using manually marked

cell centers and automatically traced blood vessels, their study

attempts to determine existence of spatial relationships between the

two in both detached and healthy retinas. Astrocytes and 2mm

blood vessel segments are represented by 4D features that quantify

their respective locations. Astrocytes are mapped to their nearest

blood vessel segment via Euclidean projection and 2D histograms of

the features are computed with respect to the width of the blood ves-

sel segment and the geodesic vascular distance to the optic nerve

head (ONH). The article postulates that a correlation of astrocyte

cell locations with the structure of the vasculature can be determined

by comparing these histograms. The study concluded that it is

unlikely that the astrocytes are randomly distributed along the struc-

ture of the vasculature, regardless of the retina being normal or

detached. The article also reported that arterial astrocytes are

spatially distributed as random samples from the arterial structure,

whereas venous astrocytes spatially deviate from the venous spatial

structure. While this study presents a novel method for spatial

analysis of astrocyte and blood vessel distributions, there has been

much previous work in point process modeling and spatial statistics

dating back to 1986 (Berman, 1986; Foxall and Baddeley, 2002)

regarding quantifying point distributions with respect to surround-

ing line segments or linear networks. We choose to make use of such

spatial statistics tools, making our approach a more in-depth and

intuitive way to represent and analyze this type of data. The conclu-

sions arrived at here offer more detail but do not contradict those of

Ruttenberg et al. (2013) and we attribute that to the use of more

principled methodology, as mentioned above, as well as a larger and

more accurate dataset due to staining of astrocyte nuclei.

The goal of our analysis is to determine if the spatial distribution

of astrocytes in the retina correlates with the vascular network, or

with morphological cell characteristics such as area and perimeter.

To accomplish this, we extract astrocyte and blood vessel data for

large image mosaics of the retinal NFL. We then segment the astro-

cytes using two different segmentation methods in order to assess

the dependence of our resulting morphological characteristics on the

cell segmentation step of the analysis pipeline. Following this, we

perform an exploratory correlation analysis of cell characteristics to

decide which to incorporate into our overall point process model

and which are redundant. We also offer some possible spatial cova-

riates for the cell distribution, whose importance will be tested on

all cells and on each type of cell resulting from the study of cell char-

acteristics. From these results we will arrive at an overall model for

the density of astrocyte cells in the retina.

The methodology presented here can be used for spatial studies

between other vasculature structures and cells, which occur in many

places in the mammalian body. Using point process models we are

able to systematically quantify the spatial distribution of astrocyte

cells within the mammalian retina, and provide a foundation for fu-

ture research aimed at studying the spatial distribution of various

biological components in large tissue images. Our contributions lie

in our choice of statistical models to describe the astrocyte distribu-

tions as well as the biological conclusions derived from these mod-

els. We will show evidence that in normal healthy retinas, the

distribution of observed astrocyte cells is more densely packed

around the blood vessels than a uniform distribution would predict.

We also show that compared with the distribution of all cells, large

cells are more densely packed in the vicinity of veins and toward the

ONH whereas smaller cells are often more densely packed in the

vicinity of arteries.

2 Materials and methods

We now present each step of our analysis as described above in

detail.

2.1 Image acquisition
Our method is designed to quantify the spatial relationship between

large biological structures and point data such as cellular locations.

Hence, we acquired images of the entire retinal NFL, which allow us

to capture the complete retinal vasculature and all astrocytes present

in the retina. Images of mouse retinal NFL were viewed and

collected on a laser scanning confocal microscope using an auto-

mated stage to capture optical sections at 0.5mm intervals in the

z-axis and pixel resolution of 1024�1024 in the x–y direction, with

20% overlap in the x–y plane. The objective used was an UPlanFLN

40�oil immersion lens, N.A. 1.30. Approximately 350–400 3D
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images were acquired per retina, which were then used to create

maximum-intensity projections using Olympus FluoView viewer

version 1.7a. The resulting projections were then stitched together

using the bio-imaging software Imago to create a seamless single

mosaic on the order of�17 500�17 500 pixels (�54 002mm).

A total of seven mosaics were created for this study, denoted as

GFP1, GFP2, GFP3, GFP8, GFP11, GFP12 and GFP13. All retinas

were stained with anti-glial fibrillary acidic protein (GFAP) and

anti-collagen IV. Astrocytes express GFAP (Bignami and Dahl,

1974), outlining the cytoskeleton of each astrocyte in the retina.

Because antibodies to GFAP label only the cytoskeleton of the cell

(Bushong et al., 2002), we also collected images of astrocytes in

which the entire cell is filled with the intracellular dye, Lucifer

yellow. We were able to verify using this data that the binarized

area of cells arrived at from the Lucifer Yellow labeling plotted

against the binarized area of cells arrived at from the GFAP labeling

generally followed a positive linear trend. This indicated that if the

GFAP staining shows a cell is large, the actual cytoskeleton will also

be large.

GFP-transgenic mice were injected at their embryonic stage such

that their astrocyte nuclei were stained. However, due to false nega-

tive centers of the astrocytes are still manually marked. The retinal

vasculature was captured by examining the anti-collagen IV labeling

with anti-GFP. An example mosaic is shown in Fig. 1. Down-

sampled versions of all seven retinas can be found on BISQUE (see

Availability and implementation). Incisions were made in the retina

to flatten it for imaging, hence the cross-shape. The retinal vascula-

ture is clearly visible as the tree-like structures within the images.

Individual astrocytes are visible as small star-shaped cells and can be

seen in detail in Fig. 1B.

Several manual pre-processing steps were taken prior to the

automated analysis which follows. These include manual marking

of astrocyte cell centers, and tracing of the major blood vessels (see

Fig. 2) using NeuronStudio (Wearne et al., 2005). We estimated the

average cell radius by measuring the distance from the cell center to

the farthest point of the cell from the center. We also labeled major

blood vessels as either arteries or veins, which are easily identified

by their ‘conveying; type branching (Ganesan et al., 2010).

Although an entirely automated method for analysis would be

preferred we performed these steps manually in order to ensure the

biological accuracy of the resulting models and spatial analysis.

2.2 Cell segmentation
We present a new segmentation algorithm for astrocytes and com-

pare it with the results of random walk segmentation (Ljosa and

Singh, 2006) in order to verify that our biological findings are robust

to varying segmentation results.

2.2.1. Random walk segmentation

The random walk-based segmentation is an algorithm for probabil-

istic cell segmentation that requires taking a large number of jumps

to various pixels within the image. The algorithm starts at the center

of the cell of interest, and each at each step jumps to one of the 8

pixels neighboring the current location in the image, chosen so that

the step is more likely to be in the direction of a bright neighbor

pixel. Otherwise the algorithm will jump back to the cell center with

‘restart’ probability that attempts to prevent the algorithm from

traveling to other nearby astrocytes, since a single cell segmentation

is what we desire. A separate matrix of the same dimensions as the

image is updated at each step to keep count of how many times each

pixel has been visited and conclusions about which pixels belong to

the cell with what probability will be based on this ‘visit record’

matrix. The number of visits to each pixel is normalized to provide

an output segmentation probability map for the cell. The restart

parameter for the random walk restart parameter was optimized for

similar data in Ruttenberg et al. (2013) and found to be 5�10�5.

2.2.2. Adaptive threshold segmentation

An alternative segmentation is arrived at using local adaptive thresh-

olding (http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm), an

algorithm which separates the cell from the background, allowing

for non-uniform illumination. As opposed to applying a global

threshold to the astrocyte (GFAP)þnuclei (Lucifer Yellow) channels

of the entire 501�501 region of interest (ROI), we first normalize

the ROI to the scale [0,1] and move through the image considering

sliding windows of size ws�ws, at each step thresholding the fore-

ground at mean – C. For best results we used ws¼501, C¼0.5. We

then mask the original ROI with the foreground and apply a

Gaussian decay to the resulting image, which is centered at the cell

center and has r¼50mm, which is a slightly inflated manually

calculated average cell radius. The masking step is analogous to the

restart parameter of the random walk in that it is necessary to ensure

that the adaptive thresholding does not leak outside the actual cell

extent. We normalize the resulting image again to the scale [0,1] and

treat this as a segmentation probability map. Note that this segmen-

tation method is much lower in computational complexity than the

random walk, and as we will see in later sections, produces statistic-

ally similar results.

Binarization was then performed using the same simple three

step process for both probabilistic segmentation results. First we

create the binary Mask 1, which is the local adaptive thresholding

Fig. 1. (A) An example retinal mosaic used in the study. See online version for

color figure, where astrocytes are in green, vasculature is in blue and nuclei

are in red. (B) Magnified view of the Anti-GFAP astrocyte channel. (Color ver-

sion of this figure is available at Bioinformatics online.)

Fig. 2. Example manual binarization of major blood vessels for GFP11. Gray-

scale and binary images have been inverted for better visibility. (A) Original

blood vessel channel. (B) Binarized major blood vessels

Spatial distributions of astrocytes in the mammalian retina 3
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(ws¼501, C¼0.5) of the output segmentation probability map.

Then we create the binary Mask 2, which is a low global threshold-

ing (at meanþ3r) of the probability map. The output binarization

is the largest connected component of Mask 1 ‘AND’ Mask 2.

Parameters are adjusted such that the resulting binarized cells

visually agreed with the input probability maps, as shown in Fig. 3.

2.3 Cell characteristics
Since we know very little about which morphological characteristics

of astrocytes are important in differentiating classes of cells, we

performed an exploratory search for possible relevant features

which begins with a correlation analysis.

2.3.1 Correlation analysis

We started with seven attributes for each binarized cell which include

Area, Perimeter, Eccentricity, Equivalent Diameter, Euler Number,

Fraction of Convex Hull (also called ‘Solidity’). For details on the def-

inition of these attributes we refer the reader to the Matlab help page

(http://www.mathworks.com/help/images/ref/regionprops.html). We

normalized each of the characteristics with respect to its mean and

standard deviation per retina to minimize minor imaging inconsisten-

cies. Upon calculating correlation coefficients for each of these and

dropping all correlations above 0.70 we arrive at only four character-

istics, Area, Eccentricity, Fraction of the Convex Hull and Perimeter

whose correlations are each no higher than 6 0.56. Equivalent

Diameter was dropped due to its 0.99 correlation with Area, and

Euler Number is dropped due to its 0.79 correlation with Area.

2.3.2 Clustering

We used an unsupervised Gaussian Mixture model clustering on

each characteristic separately using the BIC criterion (Fraley et al.,

2012) and allowing for anywhere from 1 to 15 clusters in order to

find the naturally occurring classes of cells. We arrived at three clus-

ters for Area, five classes for Eccentricity, four classes for FracHull

and four classes for Perimeter. We also verified that the distributions

of clustered classes remain the same regardless of which segmenta-

tion method was used.

2.4 Multitype point processes
An unmarked homogeneous Poisson process with intensity k is char-

acterized by a few important properties. First, N(A), the number of

points in region A, is Poisson distributed with mean kjAj for all A,

and has the probability function PðNðAÞ ¼ kÞ ¼ e�ðkjAjÞðkjAjÞk=k!.

Conditional on N(A)¼n, the n points are independent and

uniformly distributed in A.

In the case of marked point processes, a mark mi 2M is associ-

ated with each point xi, in our case this mark corresponds to the

cluster numbers for each of the various cell characteristics. Since our

mark takes on discrete values our process is termed a ‘multitype

point process’. We leave the higher complexity full evaluation of

continuous marks for another analysis, as the trends of interest are

still accurately displayed through discretization. The intensity can

then be evaluated per mark, and their inter-dependencies studied. A

homogeneous multi-type Poisson process is one where each compo-

nent process Xi has a constant intensity ki > 0 for all mi 2M. The

unmarked process X� has constant intensity k� ¼
XM

i¼1
ki. The

marks are independently and identically distributed (iid) with

probability pi ¼ ki=k
�.

The homogeneous Poisson process may be generalized to an in-

homogeneous process by making k depend on the point u in space

i.e. k ¼ kðuÞ. We can then model the inhomogeneous Poisson

process as being dependent on various spatial covariates, such as a

distance function d(u) i.e. k ¼ kðdðuÞÞ. It is possible to model certain

marks as homogenous and others as spatially varying, in various

combinations, to arrive at an appropriate model. For a more

detailed introduction on multi-type point processes we refer the

reader to Moller and Waagepetersen (2003).

In the case of the Queensland dataset (Berman, 1986) where ore

deposits surrounding geological lineaments are modeled, the covari-

ates considered include d(u, L), the distance from any location u to

the nearest lineament L and hðu;LÞ the orientation of that linea-

ment. In our case we would like to use the following spatial covari-

ates, which for the case of GFP11 are visualized as heat-maps in

Section 1 of Supplementary Data.

• d0(u,ONH), the radial distance from any location to the ONH
• d1(u,V), the distance from any location to the nearest point on

the vasculature, V
• d2(u,V,ONH) the geodesic distance from the projected point on

the vasculature to the optic disk along the linear network of the

vasculature

For simplicity of notation we will refer to them as d0, d1 and d2,

dropping the explicit dependencies on ONH and V. Note that these

quantities are dependent on the retinal window, and the structure of

the vasculature, and therefore modeling of these quantities within

the retina must be done on a retina-by-retina basis. There are a

variety of methods that can be used to evaluate the dependence of

the point process intensity on these covariates, including visual tests

such as Q–Q plots and kernel-smoothing estimates, and formal tests

of constant intensity such as Kolmogorov-Smirnov test. We choose

to use the Q–Q plot for visualization, and for d2 we use the linear

network version of the Q–Q-plot as described in Baddeley et al.

(2014) and Jammalamadaka et al. (2013).

3 Results

3.1 Cell clustering
3.1.1 Segmentation similarity

We ran a 2-sample Kolmogorov-Smirnov test between the cell char-

acteristics derived from the two different segmentation methods to

evaluate the dependence of our analysis on the segmentation step.

For this test we pooled values for each attribute (Area, Eccentricity,

Fraction of the Convex Hull and Perimeter) over all retinas and

found there was no statistically significant difference for any of

Fig. 3. Example segmentation pipeline. (a) Input ROI, (b) adaptive threshold

segmentation, (c) binarized adaptive threshold segmentation, (d) Random

walk segmentation, (e) binarized random walk segmentation

4 A.Jammalamadaka et al.

 at U
niversity of C

alifornia, Santa B
arbara on June 24, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

()
)
``
''
ure
C
A
``
''
http://www.mathworks.com/help/images/ref/regionprops.html
 4
 .
.. 
3
5
4
,
4
Point Processes
ly
.
) &equals; 
``
''
.
.
. 
, .
.
(
,
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv097/-/DC1
,
-
-
-
(
.,
;
.,
C
S
http://bioinformatics.oxfordjournals.org/


them (P>0.9993). The exceptional similarity between resulting at-

tributes verifies the robustness of our conclusions to variance in the

segmentation step and allows us to proceed using either one of the

methods for further analysis steps. We chose to use the adaptive seg-

mentation method as opposed to the random walk due to its simpli-

city and computational efficiency.

For brevity, and due to the spatial similarities found with regard

to clusters of each attribute described below, we chose to continue

our analysis using the Area attribute only. We find that in general the

cells which are lower in eccentricity, higher in fraction of convex hull,

and lower in perimeter follow a similar pattern to the large area cells,

i.e. close to the ONH and oftentimes more dense around veins. This

can be seen in Section 2 of Supplementary Data, where we have

included color-graded plots of the various classes for the three re-

maining characteristics along with their normalized means in the le-

gend. The analysis that follows is repeated for each of these three

remaining characteristics with no modification however the biological

insights gained were determined to be minimal because of the afore-

mentioned similarity in patterns. Possible future work includes

exploring other cell characteristics such as the angle, length and

number of primary processes, although these can be hard to define.

3.1.2 Kernel smoothed intensity estimation

To get an overall view of how the classes of cells described above

vary spatially within the retina, we first computed a kernel smoothed

intensity function for each class separately using a Gaussian kernel

with standard deviation 150mm. We chose this value because it is

three times the average nearest neighbor distance between cell centers,

an approximation to the 3r value normally used.

In Fig. 4 we show the intensity estimation results for the character-

istic ‘Area’ and make note of some observed spatial trends for both

small cells (Mark 1) and large cells (Mark 3). Specifically, we can see

that large area cells seem to hug the veinal structure and seem to have

greater intensity closer to the ONH, whereas small area cells seem to

hug the arterial structure and do not necessarily have greater intensity

closer to the ONH. Note that these patterns recur in all six remaining

retinas shown in Section 3 of Supplementary Data.

3.2 Evaluation of spatial covariates
Our next goal is to evaluate the previously proposed spatial covari-

ates using the tools described above.

3.2.1 Test of homogeneity

We first ran a test of homogeneity for each mark separately to deter-

mine whether the usage of spatial covariates was necessary or if a

model with a constant lambda will suffice. We performed a test of

Complete Spatial Randomness (CSR) for the observed point pattern

corresponding to each mark, based on quadrature counts (Baddeley

and Turner, 2005). The retinal window was divided into tiles and

the number of data points in each tile was counted. The expected

number of points in each quadrature according to CSR was calcu-

lated and a v2 goodness-of-fit test was performed. The resulting

P-values were highly significant (P<2.2e�16) for each cell size and

each retina, therefore rejecting the null hypothesis of homogeneity.

d0, radial distance from ONH

The Q–Q plots in Fig. 5 show that the various mark distributions are

dependent on the quantity d0, much more so than the unmarked pro-

cess (in red). The large area cells (Mark 3) seem to be more clustered

around the ONH than would be expected from a uniform distribution

of cells, and the small cells are repulsed by the ONH. The medium size

cells (Mark 2) seem to be closer to uniform and follow the pattern of

the unmarked process fairly closely. The d0 Q–Q plots for the remain-

ing retinas can be found in Section 4 of Supplementary Data. Figure 5A

also shows an example of the large and small cells reversing their roles

at the highest distances from the ONH, and upon inspection of the ori-

ginal image data it is clear that this is due to the presence of major veins

running along the outer border of the retina. For this reason, and be-

cause we find that d2 captures this trend in a more biologically accur-

ate way, we decided to drop d0 from our analysis.

d1, distance to the nearest blood vessel

We first calculated the d1 variable over all cells and the results are

shown in Fig. 5B. The plot does not show much difference between

marks, although the difference seems apparent in the kernel density

smoothing shown in Fig. 4. Since we noticed that the arteries and

veins seem to have different kernel density intensities, we decide to

separate results from arteries and veins and these more informative

results are shown in Section 5 of Supplementary Data. An example

artery and vein Q–Q plot can be found in Fig. 6.

Now that the blood vessels are separated into veins and arteries,

we see here that there is actually a difference in spatial distribution of

cell sizes between the two. The graphs in Fig. 6 show that small size

cells are found closer to the arteries and large size cells are found near

the veins. This is verified by the kernel smoothing images in Fig. 4

and by the remaining retinas in Section 5 of Supplementary Data.

d2, geodesic distance from the projected point along the blood

vessel to the ONH

For d2 blood vessels must necessarily be measured separately due

to the definition of the distance. Note that there are gaps in the

Fig. 4. Estimation of astrocyte intensity for Mark 1 (A), Mark 2 (B) and Mark 3

(C) in GFP11. The heat-map scale bar is in points per mm2. Blood vessels are

drawn in black. Large cell intensity is greater near veins, and toward the

ONH, while small cell intensity is greater near arteries (Color version of this

figure is available at Bioinformatics online.)
Fig. 5. Superimposed d0 (A) and d1 (B) Q–Q plots for each mark, the un-

marked point process and the uniform distribution for GFP11. The quantiles

of the covariate with respect to the observed astrocytes are on the y-axis, and

with respect to a uniform simulation on the x-axis. Large cells are in light

blue, medium size cells in dark blue, small cells in green, all cells in red, and

the uniform y¼x line is dashed and black. (Color version of this figure is

available at Bioinformatics online.)
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Q–Q-plots where the blood vessel trace falls outside of the retinal

window, since we dealt with the empty sections of blood vessel

traces caused by retinal incisions by simply also removing the simu-

lated uniform points along the blood vessel which fall outside of the

retinal window. This phenomena are especially apparent in the d2

Q–Q plots for GFP2, GFP8, GFP12 and GFP13 (see Section 6 of

Supplementary Data). In the Q–Q plots of the two major blood ves-

sels shown in Fig. 7 we can see that large type cells typically exist

closer to the ONH than small cells, medium cells or all cells. This

distinction is clearer for veins than for arteries. In addition, the

distributions of all cell types seem closer to uniform when the near-

est blood vessel is an artery instead of a vein. This is also generally

true of the remaining retinas shown in Section 6 of Supplementary

Data. Please note that in these figures the arteries and veins are

differentiated in the title of each plot, where A stands for artery, and

V stands for vein. Some of the shortest veins have a lower number of

cells total and this could also attribute to the somewhat erratic

nature of the corresponding graphs.

3.3 Inhomogeneous Poisson intensity model
Based on our preliminary analyses above, we fit a point process

model to an observed point pattern using the covariates d1, d2, and

whether the nearest blood vessel is an artery or vein. A quadrature

scheme was constructed which specifies both the data point pattern

and a dense grid of dummy points. The model was fit by maximizing

the pseudolikelihood (Besag, 1975) using the Berman-Turner com-

putational approximation (Baddeley and Turner, 2000; Berman and

Turner, 1992). Maximum pseudolikelihood is equivalent to max-

imum likelihood if the model is a Poisson process, either homoge-

neous or inhomogeneous, as is the case in our implementation. We

used standard border correction, in which the quadrature window

(the domain of integration of the pseudolikelihood) is obtained by

trimming off a margin of fixed width from the observation window

of the data pattern.

The total intensity model for astrocyte cells in the retina is

kall ¼ k1 þ k2 þ k3 (1)

kiðu;ONH;VÞ ¼ bie
a1i�d1ðu;VÞþa2i�d2ðu;VÞþa3i�AV (2)

where the parameters b; a1; a2; a3 were estimated separately for

each cell size. The resulting estimated parameters are shown in

Tables 1–3. From these tables we can see that using a Z-test all coef-

ficients are significant (‘***’ implies P<0.001, ‘**’ implies

P<0.01, ‘*’ implies P<0.05) except for the artery-vein variable for

medium size cells, which was previously noted. We can also see that

the large cells have the most distinct pattern as influenced by the

spatial covariates listed. As we noticed in the kernel smoothing esti-

mate and in the Q–Q plot of d1, small cells have a positive coeffi-

cient for the artery (av¼1) or vein (av¼0) variable whereas large

cells have a highly negative coefficient, and medium cells are closer

to the neutral coefficient of 0. Small and large cells have a negative

coefficient for d1, meaning that as one moves away from the blood

vessels the intensity drops exponentially. Large cells drop off more

quickly than small cells, and medium cells are more uniformly dis-

tributed in the retina with less regard to the vasculature. As for the

covariate d2, it is negative for small and large cells, and more nega-

tive for medium cells. This implies that medium cells are more clus-

tered around the ONH along the blood vessels and we postulate

that this is just an artifact of the random distribution of medium-size

cells in this particular retina, as we do not observe this in many of

the six remaining retinas as shown in Section 7 of Supplementary

Data. We refrain from remarking in detail on the parameters esti-

mated for the rest of the retinas as we find it more useful and

Fig. 6. Superimposed d1 Q–Q plots for each mark, the unmarked point pro-

cess and the uniform distribution for two major blood vessels, an artery (A)

and a vein (B), of GFP11. See Fig. 5 caption for legend. The plots for all 12

veins and arteries can be found in Section 5 of Supplementary Data. (Color

version of this figure is available at Bioinformatics online.)

Fig. 7. Superimposed d2 Q–Q plots for each mark, the unmarked point pro-

cess and the uniform distribution for the same artery (A), and vein (B), of

GFP11 that are shown in Fig. 6. See Fig. 5 caption for legend. The plots for all

12 veins and arteries can be found in Section 6 of Supplementary Data. (Color

version of this figure is available at Bioinformatics online.)

Table 1. Parameters for point process model of small cells

Estimate S.E. Z-test

(Intercept) �1.127eþ 01 7.204e� 02 NA

d1 �1.759e� 04 8.130e� 05 *

d2 �1.682e� 05 7.719e� 06 *

av 3.673e� 01 5.848e� 02 ***

Table 2. Parameters for point process model of medium cells

Estimate S.E. Z-test

(Intercept) �1.112eþ 01 6.861e� 02 Na

d1 1.826e� 04 8.422e� 05 *

d2 �5.028e� 05 7.913e� 06 ***

av �1.100e� 01 5.884e� 02

Table 3. Parameters for point process model of large cells

Estimate S.E. Z-test

(Intercept) �1.050eþ 01 6.675e� 02 na

d1 �4.386e� 04 1.179e� 04 ***

d2 �1.176e� 04 9.143e� 06 ***

av �9.135e� 01 6.562e� 02 ***
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comprehensible to compare the conditional density maps, estimated

as described below.

Given each point process model fitted to its corresponding point

pattern, we compute the fitted conditional intensity (Baddeley et al.,

2005) of the model at the points of the quadrature scheme used to

fit the model. From this we obtain kðu;ONH;BVÞ values for each of

the quadrature points. We then perform spatial smoothing of

lambda values observed at the set of quadrature locations using

Gaussian kernel smoothing (Nadaraya, 1964; Watson, 1964). From

this we obtain a heatmap of conditional density for each point

process model, as shown in Fig. 8 (and Section 8 of Supplementary

Data). From these heat-maps we can see that the large cells (Mark

3) seem to have a high point-process intensity in a flower-like shape

around the ONH, with petals centered on the veins. The likelihood

of finding small cells in this area is low, but is higher around the

arteries. The veins and arteries are drawn in black in these figures

for the reader’s benefit.

4 Discussion

In this study, we presented what we believe to be the most appropri-

ate choice of statistical model to represent astrocyte locations and

sizes in healthy mammalian retinas and most importantly, the

biological conclusions derived from those models. Due to very little

prior knowledge regarding these distributions, we performed an

exploratory analysis which necessitates steps such as hypothesis test-

ing and model selection. These resulting trends regarding the size of

astrocytes and their spatial locations within the retina, particularly

with respect to the surrounding arteries and veins are new biological

discoveries that have not yet been published to our knowledge.

Although some of the trends were visible from the kernel smoothing

estimate of the astrocyte intensity, the full quantification of the dis-

tribution of cells and the statements regarding the statistical signifi-

cance of the dependence on the proposed spatial covariates could

not have been made without usage of the appropriate point process

models.

Our results show that in normal healthy retinas, the distribution

of observed astrocyte cells is more densely packed around the blood

vessels than a uniform distribution. We also show that compared

with the distribution of all cells, large cells are more densely packed

in the vicinity of veins and toward the ONH whereas smaller cells

are often more densely packed in the vicinity of arteries. The condi-

tional density maps shown in Figures. 8–10 and in Section 7 of

Supplementary Data show that the density of large cells is clearly

higher in a flower-shaped region with the petals centered on the ret-

inal veins, whereas small cells have low density in these regions. Due

to this clear differentiation between arteries and veins, the results of

this study could potentially aid in automated differentiation between

arteries and veins in the retina, which has proven to be a difficult

task (Pilat et al., 2014).

A possible explanation for these phenomena is related to the vas-

cular function within the retina. The retinal vasculature enters the

retina through the central retinal artery via the ONH, and after

being distributed through the retinal tissue, it leaves the tissue

through the retinal vein. Astrocytes sit between vasculature and ret-

inal neurons and although many functions of astrocytes in healthy

retinas are poorly understood, it is widely accepted that they play an

essential role in the development and function of the retinal vascula-

ture, blood flow and BRB (Kur et al., 2012). In fact glial cell dys-

function in retinal pathologies is associated with retinal swelling and

BRB breakdown (Bringmann et al., 2006; Klaassen et al., 2013;

Fig. 8. Heatmap of fitted point process model conditional density for Mark 1

on GFP11. (Color version of this figure is available at Bioinformatics online.)

Fig. 10. Heatmap of fitted point process model conditional density for Mark 3

on GFP11 (Color version of this figure is available at Bioinformatics online.)

Fig. 9. Heatmap of fitted point process model conditional density for Mark 2

on GFP11 (Color version of this figure is available at Bioinformatics online.)
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Shen et al., 2010). Astrocytes transport small molecules (glucose,

glutamate, small proteins or polypeptides) from the blood stream to

the neurons at the arteries and take metabolic byproducts away

from the neurons back into the blood stream at the veins. We

hypothesize that the latter process may be more critical, since for ex-

ample it is well known that too many metabolic waste products can

be toxic to neurons. We speculate that this criticality may be the rea-

son for the astrocytes residing on the veins to be the largest, as larger

cells can presumably process waste more efficiently.

In this article, we have argued that the explanatory power of

each covariate considered follows a common trend across all seven

retinas studied, but have not yet shown the performance of the gen-

erative spatial point process model derived here on ‘hold-out’ retinal

data. Future work will include validating the generative model that

we have created on a hold-out area from each retina, using the par-

ameters generated from the rest of that retina, as well as holding out

a few entire retinas and re-using parameters derived from other ret-

inas. The latter requires normalization for the varying physical

quantities between retinas such as shape, orientation, size, number

of arteries, veins and overall intensity of cells. We believe that once

the retinal normalization issue is resolved the resulting models will

allow us to predict the locations and sizes of the cells in a new retina

based on its blood vessel structure and directly compare parameters

between retinas in other animals or stages of treatment, disease or

detachment without needing these manual markings. This study can

serve as a solid foundation for an end-to-end script which analyzes

and simulates retinal cell distributions as well as spatial dependen-

cies between other vasculature structures and cells, which occur

many places in the body.
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